Document not found! Please try again

Elimination of Multiple Estimation for Fault Location in ...

23 downloads 0 Views 549KB Size Report
†Universidad Tecnológica de Pereira, Pereira-Colombia. ‡Universidad Industrial de Santander, Bucaramanga-Colombia. IEEE Power & Energy Society ...
Elimination of Multiple Estimation for Fault Location in Radial Power Systems by Using Fundamental Single-End Measurements Germán Morales-España? Juan Mora-Flórez† Hermann Vargas-Torres‡ ? Universidad

Pontificia Comillas, Madrid-Spain Tecnológica de Pereira, Pereira-Colombia ‡ Universidad Industrial de Santander, Bucaramanga-Colombia † Universidad

IEEE Power & Energy Society General Meeting 2013 Vancouver-Canada, July 2013

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

1 / 19

Outline

1 Introduction

2 Proposed Methodology

3 Numerical Results

4 Conclusions

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

2 / 19

Introduction

Outline

1 Introduction

2 Proposed Methodology

3 Numerical Results

4 Conclusions

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

3 / 19

Introduction

Power Quality in Distribution Systems

Avoid energy supply interruptions If there is a fault: It must be located as fast as possible Then the service can be quickly restored

Failing in efficient fault location ⇒ poor power quality supply

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

4 / 19

Introduction

Multiple Fault Location Estimation

Characteristics of radial distribution systems, e.g. in rural areas: Radial topology

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

5 / 19

Introduction

Multiple Fault Location Estimation

Characteristics of radial distribution systems, e.g. in rural areas: Radial topology Single-end measurements

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

5 / 19

Introduction

Multiple Fault Location Estimation

Characteristics of radial distribution systems, e.g. in rural areas: Radial topology Single-end measurements Fault location Methods: Find electrical distance

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

5 / 19

Introduction

Multiple Fault Location Estimation

Characteristics of radial distribution systems, e.g. in rural areas: Radial topology Single-end measurements Fault location Methods: Find electrical distance Drawback: Multiple fault location1

1 J. Mora-Flórez, J. Meléndez, and G. Carrillo-Caicedo, “Comparison of impedance based fault location methods for power distribution systems,” Electric Power Systems Research, vol. 78, no. 4, pp. 657–666, Apr. 2008

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

5 / 19

®

Proposed Methodology

Outline

1 Introduction

2 Proposed Methodology

3 Numerical Results

4 Conclusions

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

6 / 19

Proposed Methodology

Initial Approach: Artificial Intelligence

A classification problem: Support Vector Machines2

2 J. Mora-Florez, G. Morales-Espana, and S. Perez-Londono, “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems,” Generation, Transmission & Distribution, IET, vol. 3, no. 4, pp. 346–356, 2009

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

7 / 19

Proposed Methodology

Initial Approach: Artificial Intelligence

A classification problem: Support Vector Machines2 Network divided in Zones Exhaustive fault simulation Input: Va,b,c and Ia,b,c

Learning: It is possible Measurements of the three phases are needed

2 J. Mora-Florez, G. Morales-Espana, and S. Perez-Londono, “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems,” Generation, Transmission & Distribution, IET, vol. 3, no. 4, pp. 346–356, 2009

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

7 / 19

Proposed Methodology

Approach for the Single-Phase Fault Type N

N+1 Ic Ib Ia

VN Rf

m

mZaa + Rf mZba mZca

"

mZab Zbb + ZLb Zcb + ZLcb

m=

m1 =

imag

Va −Vb +Vc Ia

mZac Zbc + ZLbc Zcc + ZLc

imag Zaa +

+ B IIab + C IIac

imag (Zaa − Zba + Zca + A)

 ; m2 =

Ia Ib Ic

#

" =

Va Vb Vc

#



Va Ia Zab IIab

imag

#"

+ Zac IIac imag



Va +Vb −Vc Ia

− B IIab − C IIac



imag (Zaa + Zba − Zca + A)

3

See the paper for other fault types 3 G. Morales-Espana, J. Mora-Florez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1382–1389, 2009

