Mar 30, 2003 - dBm to dBuV. dBm. Z v. dB. +. +. = ) log(. 10. 90. µ. dBuV to dBm. ) log(. 10. 90. Z. V. dB. dBm. â. â. = µ. dBuA to dBm. 90) log(. 10. â. +. = Z. AdB.
EMC Related Formulae Term Conversion
Log↔ ↔ Linear Voltage dBµV to Volts
V = 10((dBµV − 120) / 20)
dBm to dBuV
dBµv = 90 + 10 log( Z ) + dBm
Volts to dBµV
dBµV = 20 log (V ) + 120
dBuV to dBm
dBm = dBµV − 90 − 10 log( Z )
V = 10(dBV / 20)
dBuA to dBm
dBm = dBµA + 10 log( Z ) − 90
dBV to Volts
dBV = 20 log (V )
dBm to dBuA
dBµA = dBm − 10 log( Z ) + 90
Volts to dBV
dBµV = dBV + 120
dBuA to dBuV
dBµV = dBµA + 20 log( Z )
dBV to dBµV
dBV = dBµV − 120
dBuV to dBuA
dBµA = dBµV − 20 log( Z )
dBµV to dBV
Log↔ ↔ Linear Power
Volts to Amps & Watts
A=
V Z
W=
V2 Z
dBm to Watts
W = 10((dBm − 30) / 10)
Amps to Volts & Watts
V = A* Z
W = A2 * Z
Watts to dBm
dBm = 10 log(W ) + 30
Watts to Volts & Amps
V = W *Z
A=
dBW to Watts
W = 10(dBW / 10)
Watts to dBW
dBw = 10 log(W )
dBW to dBm
dBm = dBW + 30
dBm to dBW
dBW = dBm − 30
W Z
RF related, Field Strength & Power Density
Log↔ ↔ Linear Current
dBuV/m to V/m
V / m = 10(((dBµV / m) − 120) / 20)
V/m to dBuV/m
dBµV / m = 20 log (V / m ) + 120
dBuv/m to dBmW/m2
dBm / m2 = dBµV / m − 115.8
dBmW/m2 to dBuV/m
dBµV / m = dBm / m 2 + 115.8
dBuA to uA
µA = 10(dBµA / 20)
dBuV/m to dBuA/m
dBµA / m = dBµV / m − 51.5
uA to dBuA
dBµA = 20 log( µA)
dBuA/m to dBuV/m
dBµV / m = dBµ A / m + 51.5
dBA to A
A = 10(dBA / 20)
dBuA/m to dBpT
dBpT = dBµA / m + 2
A to dBA
dBA = 20 log( A)
dBpT to dBuA/m
dBµA / m = dBpT − 2
dBuA to dBA
dBA = dBµA − 120
W/m2 to V/m
V / m = (W / m 2 ) * 377
dBA to dBuA
dBµA = dBA + 120 V/m to W/m2
W / m2 =
wound coil Flux Density
µT =
uT to A/m
A/m =
A/m to uT
µ T = 1.25 * ( A / m)
Log↔ ↔ Linear Impedance dB(ohms) to ohms
Z = 10(dB(ohms) / 20)
ohms to dB(ohms)
dB(ohms ) = 20 log (Z )
Robert Richards
Page 1
(V / m ) 2 377
4π (turns)( amps ) 20( radius, m ) µT 1.25
03/30/03
Current Probe
Antenna (Far Field)
dB(ohm) to Zt (transfer impedance)
Gain, dBi to numeric
Z t = 10( dB (ohm) / 20)
Gainnumeric = 10( dBi / 10)
Zt to dB(ohm)
Gain, numeric to dBi
dB (ohm) = 20 log( Z t )
dBi = 10 log(Gainnumeric )
Conductance (Gt) in dB(s) to transfer impedance, (Zt) in dB(ohms)
Gain, dBi to Antenna Factor AF = 20 log( MHz ) − dBi − 29.79
Z t = −Gt
Antenna Factor to gain in dBi Transfer Impedance in Zt (dB(ohms)), to Conductance in Gt (dB(s))
dBi = 20 log( MHz ) − AF − 29.79
Gt = −Z t
Field Strength given Watts, Numeric Gain, Distance in meters
Power needed for BCI Probe (50Ω), given voltage level into 50Ω load (V) and Probe Insertion Loss I L .
30 * watts * Gainnumeric
V /m =
Meters
watts = 10
Field Strength given Watts, dBi gain, Distance in meters
Watts needed for 150 Ohm EM Clamp
30 * watts * 10(dBi / 10 ) Meters
V /m =
watts = 10
Transmit Power needed, given desired V/m, Antenna numeric gain, Distance in meters. watts =
(( I L + 10 log(V 2 / 150)) / 10)
Conducted current level using current measuring probe given probe factor in dB(ohm) and probe terminal voltage in dBuv
(V / m * meters ) 2 30 * Gainnumeric
dBµA = dBµV − dB (ohm)
Transmit Power needed, given V/m, Antenna dBi gain, Distance in meters watts =
(( I L + 10 log(V 2 / 50)) / 10)
Conducted current level, given probe factor in Zt (ohms) and terminal voltage in dBuv
(V / m * meters ) 2
dBµA = dBµV − 20 log( Zt )
30 *10 ( dBi / 10)
dB calculations Amplitude Modulation Compute db delta (volts)
V dB = 20 log 1 V2
Compute dB delta (amps)
dB = 20 log
Compute dB delta (watts)
W dB = 10 log 1 W2
Peak power, given CW power and modulation %.(sine wave AM) W peak = WCW (1 + ( Mod % * 0.01)) 2 Average power, given CW power level and modulation % (sine wave AM)
Wavg =
Wcw * ( 2 + ( Mod % * 0.01) 2 ) 2
compute new voltage w/ db delta
Average power, given peak power and modulation %
Wavg =
Vnew
W peak * (2 + ( Mod % * 0.01) 2 ) 2 * (1 + ( Mod % * 0.01)) 2
( dB∆ + 20 log(V given ) 20 = 10
compute new wattage w/ db delta
Wnew
Robert Richards
A1 A2
Page 2
( dB∆ + 10 log(W given ) 10 = 10
03/30/03
VSWR/reflection coefficient/return loss
Misc
VSWR given Fwd/Rev Power
Linear interpolation with log of freq
1+
Prev Pfwd
Value =
1−
Prev Pfwd
where
VSWR =
VSWR given reflection coefficient VSWR =
1+ ρ 1− ρ
FL = lower frequency FU = Upper frequency XL = Value at lower frequency XU = Value at upper frequency FX = Frequency of desired value
TEM Cell Power Needed Watts =
Reflection coefficient, ρ, given Z1/Z2 ohms ρ=
Log ( FX / FL ) * ( XU − X L ) + X L Log ( FU / FL )
Z1 − Z 2 Z1 + Z 2
where
(V * Height * 0.5) 2 Z V = field strength in V/m Z = TEM cell impedance in ohms
Reflection coefficient, ρ, given fwd/rev power
ρ=
Prev Pfwd
Return Loss, given fwd/rev power Pfwd RL ( dB ) = 10 log P rev
Return Loss, given VSWR VSWR − 1 RL( dB ) = −20 log VSWR + 1
Return Loss, given reflection coefficient RL( dB ) = −20 log( ρ )
Mismatch loss, given fwd/rev power Pfwd ML ( dB ) = 10 log Pfwd − Prev
Mismatch loss, given reflection coefficient
ML(dB) = −10 log(1 − ρ 2 )
Robert Richards
Page 3
03/30/03