Environmental Hazards Methodologies for Risk ...

9 downloads 0 Views 168KB Size Report
Disclaimer. The information provided and the opinions given in this publication are not necessarily those of IWA and should not be acted upon without ...
Environmental Hazards Methodologies for Risk Assessment and Management

Environmental Hazards Methodologies for Risk Assessment and Management

Edited by Nicolas R. Dalezios

Published by

IWA Publishing Alliance House 12 Caxton Street London SW1H 0QS, UK Telephone: +44 (0)20 7654 5500 Fax: +44 (0)20 7654 5555 Email: [email protected] Web: www.iwapublishing.com

First published 2017 © 2017 IWA Publishing Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of photographic reproduction, in accordance with the terms of licenses issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to IWA Publishing at the address printed above. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for errors or omissions that may be made. Disclaimer The information provided and the opinions given in this publication are not necessarily those of IWA and should not be acted upon without independent consideration and professional advice. IWA and the Editors and Author will not accept responsibility for any loss or damage suffered by any person acting or refraining from acting upon any material contained in this publication. British Library Cataloguing in Publication Data A CIP catalogue record for this book is available from the British Library ISBN 9781780407128 (Paperback) ISBN 9781780407135 (eBook)

Contents About the editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Part 1 Prolegomena  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 Chapter 1 Environmental hazards concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 Nicolas R. Dalezios and Costas Lalenis 1.1

Concepts and Scope of Environmental Hazards  . . . . . . . . . . . . . . . . . . .  2 1.1.1 Concepts of environmental hazards and disasters  . . . . . . . . . .  2 1.1.2 Scope of hazards and disasters  . . . . . . . . . . . . . . . . . . . . . . . . .  3 1.2 A Typology and Classification of Hazards  . . . . . . . . . . . . . . . . . . . . . . . .  4 1.2.1 Hydrometeorological hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 1.2.2 Biophysical hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 1.2.3 Geophysical hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 1.3 Causes – Factors – Features – Drivers of Hazards  . . . . . . . . . . . . . . . .  14 1.3.1 Features and characteristics of hazards  . . . . . . . . . . . . . . . . .  14 1.3.2 Factors and drivers of hazards  . . . . . . . . . . . . . . . . . . . . . . . . .  15 1.4 Diachronic Evolution and Trends of Hazards  . . . . . . . . . . . . . . . . . . . . .  16 1.5 Hazard and Risk Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 1.5.1 Hazard and risk concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 1.5.2 Risk management framework  . . . . . . . . . . . . . . . . . . . . . . . . . .  20 1.6 Legal and Institutional Aspects of Hazards  . . . . . . . . . . . . . . . . . . . . . . .  24 1.7 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

vi

Environmental Hazards Methodologies for Risk Assessment

Chapter 2 Multi-hazard risk assessment and decision making  . . . . . . . . . . .  31 Cees J. van Westen and Stefan Greiving 2.1 Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 2.2 Multi-hazard Risk  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 2.2.1 Independent events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 2.2.2 Coupled events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 2.2.3 One hazard changes conditions for the next  . . . . . . . . . . . . . . .  41 2.2.4 Domino or cascading hazards  . . . . . . . . . . . . . . . . . . . . . . . . .  42 2.2.5 Example of multi-hazard chain: Layou Valley landslides in Dominica, Caribbean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 2.3 Risk Analysis Approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 2.3.1 Quantitative risk assessment  . . . . . . . . . . . . . . . . . . . . . . . . . .  47 2.3.2 Event-tree approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 2.3.3 Risk matrix approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 2.3.4 Indicator-based approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 2.4 Risk Analysis and Decision Making: A Case Study  . . . . . . . . . . . . . . . .  57 2.4.1 The case study data set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 2.4.2 Hazard input data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 2.4.3 Input data: elements-at-risk  . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 2.4.4 Input data: vulnerability curves  . . . . . . . . . . . . . . . . . . . . . . . . .  62 2.4.5 Input data: administrative units  . . . . . . . . . . . . . . . . . . . . . . . . .  62 2.5 Analysing the Current Level of Risk  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 2.5.1 Stakeholders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 2.5.2 Hazard modelling and elements-at-risk/vulnerability assessment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 2.5.3 Risk analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 2.5.4 Risk evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 2.6 Analysing the Best Planning Alternative  . . . . . . . . . . . . . . . . . . . . . . . .  70 2.6.1 Defining possible planning alternatives  . . . . . . . . . . . . . . . . . . .  70 2.6.2 Re-analysing hazards and elements-at-risk  . . . . . . . . . . . . . . .  73 2.6.3 Analyse risk reduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 2.6.4 Compare alternatives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 2.6.5 Final decision and implementation  . . . . . . . . . . . . . . . . . . . . . .  75 2.7 Analysing Possible Future Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 2.7.1 Identification of possible future scenarios  . . . . . . . . . . . . . . . .  76 2.7.2 Re-analysing hazards and elements-at-risk for possible future scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 2.7.3 Analyse possible changes risk for possible future scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 2.7.4 Changing risk evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 2.8 Analysing Planning Alternatives Under Possible Future Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 2.8.1 Selection of alternatives, scenarios and future years  . . . . . . . .  81 2.8.2 Re-analysing hazards and elements-at-risk for alternatives/scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Contents

