Beaumont TBM Tunnel, 1880 : wedge-failure, stress-failure, tidal influence. Three photos ... parameters (Jn, Jr, Ja, JRC,. JCS, Ïr, Jw, SRF, Q) will be. (part of) the subject of this lecture. 3 .... SOFTWARE â PLEASE NOTE it is Ïr since 1977 !
EMPIRICISM, THEORY, AND PROBLEM SOLVING IN ROCK ENGINEERING Nick Barton (www.nickbarton.com)
6th Leopold Mϋller Lecture, with additions
GSL – HONG KONG October 2013
Beaumont TBM Tunnel, 1880 : wedge-failure, stress-failure, tidal influence. Three photos separated by 150 m .
1
WHY THE ‘OVER-BREAK’/ POTENTIAL INSTABILITY? Because of adverse Jn, Jr, Ja (JRC, JCS, ϕr), Jw, SRF ……and dip/dip direction, gravity, density. 2
The origin and numerous applications of these parameters (Jn, Jr, Ja, JRC, JCS, ϕr, Jw, SRF, Q) will be (part of) the subject of this lecture. 3
ACTUAL EMPIRICAL BEHAVIOUR or ASSUMED BEHAVIOUR ?? Empiricism: a posteriori (= behaviour based on experience ) is better than a priori (= ‘behaviour’ (?) based on assumptions). There are too many a priori assumptions (clothed in some amazing algebra) which are used by many of us these days….e.g. GSI/Phase 2? 4
PART 1 5
A DISCONTINUOUS (and idealized) EXPERIMENTAL/EMPIRICAL START IN 1966 at Imperial (‘Empirical’) College, London
6
DST on 200 artificial tension fractures in a variety of brittle model materials (Barton, 1971)
7
NOTE LACK OF ACTUAL COHESION UNLESS STEPPED (“secondary”) FRACTURES ARE TESTED
8
(------ = no decimal places) τ = σn . tan [ 20. log( UCS/σn ) + 30º ]
9
2D JOINTED “ROCK-MASS” Tension-fracture models used for ‘rock slope’ studies (at Imperial College) 1968-1969. ‘Nuclear power plant’ rock cavern investigations (50m) (at NGI) 1977-1978 (pre-UDEC)
10
2D ‘rock mass’ research conducted in the laboratory Physical (1977) models (this colour) follow here which pre-date UDEC: Artificial, but some useful lessons They are physical, not conceptual They are ‘a posteriori’, not ‘a priori’ ! 11
BIAXIAL LOADING Scale-effect investigations 250, 1000, or 4000 blocks.
“Always” got rotational failures with small blocks! 12
BIAXIAL LOADING TESTS WITH HIGHLY ANISOTROPIC STRESS APPLICATION (as under a big rock slide?)
Shearing by rotation of individual blocks, following local ‘kinking’ within the mass?
13
APPROPOS: LARGE DEBRIS and ROCK SLIDES
(Front cover: eds.
J.Clague, D. Stead)
14
FRANK SLIDE (Wikipedia)
15
TRAVEL DISTANCE VARIABILITY • SAY 0.5 to 1 km TRAVEL DISTANCE EXPECTED • WITH ‘AIR-CUSHION’ (Chinese research) 2km • REALITY (sometimes) is > 20 km • SLIDE MASSES TOO HOT FOR RESCUE PARTIES WHY?: Rotational friction, block crushing, extreme heating, ground water converted to steam, ‘steamcushioned slides’ due to ‘gas’ pressure? (V2/V1 = 1,400:1) 16
SUCCESSIVE HALVING OF THE BLOCK SIZE – HAS DRAMATIC ROTATIONAL (degree-of-freedom) EFFECTS, ALSO WITH UDEC-MC. (helps to explain the drama of fault zones: worse with clay and water) Shen, B. & Barton, N. 1997. The disturbed zone around tunnels in jointed rock masses.
17
ROCK JOINTS : THEY (ALSO) SHOWED NON-LINEAR SHEAR STRENGTH (and no cohesion!)
