Entropy numbers in $ L^ p $-spaces for averages of rotations

0 downloads 0 Views 744KB Size Report
and use the notation (Al). We may ask whether ... its square function. The so-called dyadics .... k *th e greatest integer such that m (k*). Then k is finite and k*^.
689

J. Math. Kyoto U n iv . (JMKYAZ)

37-4 (1998) 689-700

Entropy numbers in LP-spaces for averages of rotations By Michel WEBER

1. Introduction L e t (E , d ) b e a m etric space w ith finite diam eter D . L e t u s denote for N (E, d , E ) the minimal covering num ber (possibly infinite) of any O< E b y d open b a lls o f ra d iu s e. T hese num bers, called entropy num bers of (E, d), analysing the global scattering of the sp a c e (E, d ) , a re classical tools o f a n a ly s is . I n a re c e n t w o rk ([2 ], T heorem 1 .3 ), m ainly devoted to the s t u d y o f t h e re g u la rity o f gaussian p ro c e s s e s in d e x e d b y p ro d u c t sets, Talagrand proved an estim ation of the entropy num bers related to averages of hilbertian c o n tra c tio n s. M o re precisely, l e t (H, II• 11) b e a H ilbert space and U: 11--q1 a contraction of H. Put for any x EH -

n-1 7

V1 /

1

2 1

i' 1 1 (X )

=-1 -

D -P (X )

U

A

(X)

n .1 } .

{/41([ ( X ) ,

=

( A l)

Then, there exists a universal constant K > 0 such that

VxEH w ith 411=1, V 0 0 such that

V x EL P w ith 0 .4 p 1 , V 0 < E

N (A T

(X) , II•

EP

W e m ay also w eaken Problem 1 by only asking a n (e P) behavior for the covering numbers: -

Problem 2:

is it true that

V x ELP with IxDp

l,

V O < E i , N (A T

(x)

s)
0,

if

i =0,

if

i 2 s . qk

b

T h e next lem m a show s that both seq uences fm (k) , very regular

(9)

i} ,

{ b m (k ),

1

1

are

Lemma 3. m (k )

Put

-

m (k -F 1 ),

(3D6)

694

Michel Weber

k * th e greatest integer such that m (k*) Then k is finite and

k*^

log2

log

-

.

-

( 7)

Eq

V k k * , m (k )+ 1 m (k + 2 ), (

8

)

V k ^ 1 , m (k + 1 )

9

)

m ( k ) + ] q ,(

where J q denotes the least integer] such that j ^ — 1 ) q. Y k^1,

2_jq

kP

F o r a n y ] ^ 1, bm(k)

we thus have by n (

)

+2m

+ j) + j



(j-1)q > ( k + l ) P

w hich show s by taking that m (k) j inequality follows from the three previous. ]

by

2k

+

q

m ( k + 1 ) . F in a lly t h e la s t

R a s fo llo w s. F o r a n y n ^ 2 , le t k

Define f : N \ { 0 , 1} n < 2 /c 4 i. Put

f(n )

bm(j)+

(2 k fl_ 1 )b m (k ).

(

1

1 be defined

0

)

lk * , observe that if 1 is minimal for the relation 21 (2 - k bm(k))

then w e breing a point n o f [2 k , 2 k + 1 ] in F . Estimate 1: b y (Y 5) 1• qm (k) — (q — 1 )k . B y (9) 5 ) again, bmiki - i2 g (m (k ) -

1)

V + 1 ) as in the original proof.

First case: (k = k') Then, w e have EP f

( n ) f (m ) =

B y m eans o f (E1) a n d th e re la tio n Ix depending on q only)

ITIv(e) —Vm on By means o f (E2)

(n m) bm(k). —

y la c '4 i

2c„KpEP+

,

q

IY1

q

) (c a i s a constant

vn (e) —v. (0)iqg (de).

698

Michel Weber

J

vn (0)

v. (6) lqg (do)



(n—m)q2-qmudbm(k) Eq P b 2 m(k) 2

q m (k )— q k

bln(k) If p e P

Kpepq— pbL(%)

q =

K pE q

and achieves the proof in that case. Second case: (V + 1 < k ) Then, (n)



f(m ) (2

- k

n — 1) bm (u+ E bm(,)+(2-2-km)bm(k,). k '