vii

2.8.3 Analyse risk reduction for alternatives/scenarios  . . . . . . . . . . .  84 2.8.4 Compare alternatives under different scenarios  . . . . . . . . . . .  84 2.8.5 Final decision and implementation  . . . . . . . . . . . . . . . . . . . . . .  84 2.9 Summary and Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 2.9.1 Which method to choose?  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 2.9.2 Tools for multi-hazard assessment  . . . . . . . . . . . . . . . . . . . . . .  89 2.9.3 Development of a spatial decision support system  . . . . . . . . .  90 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Part 2 Hydrometeorological Hazards Methodologies  . . . . . . . . . . . . . . .  95 Chapter 3 Storms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 Terry W. Krauss and Nicolas R. Dalezios 3.1 3.2

Storm Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 Classification of Storms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 3.2.1 Single-cell, multi-cell, supercell and squall lines  . . . . . . . . . . .  98 3.2.2 Mesoscale convective systems (MCS)  . . . . . . . . . . . . . . . . . .  101 3.2.3 Tropical and extratropical cyclones  . . . . . . . . . . . . . . . . . . . .  104 3.2.4 Features of storms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106 3.2.5 Tornadoes-lightning-flash floods  . . . . . . . . . . . . . . . . . . . . . .  108 3.2.6 Precipitation efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 3.3 Storm Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 3.3.1 Conventional radar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 3.3.2 Polarimetric radar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 3.4 Storm Modelling and Forecasting  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 3.4.1 Storm modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 3.4.2 Storm forecasting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 3.5 Hail  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 3.5.1 Hail formation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 3.5.2 Hail detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 3.5.3 Hail forecasting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 3.5.4 Hail suppression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Chapter 4 Floods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 Jean-Dominique Creutin, Efthymios I. Nikolopoulos, Elisa Destro and Marco Borga 4.1

Flood Risk Characteristics: Physical and Human Aspects  . . . . . . . . . .  137 4.1.1 The flood hydrograph and its shape  . . . . . . . . . . . . . . . . . . . .  138

viii

Environmental Hazards Methodologies for Risk Assessment

4.1.2 Floods as a natural disaster  . . . . . . . . . . . . . . . . . . . . . . . . . .  139 4.1.3 The flood risk system: terms and concepts  . . . . . . . . . . . . . .  141 4.2 Flood Typologies and Scales  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 4.2.1 The case of flash floods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 4.2.2 Forensic analysis of flood peaks  . . . . . . . . . . . . . . . . . . . . . .  148 4.3 Flood Risk Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 4.3.1 The components of risk  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 4.4 Flood Hazard Assessment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 4.4.1 Flood frequency analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 4.4.2 Rainfall-runoff modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 4.4.3 Hydraulic modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 4.5 The Consequences of Flood: Vulnerability Assessment  . . . . . . . . . . .  161 4.5.1 Social vulnerability to flood and the case of flash floods  . . . . .  162 4.6 Flood Forecasting And Warning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 4.6.1 Flood forecasting, catchment scales and response times  . . . . .  166 4.6.2 The case of flash floods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170