18
130 joint samples. Roughness measurement and tilt test ( Barton and Choubey, 1977)
19
TILT TEST ‘THEORY’
where α° = arctan (τ/σn) (Barton and Bandis, 1990) 20
130 rock-joint samples (Barton and Choubey 1977) Three curved peak shear strength envelopes and no cohesion! 1.Maximum strength with JRC = 16.9 2. Mean parameters JRC = 8.9 JCS = 92 MPa φr = 28°
3. Minimum strength with φr = 26º 21
22
Note: the original tension fracture-based equation (1971) was: τ = σn tan [ 20.log(UCS/σn )+30º]
JRC
JCS
φb (now φr)
TO THOSE WHO HAVE PERFORMED PH.D.’s AND ARE SELLING SOFTWARE – PLEASE
NOTE it is φr since 1977 ! 23
VISUAL MATCHING OF ROUGHNESS – for JRC… USEFUL BUT HAS LIMITATIONS (Barton and Choubey, 1977)
24
EXAMPLE of ROUGHNESS CONTRAST – BACK-CALCULATED FROM DST (L = 400 mm: Nevada Test Site welded tuff)
JRC = 1
JRC = 16
25
NOTE: above JRCJCS strength criterion was developed from tilt and push test correlation with DST (not from analysing roughness profiles!) 26
JCS > UCS (?)
JCS < UCS 27
SCALE EFFECTS FOR INDIVIDUAL JOINTS
28
Tilt tests repeated at different scale -
there is almost no damage. Note: JRC1 < JRC2 (Barton and Choubey, 1977) 29
Bandis 1980 Ph.D.
Ahead-of-their-time scale-effect investigations. One set of many joint replica tests.
30
The angular components of peak shear strength, with asperity strength (SA), and peak dilation angle (dn ) each included. (Barton, 1971)
31
Asperity component SA means that JRC (or φr) cannot be back-calculated by subtracting dilation (dn) from peak strength. Φr or Φb would then be dangerously too high (e.g. 40°) as in some earlier Hong Kong work. (JRC would also be incorrect).
32
SCALE-EFFECTS REDUCTION OF of JRC and JCS with block-size Ln > L 0
(Bandis, Dearman, Barton, 1981)
33
JRCmobilized defined
(also with dimensionless displacement) Barton, 1978, 1982
34
Then possible to predict/model shear stressdisplacement and dilationdisplacement behaviour. (Barton, 1982, with scaling from Bandis et al. 1981).
Note (double) scale effect on shear stiffness (Ks), because it is strongly scale-and-stress-dependent. (Ks usually < 1 MPa/mm, 0.1 MPa/mm if large blocks) 35
Well-jointed wedge. Remains in place because of the higher shear strength of the smaller component blocks ?
Larger blocks defining wedge (failure at much shallower angle of dip)
37
Before leaving shear strength envelopes: When a rock mass fails: 1st, 2nd, 3rd (and 5th) envelopes are mobilized at different strains - not like H-B / GSI estimation (Barton, 1976, 1999, 2006)
38
INTO THE FIELD !! CHARACTERIZATION OF JOINTING, DEFORMABILITY, AT MAJOR DAM SITES • IRAN: KARUN IV 230 m • IRAN: BAKHTIARY 325 m • CHINA: BAIHETAN 283 m (2 x 8,000 MW) 39
“You need to hire a rock-climbing-engineering-geology group to characterise the major joint planes that define the two major wedges that your company are worried about”
40
Some kilos lighter, and not telling his wife the reason, Iranian colleague M.Zargari is profiling major-joint MJ-67, Karun IV Dam, Iran
41
Schmidt rebound (R) on intact rock (> r on joint plane) Karun IV Dam site canyon, Iran
The a/L method for roughness is used when JRC is TOO LARGE
43