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

8 / 19

Proposed Methodology

Proposed Approach

Obtain mi : fault location for branch i Obtain extra mij , which depends on the branch footprint Find the deviations between m for each branch 1 Deviationi = n

P

j

|mi − mij | |mi |

The faulted branch is the one with the lowest Deviationi

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

9 / 19

Numerical Results

Outline

1 Introduction

2 Proposed Methodology

3 Numerical Results

4 Conclusions

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

10 / 19

Numerical Results

Illustrative Example: Single-phase, Rf = 0Ω

(a)

0

Lateral 1 Lateral 2 Lateral 3

Error1

10

−10

10

−20

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

m lateral 1 (b)

0

Error2

10

−10

10

−20

10

0

0.1

0.2

0.3

0.4

0.5

m lateral 2 (c)

0

Error3

10

−10

10

−20

10

0

0.1

0.2

0.3

0.4

0.5

m lateral 3 ®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

11 / 19

Numerical Results

Illustrative Example: Single-phase fault, Rf = 40Ω

(a)

0

Error1

10

Lateral 1 Lateral 2 Lateral 3

−2

10

−4

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

m lateral 1 (b)

0

Error2

10

−2

10

−4

10

0

0.1

0.2

0.3

0.4

0.5

m lateral 2 (c)

0

Error3

10

−2

10

−4

10

0

0.1

0.2

0.3

0.4

0.5

m lateral 3 ®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

12 / 19

Numerical Results

Illustrative Example: Three-phase fault, Rf = 0Ω

(a)

0

Error1

10

Lateral 1 Lateral 2 Lateral 3

−10

10

−20

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

m lateral 1 (b)

0

Error2

10

−10

10

−20

10

0

0.1

0.2

0.3

0.4

0.5

m lateral 2 (c)

0

Error3

10

−10

10

−20

10

0

0.1

0.2

0.3

0.4

0.5

m lateral 3 ®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

13 / 19

Numerical Results

Case Study: IEEE 34-Bus Test System (I) 9 Branches, up to 5 multiple estimation 8800 faults were simulated Different locations through the whole network Fault resistances from 0 to 40 ohms 848 846

822

844

820 864

818 802 806 808 812 814

850

824

826

842 834

860

836

858

840

816 832

862

800

890 810

852

828

830 854

838 856

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

14 / 19

Numerical Results

Case Study: IEEE 34-Bus Test System (II) Percentage of branches correctly identified: 100 Fault a−g Fault a−b Fault a−b−g Fault a−b−c

99 98

Performance index [%]

97 96 95 94 93 92 91 90 0

4

8

12

16

20

24

28

32

36

40

Fault resistance [ohms]

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

15 / 19

Conclusions

Outline

1 Introduction

2 Proposed Methodology

3 Numerical Results

4 Conclusions

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

16 / 19

Conclusions

Conclusions

Multiple estimation can be solved Taking into account the 3-phase measurements

If branches are not identical, faulted branch can be identified Drawbacks of the proposed method Sensitive to load and fault resistance changes

Future work: A better incorporation of load is needed

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

17 / 19

Conclusions

Questions?

Contact Information: [email protected] [email protected]

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

18 / 19

Conclusions

For Further Reading

For Further Reading

J. Mora-Flórez, J. Meléndez, and G. Carrillo-Caicedo, “Comparison of impedance based fault location methods for power distribution systems,” Electric Power Systems Research, vol. 78, no. 4, pp. 657–666, Apr. 2008. J. Mora-Florez, G. Morales-Espana, and S. Perez-Londono, “Learning-based strategy for reducing the multiple estimation problem of fault zone location in radial power systems,” Generation, Transmission & Distribution, IET, vol. 3, no. 4, pp. 346–356, 2009. G. Morales-Espana, J. Mora-Florez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1382–1389, 2009.

®

G. Morales-España (Comillas-Spain)

Tight & Compact UC

General Meeting – July 2013

19 / 19

Suggest Documents