Chapter 5 Droughts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 Nicolas R. Dalezios, Ana M. Tarquis and Saeid Eslamian 5.1

Drought Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 5.1.1 Drought definitions and types  . . . . . . . . . . . . . . . . . . . . . . . . .  177 5.1.2 Factors and features of drought  . . . . . . . . . . . . . . . . . . . . . . .  179 5.2 Drought Risk Identification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182 5.2.1 Global composite drought indices  . . . . . . . . . . . . . . . . . . . . . .  183 5.2.2 Composite indices of different drought types  . . . . . . . . . . . . .  186 5.2.3 Description of representative drought indices  . . . . . . . . . . . .  193 5.2.4 Drought early warning systems (DEWS)  . . . . . . . . . . . . . . . .  197 5.3 Drought Risk Assessment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 5.3.1 Drought severity-duration-frequency (SDF) relationships  . . . . .  200 5.4 Drought Risk Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 5.4.1 Drought impacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 5.4.2 Drought mitigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

Chapter 6 Land desertification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 Costas Kosmas and Orestis Kairis 6.1 6.2

Desertification Concepts and Characteristics  . . . . . . . . . . . . . . . . . . . Causes and Process of Land Desertification  . . . . . . . . . . . . . . . . . . . . 6.2.1 Soil erosion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Soil salinization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 210  212  212  213

Contents

ix

6.2.3 Water stress  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214 6.2.4 Forest fires  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214 6.2.5 Overgrazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216 6.3 Factors of Land Desertification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 6.3.1 Climate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 6.3.2 Water resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 6.3.3 Soils  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219 6.3.4 Vegetation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220 6.3.5 Socio-economics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 6.4 Desertification Risk Identification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222 6.4.1 Using indicators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222 6.4.2 Applying models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 6.4.3 Assessing the state of land degradation  . . . . . . . . . . . . . . . .  228 6.5 Desertification Risk Assessment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229 6.6 Desertification Risk Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230 6.6.1 Land management practices  . . . . . . . . . . . . . . . . . . . . . . . . . .  231 6.6.2 Assessing land management practices  . . . . . . . . . . . . . . . . . .  235 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238

Part 3 Biophysical Hazards Methodologies  . . . . . . . . . . . . . . . . . . . . . .  243 Chapter 7 Frost and heatwaves  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244 Nicolas R. Dalezios and Panagiotis T. Nastos 7.1

Frost and Heatwaves Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244 7.1.1 Frost concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245 7.1.2 Heatwaves concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 7.1.3 Fog hazard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247 7.2 Frost and Heatwaves Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . .  248 7.2.1 Frost classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248 7.2.2 Heatwaves characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 7.3 Frost and Heatwaves Risk Identification  . . . . . . . . . . . . . . . . . . . . . . .  252 7.3.1 Frost quantification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252 7.3.2 Heatwaves quantification  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258 7.3.3 Fog modelling and assessment  . . . . . . . . . . . . . . . . . . . . . . .  260 7.4 Frost and Heatwaves Risk Assessment  . . . . . . . . . . . . . . . . . . . . . . .  261 7.4.1 Frost frequency analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261 7.4.2 Heatwaves frequency analysis  . . . . . . . . . . . . . . . . . . . . . . . .  265 7.5 Frost and Heatwaves Risk Management  . . . . . . . . . . . . . . . . . . . . . . .  268 7.5.1 Frost impacts and mitigation  . . . . . . . . . . . . . . . . . . . . . . . . . .  268 7.5.2 Heatwaves protection and mitigation  . . . . . . . . . . . . . . . . . . .  270 7.5.3 Fog mitigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272 7.6 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273

x

Environmental Hazards Methodologies for Risk Assessment

Chapter 8 Climatic hazards and health  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Nicolas R. Dalezios, Panagiotis T. Nastos and Antonia Daleziou 8.1