Joint Roughness Coefficient (JRC) JRC=0.5 JRC=1 JRC=2 JRC=3 JRC=4 JRC=5 JRC=6 JRC=8 JRC=10 JRC=12 JRC=16 JRC=20 F6a-ZA-B1 F6a-ZA-B2 F6a-ZA-B3 F6a-ZA-B4 F6a-ZA-B7 F6a-ZA-B8 F6a-ZA-B11 F6a-ZA-B13 JRC=22 JRC=24 JRC=26 JRC=28 JRC=30
1000.00
Amplitude of Asperities (mm)
100.00
10.00
For the very rough bedding plane, had to use “a/L” method
1.00
Mean JRCn = 11 0.10 0.1
1
10
(for 2m block size)
Length of Profile (m)
44
COLUMNAR JOINTING AT A MAJOR DAM SITE IN CHINA (Baihetan, 283m, 2 x 8000 MW)
45
BAIHETAN DAM and POWER GENERATION: 2 X 8,000 MW HydroChina/ECIDI
47
RECORDING OF ROUGHNESS FOR JRC ESTIMATION, 70 to 140 m into the canyon walls. (May need stripping to this competent-rock depth)
RECORDING OF SCHMIDTHAMMER REBOUND FOR JCS ESTIMATION 48
APPLICATION OF JRC and JCS to ROCK MASS DEFORMABILITY and to MODELLING with UDEC-BB (see columnar basalt behaviour)
49
Stress-closure and scale-effect shear tests. (Bandis et al. 1981 and 1983 )
The N, S components in rock mass load-deformation mechanisms. (Barton, 1986)
There is plate-load / block-test evidence for these three P-Δ type-curves.
50
UDEC-BB simulations (Chryssanthakis, NGI)
EMPHASISES WHY DISCONTINUUM ANALYSES GIVE MORE EXCITEMENT/INTEREST/ VALUE/REALISM than analyses without joints!
51
PART 2 52
Q-SYSTEM SINCE 1974 Q HAS ACTUALLY BECOME “A SYSTEM”,
SINCE THERE ARE NOW SEVERAL COMPONENTS. (50 rock types in first 210 cases, 1250 case records) Q rockmass classification, Q-histograms Q for ‘single shell’ NMT support (B + Sfr, RRS) QC (= Q x UCS/100) for correlating with VP and EMASS Q as part of QTBM for TBM prognosis QSLOPE for selecting safe slope angles (in progress) Qc split into CC and FC (if ‘continuum’ modelling)
‘53
EXAMPLE OF SLOPE ANGLE MATCHED TO GEOTECHNICAL PROPERTIES (or to local Q-slope = 0.1, 1.0, 10). (Panama expansion project, 2011. PCA photo)
Why/how was Q developed? Because of a question to NGI in 1973: “Why are Norwegian underground power houses showing such a variety of deformations”? (from Norwegian State Power Board/ STATKRAFT)
Question passed to NB. Answer given after 6 months of Q-system development! VARIABLES: Rock mass quality, support type/quantity, span/height, depth, stress. 212 case records used. B, S(mr), B+S(mr), CCA. 55
VARIABLE WORLD NEEDS BROAD-REACH CHARACTERIZATION METHOD 56
VARIABLE WORLD CANNOT ALWAYS BE COMPUTER MODELLED – BUT 57 IT CAN BE CHARACTERIZED
Strength contrast, modulus contrast, constructability contrast (15 years/1 year)! 0.001→1000, or 5→95, or F7→F1 ???
58
A GLIMSE OF NMT (SINGLE-SHELL TUNNELLING)
for which the Q-system was actually designed
59
Grimstad and Barton, 1993
(Norwegian conference), Barton and Grimstad, 1994
(Austrian conference).
The Q-system is most strongly associated with ‘single shell’ solutions : (B+Sfr + water control) (= NMT= Norwegian Method of Tunnelling) in mostly better rock, costs about 1/5 x ‘double-shell’ NATM, e.g. 20,000 US $/m compared to 60 100,000 US $/m (Costs from many countries).
RRS is a flexible (until bolted)
‘lattice’ girder.
3D effect because of S(fr) arches.
61
QUESTION: SHALLOW METRO or DEEP METRO? • MIXED-FACE OR ROCK? • 5 m PER WEEK OR 20 m PER WEEK?
