Elimination of Multiple Estimation for Fault Location in Radial Power Systems by Using Fundamental Single-End Measurements Germán Morales-España? Juan Mora-Flórez† Hermann Vargas-Torres‡ ? Universidad
Pontificia Comillas, Madrid-Spain Tecnológica de Pereira, Pereira-Colombia ‡ Universidad Industrial de Santander, Bucaramanga-Colombia † Universidad
IEEE Power & Energy Society General Meeting 2013 Vancouver-Canada, July 2013
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
1 / 19
Outline
1 Introduction
2 Proposed Methodology
3 Numerical Results
4 Conclusions
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
2 / 19
Introduction
Outline
1 Introduction
2 Proposed Methodology
3 Numerical Results
4 Conclusions
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
3 / 19
Introduction
Power Quality in Distribution Systems
Avoid energy supply interruptions If there is a fault: It must be located as fast as possible Then the service can be quickly restored
Failing in efficient fault location ⇒ poor power quality supply
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
4 / 19
Introduction
Multiple Fault Location Estimation
Characteristics of radial distribution systems, e.g. in rural areas: Radial topology
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
5 / 19
Introduction
Multiple Fault Location Estimation
Characteristics of radial distribution systems, e.g. in rural areas: Radial topology Single-end measurements
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
5 / 19
Introduction
Multiple Fault Location Estimation
Characteristics of radial distribution systems, e.g. in rural areas: Radial topology Single-end measurements Fault location Methods: Find electrical distance
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
5 / 19
Introduction
Multiple Fault Location Estimation
Characteristics of radial distribution systems, e.g. in rural areas: Radial topology Single-end measurements Fault location Methods: Find electrical distance Drawback: Multiple fault location1
1 J. Mora-Flórez, J. Meléndez, and G. Carrillo-Caicedo, “Comparison of impedance based fault location methods for power distribution systems,” Electric Power Systems Research, vol. 78, no. 4, pp. 657–666, Apr. 2008
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
5 / 19
®
Proposed Methodology
Outline
1 Introduction
2 Proposed Methodology
3 Numerical Results
4 Conclusions
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
6 / 19
Proposed Methodology
Initial Approach: Artificial Intelligence
A classification problem: Support Vector Machines2
2 J. Mora-Florez, G. Morales-Espana, and S. Perez-Londono, “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems,” Generation, Transmission & Distribution, IET, vol. 3, no. 4, pp. 346–356, 2009
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
7 / 19
Proposed Methodology
Initial Approach: Artificial Intelligence
A classification problem: Support Vector Machines2 Network divided in Zones Exhaustive fault simulation Input: Va,b,c and Ia,b,c
Learning: It is possible Measurements of the three phases are needed
2 J. Mora-Florez, G. Morales-Espana, and S. Perez-Londono, “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems,” Generation, Transmission & Distribution, IET, vol. 3, no. 4, pp. 346–356, 2009
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
7 / 19
Proposed Methodology
Approach for the Single-Phase Fault Type N
N+1 Ic Ib Ia
VN Rf
m
mZaa + Rf mZba mZca
"
mZab Zbb + ZLb Zcb + ZLcb
m=
m1 =
imag
Va −Vb +Vc Ia
mZac Zbc + ZLbc Zcc + ZLc
imag Zaa +
+ B IIab + C IIac
imag (Zaa − Zba + Zca + A)
; m2 =
Ia Ib Ic
#
" =
Va Vb Vc
#
Va Ia Zab IIab
imag
#"
+ Zac IIac imag
Va +Vb −Vc Ia
− B IIab − C IIac
imag (Zaa + Zba − Zca + A)
3
See the paper for other fault types 3 G. Morales-Espana, J. Mora-Florez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1382–1389, 2009