Climate and Cumulative Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 8.1.1 Climate hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 8.1.2 Cumulative hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277 8.2 Climate and Health  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279 8.2.1 Climate change and health  . . . . . . . . . . . . . . . . . . . . . . . . . . .  280 8.2.2 Climate change and infectious diseases  . . . . . . . . . . . . . . . .  283 8.2.3 Climate change mitigation and adaptation to health issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285 8.3 Biological and Health Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287 8.3.1 Classification of biohazards  . . . . . . . . . . . . . . . . . . . . . . . . . .  288 8.3.2 Pandemics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289 8.4 Insect Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290 8.5 Pidemiology of Disasters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292 8.5.1 Diseases associated with each type of disaster  . . . . . . . . . . .  293 8.5.2 Mitigation and prevention  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293 8.6 Bioclimatological Concepts and Methods  . . . . . . . . . . . . . . . . . . . . . .  294 8.6.1 Human bioclimatology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295 8.6.2 Plant bioclimatology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299 8.6.3 Animal bioclimatology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300 8.6.4 Phenology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301 8.6.5 Aerobiology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301 8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302

Chapter 9 Wildland fires  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305 Contributors: Alan Ager, Mark Finney, Kostas Kalabokidis and Peter Moore 9.1 9.2 9.3

Wildfire Risk Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions and Standards for Wildfire Risk  . . . . . . . . . . . . . . . . . . . . . Quantification of Wildfire Risk  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Wildfire likelihood  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Fire intensity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3 Fire susceptibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Wildfire Risk Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Fire Risk Geo-Informatics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Fire Models to Support Wildfire Risk Management  . . . . . . . . . . . . . . . 9.7 Epilogue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 306  307  309  310  315  316  320  322  323  327  327

Contents

xi

Part 4 Geophysical Hazards Methodologies  . . . . . . . . . . . . . . . . . . . . . .  337 Chapter 10 Geological hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 Contributors: Pavel Lišcˇák, Marek Biskupicˇ, Josef Richnayvsky and Martin Bednarik 10.1 Mass Movement Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 10.1.1 Slope deformations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 10.1.2 Snow avalanches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339 10.1.3 Ice avalanches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341 10.2 Landslides  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341 10.2.1 Landslides classification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341 10.2.2 Landslide causes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343 10.3 Snow Avalanches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344 10.3.1  Types of snowpack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345 10.3.2 Avalanche formation and motion  . . . . . . . . . . . . . . . . . . . . . .  347 10.4 Slope Movements Mitigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348 10.5 Avalanche Mitigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349 10.6 Mass Movement Hazard and Risk Assessment  . . . . . . . . . . . . . . . . . .  351 10.6.1 Risk terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351 10.6.2 Methods of landslides hazards assessment  . . . . . . . . . . . . . .  352 10.6.3 Landslide risk assessment  . . . . . . . . . . . . . . . . . . . . . . . . . . .  362 10.7 Snow Avalanche Modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365 10.7.1 Geoinformation technologies integration into the snow and avalanche research  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365 10.7.2 Physically based numerical tools for avalanche dynamics modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366 10.7.3 Model calibration and verification  . . . . . . . . . . . . . . . . . . . . . .  370 10.7.4 Avalanche danger zoning  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371 10.8 Summary and Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  374

Chapter 11 Tectonic hazards: Earthquakes  . . . . . . . . . . . . . . . . . . . . . . . . . . .  376 Ioannis Kassaras and Danai Kazantzidou-Firtinidou 11.1 Primary and Secondary Earthquake Hazards  . . . . . . . . . . . . . . . . . . .  376 11.2 Earthquake Risk  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377 11.3 Methods of Seismic Hazard Assessment  . . . . . . . . . . . . . . . . . . . . . .  379 11.3.1 Probabilistic Seismic Hazard Analysis (PSHA)  . . . . . . . . . . .  381 11.3.2 Deterministic Seismic Hazard Analysis (DSHA)  . . . . . . . . . .  382