• COST DIFFERENCE MAY BE 5:1 (at least)
62
RELATIVE COST FOR TUNNEL EXCAVATION AND SUPPORT (Barton, Roald, Buen, 2001) ………potential benefits of pre-grouting, especially if Q ≈ 0.1
Pre-injection screen 30-70 holes, 20-30m long, 0.5-1.0 m c/c (Hognestad and Frogner, 2005….. and Garshol (ICE/HK, 2010)
BÆRUM TUNNEL RAIL TUNNEL. Pre-injection in progress. Truck mounted
grout storage and mixing. Note up to 70 holes for dry 110m2 tunnel in shales and limestones. Packered injection ‘lances’ are chained for safety. 24-30 hours CYCLE time. Cost of finished NMT tunnel: < 25,000/m
Q-HISTOGRAM METHOD of logging
66
Q - VALUES: Q (typical min)= Q (typical max)= Q (mean value)= Q (most frequent)= B L O C K
(RQD 10 100 71 85
/ / / / /
Jn) 20.0 2.0 9.6 9.0
V. POOR
50
* * * * *
(Jr 1.0 2.0 1.5 1.5
POOR
/ / / / /
Ja) 5.0 1.0 2.8 2.0
* * * * *
(Jw 0.50 1.00 0.69 0.66
FAIR
/ SRF) = Q / 5.0 = 0.010 / 1.0 = 100.0 / 1.5 = 1.78 / 1.0 = 4.68
GOOD
EXC
40
RQD %
30
Core pieces >= 10 cm
20
10 00
10
S I Z E S
80
20
EARTH
30
FOUR
40
50
60
THREE
70
80
TWO
90
100
ONE
NONE
THE RESULT OF Q-HISTOGRAM LOGGING OF SIX CORES AT A PLANNED METRO PROJECT IN HONG KONG. DEVIATED HOLES.
Jn
60
Number of joint sets
40 20 00 20
T A N
(fr)
150
15
12
FILLS
9
6
4
3
PLANAR
2
1
UNDULATING
0,5 DISC.
Jr
100
Joint roughness - least
50
00
and T A N
(fp)
1
0,5
1
1,5
1,5
THICK FILLS
80
2
THIN FILLS
3
4
COATED UNFILLED HEA
60
Ja
40
Joint alteration - least
20 00 20
A C T I V E
13
12
8
6
5
12
EXC. INFLOWS
150
8
6
4
4
HIGH PRESSURE
3
2
WET
1
0,75
DRY
100
Jw
50
Joint water pressure
00
0.05
S T R E S S
10
200
0.1
SQUEEZE
0.2
SWELL
0.33 FAULTS
0.5
0.66
1
STRESS / STRENGTH
150
SRF
100
Stress reduction factor
50 00 20
15
10
5
20
15
10
5
10 7.5
5
2.5 400 200 100 50
20
10
5
2
0.5
1
2.5
67
How do the Q-parameter histograms change, as depth is increased in the same rock type?
CHARACTER OF SAPROLITE AND SOIL
LOGGED CHARACTER OF NEAR-SURFACE SANDSTONES
LOGGED CHARACTER OF DEEPER SANDSTONES
Q - VALUES: Q (typical min)= Q (typical max)= Q (mean value)= Q (most frequent)= B L O C K
(RQD 10 100 50 45
/ / / / /
Jn) 20.0 3.0 10.9 15.0
V. POOR
800
* * * * *
(Jr 1.0 3.0 1.6 1.5
POOR
/ / / / /
Ja) 12.0 1.0 3.5 1.0
* * * * *
(Jw 0.20 1.00 0.68 0.66
FAIR
/ / / / /
SRF) 20.0 0.5 5.4 2.0
GOOD
= Q = 0.000 = 200.0 = 0.26 = 1.49
EXC
RQD %
600
Core pieces >= 10 cm
400 200 00 10
S I Z E S
1000
EARTH
20
30
FOUR
40
50
60
THREE
70
80
TWO
90
100
ONE
NONE
800
Jn
600
Number of joint sets
400 200 00 20
T A N (fr)
800
15
12
FILLS
9
6
4
3
PLANAR
2
1
UNDULATING
0,5 DISC.
600
Jr
400
Joint roughness - least favourable
200 00
and T A N (fp)
1
0,5
1
1,5
1,5
THICK FILLS
1000
2
THIN FILLS
3
COATED
4
UNFILLED HEA
800
J & K rail-link, Kashmir. Here 12m/2 years.