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
8 / 19
Proposed Methodology
Proposed Approach
Obtain mi : fault location for branch i Obtain extra mij , which depends on the branch footprint Find the deviations between m for each branch 1 Deviationi = n
P
j
|mi − mij | |mi |
The faulted branch is the one with the lowest Deviationi
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
9 / 19
Numerical Results
Outline
1 Introduction
2 Proposed Methodology
3 Numerical Results
4 Conclusions
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
10 / 19
Numerical Results
Illustrative Example: Single-phase, Rf = 0Ω
(a)
0
Lateral 1 Lateral 2 Lateral 3
Error1
10
−10
10
−20
10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.6
0.7
0.8
0.9
1
0.6
0.7
0.8
0.9
1
m lateral 1 (b)
0
Error2
10
−10
10
−20
10
0
0.1
0.2
0.3
0.4
0.5
m lateral 2 (c)
0
Error3
10
−10
10
−20
10
0
0.1
0.2
0.3
0.4
0.5
m lateral 3 ®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
11 / 19
Numerical Results
Illustrative Example: Single-phase fault, Rf = 40Ω
(a)
0
Error1
10
Lateral 1 Lateral 2 Lateral 3
−2
10
−4
10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.6
0.7
0.8
0.9
1
0.6
0.7
0.8
0.9
1
m lateral 1 (b)
0
Error2
10
−2
10
−4
10
0
0.1
0.2
0.3
0.4
0.5
m lateral 2 (c)
0
Error3
10
−2
10
−4
10
0
0.1
0.2
0.3
0.4
0.5
m lateral 3 ®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
12 / 19
Numerical Results
Illustrative Example: Three-phase fault, Rf = 0Ω
(a)
0
Error1
10
Lateral 1 Lateral 2 Lateral 3
−10
10
−20
10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.6
0.7
0.8
0.9
1
0.6
0.7
0.8
0.9
1
m lateral 1 (b)
0
Error2
10
−10
10
−20
10
0
0.1
0.2
0.3
0.4
0.5
m lateral 2 (c)
0
Error3
10
−10
10
−20
10
0
0.1
0.2
0.3
0.4
0.5
m lateral 3 ®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
13 / 19
Numerical Results
Case Study: IEEE 34-Bus Test System (I) 9 Branches, up to 5 multiple estimation 8800 faults were simulated Different locations through the whole network Fault resistances from 0 to 40 ohms 848 846
822
844
820 864
818 802 806 808 812 814
850
824
826
842 834
860
836
858
840
816 832
862
800
890 810
852
828
830 854
838 856
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
14 / 19
Numerical Results
Case Study: IEEE 34-Bus Test System (II) Percentage of branches correctly identified: 100 Fault a−g Fault a−b Fault a−b−g Fault a−b−c
99 98
Performance index [%]
97 96 95 94 93 92 91 90 0
4
8
12
16
20
24
28
32
36
40
Fault resistance [ohms]
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
15 / 19
Conclusions
Outline
1 Introduction
2 Proposed Methodology
3 Numerical Results
4 Conclusions
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
16 / 19
Conclusions
Conclusions
Multiple estimation can be solved Taking into account the 3-phase measurements
If branches are not identical, faulted branch can be identified Drawbacks of the proposed method Sensitive to load and fault resistance changes
Future work: A better incorporation of load is needed
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
17 / 19
Conclusions
Questions?
Contact Information:
[email protected] [email protected]
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
18 / 19
Conclusions
For Further Reading
For Further Reading
J. Mora-Flórez, J. Meléndez, and G. Carrillo-Caicedo, “Comparison of impedance based fault location methods for power distribution systems,” Electric Power Systems Research, vol. 78, no. 4, pp. 657–666, Apr. 2008. J. Mora-Florez, G. Morales-Espana, and S. Perez-Londono, “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems,” Generation, Transmission & Distribution, IET, vol. 3, no. 4, pp. 346–356, 2009. G. Morales-Espana, J. Mora-Florez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1382–1389, 2009.
®
G. Morales-España (Comillas-Spain)
Tight & Compact UC
General Meeting – July 2013
19 / 19