xii

Environmental Hazards Methodologies for Risk Assessment

11.4 Methods of Seismic Vulnerability Assessment  . . . . . . . . . . . . . . . . . .  385 11.4.1 The macroseismic (empirical) method  . . . . . . . . . . . . . . . . . .  385 11.4.2 The mechanical method  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  388 11.5 Methods of earthquake physical loss estimation  . . . . . . . . . . . . . . . . .  389 11.5.1 Macroseismic (empirical) physical loss estimation  . . . . . . . .  390 11.5.2 Mechanical SDE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  392 11.6 Socioeconomic Loss Estimation (SLE)  . . . . . . . . . . . . . . . . . . . . . . . .  393 11.7 Tsunami Risk Estimation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  397 11.8 Earthquake Risk Management and Preparedness  . . . . . . . . . . . . . . .  398 11.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  399 11.10 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  402 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  405

Chapter 12 Tectonic hazards: volcanoes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408 Georges Vougioukalakis and Augusto Neri 12.1 Volcanic Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408 12.1.1 Volcano basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409 12.1.2 Primary and secondary volcanic hazards and their impacts  . . .  410 12.2 Volcanic Hazard and Risk Assessment  . . . . . . . . . . . . . . . . . . . . . . . .  418 12.2.1 Long-term volcanic hazard assessment  . . . . . . . . . . . . . . . . .  418 12.2.2 Short-term volcanic hazard assessment  . . . . . . . . . . . . . . . .  423 12.3 Examples of Quantitative Volcanic Hazard Assessment  . . . . . . . . . . .  425 12.3.1 Development of event trees  . . . . . . . . . . . . . . . . . . . . . . . . . .  426 12.3.2 Numerical simulation of eruptive scenarios  . . . . . . . . . . . . . .  428 12.3.3 Probabilistic mapping of hazards  . . . . . . . . . . . . . . . . . . . . . .  431 12.3.4 Temporal probability forecasting of hazards  . . . . . . . . . . . . . .  435 12.4 Volcanic Risk Management and Mitigation  . . . . . . . . . . . . . . . . . . . . . .  436 12.4.1 Actions before the eruption  . . . . . . . . . . . . . . . . . . . . . . . . . . .  436 12.4.2 Actions during and after the eruption  . . . . . . . . . . . . . . . . . . .  438 12.5 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439

Chapter 13 Technological hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  444 John M. Logan, Nicos V. Spyropoulos and Nicolas R. Dalezios 13.1 Technological Hazards Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  444 13.1.1 Nature of technological hazards  . . . . . . . . . . . . . . . . . . . . . .  444 13.1.2 Taxonomy of technological hazards  . . . . . . . . . . . . . . . . . . .  445 13.2 Technological Hazards in Large-Scale Structures  . . . . . . . . . . . . . . .  446 13.2.1 Technological risk identification in buildings  . . . . . . . . . . . . .  446 13.2.2 Technological risk assessment in buildings  . . . . . . . . . . . . . .  450 13.2.3 Technological risk management in buildings  . . . . . . . . . . . . . .  453

Contents

xiii

13.3 Industrial and Transportation Hazards  . . . . . . . . . . . . . . . . . . . . . . . . .  457 13.3.1 Fukushima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  457 13.3.2 Chernobyl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459 13.3.3 Exxon valdez  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  461 13.3.4 Transportation of hazardous materials  . . . . . . . . . . . . . . . . . .  463 13.4 Optimal Operational Response Planning in Natural and Technological Hazards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464 13.4.1 Simulation and management of phenomena through operational planning in a web based mapping service environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464 13.4.2 Reducing the impact and increasing the mitigation of reaction in the above industrial accidents using operational planning tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  466 13.4.3 Natural and Industrial Hazards Assessment, Environmental Modelling and Operational Planning (NIHAEMOP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  467 13.5 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  469 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  469