Ja
600
Joint alteration - least favourable
400 200 00 20
A C T I V E
13
12
10
6
5
12
EXC. INFLOWS
2000
8
6
4
4
HIGH PRESSURE
3
2
WET
1
0,75
DRY
Jw
1500
Joint water pressure
1000 500 00 0.05
S T R E S S
8
800
0.1
SQUEEZE
0.2
SWELL
0.33
FAULTS
0.5
0.66
1
STRESS / STRENGTH
600
SRF
400
Stress reduction factor
200 00 20
15
10
5
20
15
10
5
10
7.5
5
2.5 400 200 100 50
20
10
5
2
0.5
1
2.5
72
Class 2: Q = 10 to 40 Histograma de RQD
Histograma de Jn
Normal
Normal
Media Desv .Est. N
1000
3000
88.69 12.16 6239
Media Desv .Est. N
2500
2.628 0.8636 6124
Frecuencia
Frecuencia
800 600 400
1500 1000
200 0
2000
500
0
10
20
30
40
50 RQD
60
70
80
90
0
100
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40
0.5 1.0
2.0
3.0
4.0
Jn
9.0
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40
Histograma de Ja
Histograma de Jr
Normal
Normal
3500
Media Desv .Est. N
3000
2500
1.705 0.4958 6239
2000 1500 1000
Media Desv .Est. N
2000
Frecuencia
2500
Frecuencia
6.0
1500 1000 500
500 0
0 0.5
1.0
1.5
2.0
3.0
4.0
Jr Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40
5 0 0.7 1.0
0 2. 0
0 3.0
0 4. 0
0 6. 0
Ja Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 2, Q =10 - 40
2.001 0.6967 6239
Class 3: Q = 4 to 10 Histograma de RQD
Histograma de Jn
Normal
Normal
Media Desv .Est. N
500
8000
75.80 16.90 10891
7000
3.930 1.605
N
10485
6000
Frecuencia
400
Frecuencia
Media Desv .Est.
300 200
5000 4000 3000 2000
100 0
1000 0 0
10
20
30
40
50 RQD
60
70
80
90
5 0 0. 1.
100
0 2.
0 3.
0 4.
0 6.
0 9.
.0 12
.0 15
Jn
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10
Histograma de Ja
Histograma de Jr
Normal
Normal
Media Desv .Est. N
5000
2500
1.539 0.3551 10891
Media Desv .Est. N
2000
Frecuencia
Frecuencia
4000 3000 2000
1000 500
1000 0
1500
0 0.5
1.0
1.5
2.0 Jr
3.0
4.0
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10
75 00 0. 1.
00 2.
00 3.
00 4.
00 6.
00 8.
Ja Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 3, Q = 4 - 10
2.581 0.8259 10891
Class 4: Q = 1 to 4 Histograma de Jn
Histograma de RQD
Normal
Normal
Media Desv .Est. N
400
9000
56.09 19.30 17915
Media Desv .Est. N
8000
6.543 2.614 16187
7000
Frecuencia
Frecuencia
300
200
6000 5000 4000 3000 2000
100
1000
0
0
0
10
20
30
40
50 RQD
60
70
80
90
5 0 0 0 0 0. 1. 2. 3. 4.
100
0 6.
0 9.
.0 12
.0 15
.0 20
Jn Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
Histograma de Ja
Histograma de Jr
Normal
Normal
7000
Media Desv .Est. N
6000
1.486 0.3047 17915
Media Desv .Est. N
2500 2000
Frecuencia
Frecuencia
5000 4000 3000
1500 1000
2000
500 1000 0
0 0.5
1.0
1.5
2.0 Jr
3.0
4.0
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
75 00 0. 1.
00 2.
00 3.
00 4.
00 6.
00 8.
Ja Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 4, Q = 1 - 4
3.223 1.189 17915
Class 5: Q = 0.1 to 1 Histograma de Jn
Histograma de RQD
Normal
Normal
Media Desv .Est. N
900 800
28.27 15.61 11515
700
9.583 3.200 10380
3000
600
Frecuencia
Frecuencia
Media Desv .Est. N
4000
500 400
2000
300 1000
200 100 0
0
0
10
20
30
40
50 RQD
60
70
80
90
5 0 0 0 0. 1. 2. 3.
100
0 4.
0 6.
0 9.
15
.0
.0 20
Jn Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
Histograma de Ja
Histograma de Jr
Normal
Normal
3000
Media Desv .Est. N
2500
900
1.374 0.2628 11515
800
Media Desv .Est.
4.628 2.019
N
11515
700
2000
Frecuencia
Frecuencia
.0 12
1500 1000
600 500 400 300 200
500 0
100 0
0.5
1.0
1.5
2.0 Jr
3.0
4.0
Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
5 0 0.71.0
2.0
0
0 3.0
0 4.0
0 6. 0
0 8.0
0 .0 10
.0 12
0
Ja Proyecto: Estadística variables de Barton.MPJ; Hoja de trabajo: Class 5, Q = 0.1 - 1
VELOCITY-MODULUSPERMEABILITY-Q-VALUE CHALLENGES, AT BAKHTIARY DAM SITE, IRAN (325 m) 77
How to characterize voids? Velocity-moduluspermeability-Q-value correlation difficulties. 78
Upper diversion tunnel: top heading
79
Q - VALUES: Q (typical min)= Q (typical max)= Q (mean value)= Q (most frequent)= B L O C K
(RQD 10 100 73 80
/ / / / /
Jn) 15.0 2.0 6.0 4.0
V. POOR
100
* * * * *
(Jr 0.5 4.0 2.0 2.0
POOR
/ / / / /
Ja) 6.0 0.8 1.6 1.0
* * * * *
(Jw 0.66 1.00 0.99 1.00
FAIR
/ SRF) = Q / 5.0 = 0.007 / 1.0 = 266.7 / 1.1 = 13.74 / 1.0 = 40.00
GOOD
EXC
80
RQD %
60
Core pieces >= 10 cm
40
20 00
10
S I Z E S
120 100 80 60 40 20 00
20
EARTH
(fr)
150
40
50
60
THREE
70
80
TWO
90
100
ONE
NONE
Jn Number of joint sets
20
T A N
30
FOUR
In diversion tunnel Qm.f. = 40 Qmean = 14
15
12
FILLS
9
6
4
3
PLANAR
2
1
UNDULATING
0,5
Next steps:
DISC.
Jr
100
Joint roughness - least
50 00
and T A N
(fp)
1
0,5
1
1,5
1,5
THICK FILLS
200
2
THIN FILLS
3
COATED
4
1. Convert Q to Qc
UNFILLED HEA
150
Ja
100
Joint alteration - least
50
(UCS?)
00
20
A C T I V E
13
400
• 1.
12
8
6
5
12
8
6
4
4
HIGH PRESSURE
3
2
WET
1
2. Convert to Vp 3. Convert to Emass
0,75
DRY
300
Jw
200
Joint water pressure
100 00
0.05
S T R E S S
10
EXC. INFLOWS
300
0.1
SQUEEZE
0.2
SWELL
0.33
FAULTS
0.5
0.66
1
STRESS / STRENGTH
SRF
200
Stress reduction factor
100 00 20
15
10
5
20
15
10
5
10 7.5
5
2.5 400 200 100 50
20
10
5
2
Rev.
BAKHTIARY DAM HEPP UPPER DIVERSION TUN
0.5
1
2.5
Report No.
NB&A #3 Borehole No. :
Drawn by
Figure No.
6 Date
80
81
TBM prognosis and comparing with drill-and-blast
QTBM 82
145 cases, ≈ 1000 km, open-gripper trends (Barton, 2000).
83
SEVERAL PAGES OF WORLD RECORDS BY TBM – ASSEMBLED BY ROBBINS, GIVE THE FOLLOWING RESULTS WHEN COMBINED Assume 24 hrs/day, 168 hrs/week, 720 hrs/month
8 4
85
86
WHY TBM DELAYS IN FAULT ZONES ? “Theo-empirical” reasons Lack of belief gets paid for!