Part 5 Epilogue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471

Chapter 14 Climate change and climate extremes  . . . . . . . . . . . . . . . . . . . . .  472 Spyros Rapsomanikis, Aikaterini Trepekli and Nicolas R. Dalezios 14.1 Climate Change and Modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  472 14.1.1 Climate variability and change  . . . . . . . . . . . . . . . . . . . . . . . .  472 14.1.2 Climate emissions scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . .  473 14.1.3 Modelling climate variability and change  . . . . . . . . . . . . . . . .  475 14.2 Climate Extremes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479 14.3 Future Trends in Climate Extremes  . . . . . . . . . . . . . . . . . . . . . . . . . . .  481 14.4 Impacts of Climate Extremes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  485 14.4.1 Exposure and vulnerability  . . . . . . . . . . . . . . . . . . . . . . . . . . .  486 14.4.2 Major impacts of climate extremes on several sectors  . . . . . . .  487 14.5 Management of Changing Risks of Climate Extremes  . . . . . . . . . . . .  491 14.5.1 Effective risk management  . . . . . . . . . . . . . . . . . . . . . . . . . . .  491 14.5.2 Risk sharing and transfer  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  491 14.5.3  ‘No or low regrets measures’  . . . . . . . . . . . . . . . . . . . . . . . . . .  492 14.5.4 Win to win adaptation actions  . . . . . . . . . . . . . . . . . . . . . . . . .  493 14.6 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  495 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  496

xiv

Environmental Hazards Methodologies for Risk Assessment

Chapter 15 Hazards information management and services  . . . . . . . . . . . . .  499 Pavol Nejedlik and Nicolas R. Dalezios 15.1 Hazards Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  499 15.1.1 Characteristics of information  . . . . . . . . . . . . . . . . . . . . . . . .  500 15.1.2 Types and classification of information  . . . . . . . . . . . . . . . . . .  501 15.2 Early Warning Systems and Types of Communication  . . . . . . . . . . . .  508 15.2.1 Early warning systems and monitoring of hazards  . . . . . . . .  508 15.2.2 Types of communication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  513 15.3 Services for Hazards Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  516 15.4 Existing Hazards Information Systems  . . . . . . . . . . . . . . . . . . . . . . . .  519 15.5 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  522 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  523

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .525

About the editor Nicolas R. Dalezios: Professor of Agrometeorology and Remote Sensing, University of Thessaly, Volos Grecce and Agricultural University of Athens, Greece (2011-present). President of the Council of the Agricultural University of Athens, Greece. Professor and founding Director of the Laboratory of Agrometeorology, University of Thessaly, Volos Hellas (1991–2011). Postgraduate studies in Meteorology (Athens, 1972), Hydrological Engineering (Univ. of Delft, 1974), Ph.D. in Civil Eng. (Univ. of Waterloo, Canada, 1982). He has a long standing research record in agrometeorology, agrohydrology, remote sensing, modeling, environmental hazards, risk assessment, climate variability/change. Author or co-author in over 280 refereed scientific and technical publications. Member of Editorial Boards and reviewer in about 30 Web of Science (ISI) International Scientific journals. Author and Editor of 2 books. Editor or co-editor in over 15 edited publications. Co-author in 25 book chapters published by Taylor and Francis group, IWA.

Preface Increasing climate variability and climate change, lead to increases in climate extremes. Under a changing climate, the role of several sectors of the economy, such as agriculture, as provider of environmental and ecosystem services, will further gain importance. On the other hand, natural disasters play a major role in several sectors of the economy, including agriculture, energy, health, transportation, tourism, and the economic cost associated with all natural disasters has increased significantly. Current scientific projections point, among others, to changes in climate extremes, mainly floods and droughts, in many areas of the world. Environmental degradation is one of the major factors contributing to vulnerability, because it directly magnifies the risk of natural disasters. Vulnerability of the environment can be reduced through adaptation measures and tools to increasing climate variability. In order to ensure environmental sustainability, a better understanding of the natural disasters and their impacts, is essential. From the beginning of 21st century, there is an awareness of risk in the environment along with a growing concern for the continuing potential damage caused by hazards. Moreover, besides physical protection, a synthesis of anti-hazard measures starts being considered, including land use management, better planning for response and recovery and emergency warnings. Further, a global program to reduce the losses from natural hazards was adopted in December 1989 by the U.N. General Assembly declaring the 1990s as the International Decade for Natural Disaster Reduction (IDNDR). The challenge to researchers within the hazards community was to use their skill and adopt a wider perspective involving global change for a safer and sustainable environment. In addition, the World Conference on Disaster Reduction has adopted several strategic goals resulting in a number of priorities for action during the following 10 years (2005–2015). Recently, the Sendai Framework for Disaster Risk Reduction 2015–2030 has been adopted, which requires a better understanding of risk in all its dimensions of vulnerability, exposure and hazards. The Sendai Framework recognizes the importance of