87
‘THEO – EMPIRICAL’ REASONS WHY FAULT ZONES ARE SO DIFFICULT FOR TBM – THREE BASIC EQUATIONS: 1. AR = PR x U (all TBM must follow this) 2. U = Tm (due to the decelerating advance rate with time) 3. T = L / AR (obviously time for length L must be proportional to 1/AR)
4. T = (L / PR) (1 / (1+m) (from #1, #2 and #3) 5. This is VERY important for TBM……since (-)m is strongly related to Q-values …..in FAULT ZONES. 6. It is important because very negative (-)m values make 1/(1+m) TOO BIG – giving ‘huge delays’ (T in months or years) 88
BUT…Q CAN BE IMPROVED BY PRE-GROUTING ! (IMPROVE –m.....to less negative value)
89
RAIL TUNNEL PROGNOSIS – OSLO-SKI / FOLLO-BANEN
90
91
CENTRAL Q-VALUES AND QTBM VALUES ARE BEST FOR GOOD TBM PROGRESS. TAIL-DISTRIBUTIONS ’BETTER’ WITH D+B ! Note records for drill-andblast: 176m/one face in 168 hours (7x24) week. Whole project 104 m/week average – IN COALMEASURE ROCKS needing B+S(fr). LNS Norway
PHYSICAL (2D) MODELS of ROCK CAVERNS, AS FORE-RUNNER TO UDEC-BB FLEXIBILITY (1977-1978)
93
94
THE ‘jointed’ NATURE OF THE MODELLING MATERIAL (Post- ‘seismic’ loading result, following 0.2 to 0.5 g)
95
Physical and FEM modelling (Barton and Hansteen, 1979) suggested possible ‘heave’ resulting from largecavern construction near the surface…….. ……….depended on joint pattern and horizontal stress level in the physical models.
96
GJØVIK CAVERN INCREASE OF LARGEST CAVERN SPAN BY ALMOST 2 x (Note also the three deep caverns in a Norwegian road tunnel) 97
Gjøvik Olympic cavern represented a big jump…….in span and confidence! (Figure from Sharp, 1996: UK Nirex study)
BLUE: Lærdal Tunnel (three lorry-turning and ‘wake-up-driver’ caverns in 24.5 km long tunnel)
LÆRDAL TUNNEL lorry-turning caverns (three of them) 30 m span, depths 1,000 to 1,400 m (Photo G.Lotsberg)
99
Gjøvik cavern : an ’extension’ of 1974 Q-system data base. (Qmin, Qmean, and Qmax values of 1, 12, 30 logged in the cavern) RQD = 60-90%, UCS = 90 MPa was typical.
100
101
GJØVIK CAVERN JOINT-GEOMETRY ASSUMPTIONS input data, boundary stresses Barton, N., By, T.L., Chryssanthakis, P., Tunbridge, L., Kristiansen, J., Løset, F., Bhasin, R.K., Westerdahl, H. & Vik, G. 1994. Predicted and measured performance of the 62m span Norwegian Olympic Ice Hockey Cavern at Gjøvik. Int. J. Rock Mech, Min. Sci. & Geomech. Abstr. 31:6: 617-641. Pergamon.
102
TOP HEADING TOO WIDE TO OBSERVE FROM ONE LOCATION
103
104
The final modelled 7 to 9 mm (downwards directed) deformations matched the unknown (to be measured) result almost perfectly. (UDEC-BB modelling by Chryssanthakis, NGI)
105
DEFORMATION RECORDS FROM MPBX AND LEVELLING Δ = 7 to 8 mm was typical. Construction period: week 24 to week 52, following arrival of access tunnels (top and bottom). BxHxL = 62 x 24 x 90 = 140,000 m3
Typical NMT B + S(fr) DRAINED
106
CONTINUUM (??) or DISCONTINUUM MODELLING 107
Borehole stability studies at NGI Continuum becomes a discontinuum!
Drilling into σ1 > σ2 >σ3 loaded cubes 0.5 x 0.5 x 0.5 m
of model sandstone
108
Jinping II (D+B) – ISRM News Journal Physical model – bored under stress (NGI) Jinping II (TBM) – ISRM workshop (NB)
Log-spiral shear modes in weaker rock types 109
8
-8
-6
-4
-2
X Axis (m) 0
2
4
6
8
-8
-7
-6
-5
-4
-3
-2
-1
X Axis (m) 0
1
2
3
4
5
6
3
4
5
6
Elastic fracture
10 10
7
Open fracture Slipping fracture Fracture with Water
6
8
Fracom Ltd
5
6
Date: 22/12/2004 11:00:09
4
3
4 2
2 Y Axis (m)
Y Axis (m)
0
1
0
-1
-2 -2
-4
-3
-4
-6 -5
-8
-6
-7
-8
-6
-4
-10 10
Three FRACOD models showing fracturing development. Baotang Shen, 2004 -2
0 X Axis (m)
2
4
6
8
-8
-8
-7
-6
-5
-4
-3
-2
-1
0 X Axis (m)
1
2
11 0
Cundall and Cundall………but the choice is clear! (NGI modelling by Lise Backer)
111
NEED for CHANGE CONVENTIONAL continuum modelling methods are suspect. Poor simulation with Mohr Coulomb or Hoek and Brown strength criteria. ( Hajiabdolmajid, Martin and Kaiser, 2000 “Modelling brittle failure”, NARMS.)
So why performed by so many consultants? 112
Degrade cohesion, mobilize friction: excellent match. ( Hajiabdolmajid, Martin and Kaiser, 2000 “Modelling brittle failure”, NARMS.)
11 3
NOW AN ALTERNATIVE WAY TO ESTIMATE ‘c’ and ‘φ’ FOR ROCK MASSES (but still need to degrade c at small strain, and mobilize φ at larger strain) 114
CC and FC from Qc = Q x σc /100 : Qc = RQD/Jn x Jr/Ja x Jw /SRF x σc /100) CC = cohesive strength ( the component of the rock mass requiring shotcrete)
FC = frictional strength ( the component of the rock mass requiring bolting). Cut Qc into two halves →’c’ and ‘φ’
c RQD 1 CC Jn SRF 100 Jr FC tan Jw Ja 1
115
GSI-based algebra for ‘c’ and ‘φ’ contrasted with
Q-based ‘empiricism’ Note: shotcrete needed when low CC, bolting needed when low FC.
Table of Q-parameters with declining quality (resembling weathering) (Barton, 2002). RQD Jn 100 90 60 30 10
Jr
Ja
Jw
SRF
2 2 9 1 12 1.5 15 1 20 1
1 1 2 4 6
1 1 0.66 0.66 0.5
1 1 1 2.5 5
Q
c
Qc
FC° CC MPa Vp km/s Emass GPa
100 100 100 63° 10 100 10 45° 2.5 50 1.2 26° 0.13 33 0.04 9° 0.008 10 0.0008 5°
50 10 2.5 0.26 0.01
5.5 4.5 3.6 2.1 0.4
46 22 10.7 3.5 0.9
Four rock masses with successively reducing character: more joints, more weathering, lower UCS, more clay. Low CC –shotcrete preferred
Low FC – bolting preferred 45
117
HIGH CC
HIGH FC
Q ≈ 100/6 x 4/0.75 x 1/5
(SRF = 5 due to near-surface)
MINING AND CONSTRUCTION MAGAZINE Picture of the mountain-side rock sculpture of the Indian chief ‘Crazy Horse’, in North Dakota, USA.
CC ≈ 100/6 x 1/5 x 150/100 ≈ 5 MPa FC ≈ tan-1 (4/0.75 x 1/1) ≈ 79º 118
FLAC 3D ‘c + σn tan φ’ (left) ‘c then σn tan φ’ (below) (Barton and Suneet Pandey, 2011)
‘New’ approaches: c then tan φ (not new, but rare!) Comparing modelled and measured displacements with pre-installed MPBX. Back-calculating Q from empirical Δ equations, as well as logged Q.
119
‘C then σn tanφ’ (as used in Barton and Pandey, 2011)
120
121
NMT tunnel (= single-shell) through pre-injected (10 MPa pressure) shales, limestones.
122