Preface

xvii

science and technology for disaster risk reduction. The goal is to prevent new and reduce existing disaster risk through the implementation of integrated and inclusive economic, environmental, technological, educational, structural, legal, social, health, cultural, political and institutional measures that prevent and reduce hazard exposure and vulnerability to disaster, increase preparedness for response and recovery, and thus strengthen resilience. The current scientific trend focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. Thus, it has been recognized that a holistic and integrated approach to environmental hazards needs to be attempted using common methodologies, such as risk analysis, which involves risk management and risk assessment. Indeed, risk management means reducing the threats posed by known hazards, whereas at the same time accepting unmanageable risks and maximizing any related benefits. Risk assessment constitutes the first part within the risk management framework and involves evaluating the importance of a risk, either quantitatively, or qualitatively. Nevertheless, the risk management framework also includes a fourth step, risk governance, i.e. the need for a feedback of all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The purpose of the book can be summarized within the following points, which also constitute advantages of the book: (1) To present current quantitative methodologies of environmental hazards, i.e. forecasting-nowcasting (before), monitoring (during) and assessment (after). (2) To incorporate these methodologies within the corresponding components of the risk management framework. (3) To develop a holistic and integrated methodological procedure for risk management of environmental hazards. This book attempts primarily to provide a text and also to serve as a cook book on environmental hazards for senior undergraduate students, graduate students, researchers and professionals of environmental science, environmental economics and management, physical and natural sciences, applied sciences, engineering, geography, geology, agriculture, ecology and similar fields. As already mentioned, the emphasis is placed on methodological approaches and procedures for the three main temporal stages in the study of environmental hazards, namely before, during and after, based on geoinformatic technologies and data, as well as simulation. This approach is considered a contemporary and innovative procedure and constitutes a current research trend in the field of environmental hazards. The subject of the book, besides comprehensive and conceptual descriptions, consists of analysis and presentation of quantitative methodologies of environmental hazards within the risk management framework and, in particular, within the three

xviii Environmental Hazards Methodologies for Risk Assessment components of risk assessment, namely risk identification, risk estimation and risk evaluation. Specifically, the book covers hydrometeorological hazards (floods, droughts, storms, hail, desertification), biophysical hazards (frost, heatwaves, epidemics, forest fires), geophysical hazards including geological hazards (landslides, snow and ice avalanches), tectonic hazards (earthquakes, volcanoes), and technological hazards. Nevertheless, the need for such a book comes from my own experience in teaching such courses and conducting research on the subject for several decades. Nicolas R. Dalezios Volos, Greece August 2016

Acknowledgements This book owes its completion to generous assistance by many sources. As editor, I wish to acknowledge the comprehensive and thoughtful work conducted by all the chapter contributors, who are listed in a separate file. Moreover, being also contributor to several chapters, I wish to state that this book constitutes the outcome of diachronic upgrading of University lectures in several similar courses. Indeed, there have been incorporated valuable help and comments given over the years by present and former colleagues and associates in the teaching and learning of environmental hazards. In addition, a number of individuals have provided useful unpublished information. It is also mentioned that the successful completion of the book depends heavily on the editorial advice by IWA Publishing, London office. In particular, Maggie Smith and Mark Hammond have been very precious in offering continuous encouragement and practical advice. Finally, my family has provided a relaxed home environment appropriate for writing. Needless to say, there has been every effort to identify and acknowledge the original sources, however, if there have been any omissions or errors by chance, the editor and the publisher apologize to those related to. Nicolas R. Dalezios Volos, Greece August, 2016