Eugenol Ameliorates Hepatic Steatosis and Fibrosis by Down ...

2 downloads 0 Views 2MB Size Report
Aug 1, 2014 - namon (Cinnamomum osmophloeum) twigs. Bioresour. Technol., 99,. 3908–3913 (2008). 7) Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ ...
August 20141341 Regular Article Biol. Pharm. Bull. 37(8) 1341–1351 (2014)

Eugenol Ameliorates Hepatic Steatosis and Fibrosis by Down-Regulating SREBP1 Gene Expression via AMPK-mTOR-p70S6K Signaling Pathway Hee Kyung Jo, Go Woon Kim, Kyung Ju Jeong, Do Yeon Kim, and Sung Hyun Chung* Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University; Seoul 130–701, Republic of Korea. Received April 2, 2014; accepted May 22, 2014 Beneficial effect of eugenol on fatty liver was examined in hepatocytes and liver tissue of high fat diet (HFD)-fed C57BL/6J mice. To induce a fatty liver, palmitic acid or isolated hepatocytes from HFD-fed Sprague-Dawley (SD) rats were used in vitro studies, and C57BL/6J mice were fed HFD for 10 weeks. Lipid contents were markedly decreased when hepatocytes were treated with eugenol for up to 24 h. Gene expressions of sterol regulatory element binding protein 1 (SREBP1) and its target enzymes were suppressed but those of lipolysis-related proteins were increased. As a regulatory kinase for lipogenic transcriptional factors, the AMP-activated protein kinase (AMPK) signaling pathway was examined. Protein expressions of phosphorylated Ca2+-calmodulin dependent protein kinase kinase (CAMKK), AMPK and acetyl-CoA carboxylase (ACC) were significantly increased and those of phosphorylated mammalian target of rapamycin (mTOR) and p70S6K were suppressed when the hepatocytes were treated with eugenol at up to 100 µM. These effects were all reversed in the presence of specific inhibitors of CAMKK, AMPK or mTOR. In vivo studies, hepatic triglyceride (TG) levels and steatosis score were decreased by 45% and 72%, respectively, in eugenoltreated mice. Gene expressions of fibrosis marker protein such as α-smooth muscle actin (α-SMA), collagen type I (Col-I) and plasminogen activator inhibitor-1 (PAI-1) were also significantly reduced by 36%, 63% and 40% in eugenol-treated mice. In summary, eugenol may represent a potential intervention in populations at high risk for fatty liver. Key words  eugenol;  fatty  liver;  fibrosis;  AMP-activated  protein  kinase;  sterol  regulatory  element  binding  protein

Non-alcoholic  fatty  liver  disease  (NAFLD)  is  one  of  the  most common liver ailment worldwide.1) While hepatic steatosis  is  often  asymptomatic,  it  can  progress  to  non-alcoholic  steatohepatitis (NASH). If untreated, NASH can progress to cirrhosis  and  increased  risk  of  early  mortality.2)  Obesity  and  insulin resistance, as seen in type 2 diabetes mellitus (T2DM),  and hypertriglyceridemia are well-documented risk factors for  NAFLD.3)  These  factors  are  key  targets  for  prevention  and  therapy  of  NAFLD  tends  to  focus  on  addressing  the  obesity  or insulin resistance rather than NAFLD itself. NAFLD in the  hepatic steatosis (HS) phase can be reversed by lifestyle modification,  while  NASH  is  more  difficult  to  treat.  Thus,  preventing the progression of HS to NASH is of primary importance. Lifestyle  recommendations  for  NAFLD  are  generally  limited  to losing weight through energy restriction and/or increasing physical activity, which is often to fail to hold on to them. With  this  notion,  phytochemicals  obtained  from  medicinal  plants or foods are attracting alternative options for the treatment of NAFLD and prevention to progress to NASH. Eugenol  (4-allyl-2-methoxyphenol)  has  been  identified  in  several  aromatic  plants  such  as  cloves,  cinnamon,  basil  and  nutmeg as a supplement or a therapeutic ingredient in various medications and foods. In addition, it is widely used in agricultural applications to protect foods from microorganisms during storage and as a pesticide and fumigant. As a functional ingredient, it is included in many dental preparations and  it  has  also  been  shown  to  enhance  skin  permeation  of  various drugs.4)  In  recent  years,  eugenol  has  been  reported  to  have  antioxidant,5)  anti-inflammatory,6)  anti-viral7)  and  anticancer8–10)  activities.  Although  beneficial  effects  of  eugenol  The authors declare no conflict of interest.  * To whom correspondence should be addressed.  e-mail: [email protected]

on  oxidative  stress  and  inflammation  have  been  well-studied,  pharmacological  effects  on  metabolic  diseases  are  largely  unknown.  Here,  we  examined  whether  eugenol  has  a  beneficial  effect  on  NAFLD  and  mechanism(s)  of  action  using  human  hepatoma HepG2 cells, rat primary hepatocytes isolated from high  fat  diet  (HFD)-fed  Sprague-Dawley  (SD)  rats  and  HFDfed C57BL/6J mice.

MATERIALS AND METHODS Materials Eugenol, metformin, Oil Red O and Masson’s trichrome  stain  kit  were  purchased  from  Sigma  (St.  Louis,  MO,  U.S.A.).  Eugenol  was  dissolved  in  0.1%  dimethyl  sulfoxide  (DMSO).  Palmitate  (Sigma)  was  bound  to  bovine  serum  albumin  (BSA)  at  a  2 : 1 M ratio.11)  Antibodies  against  AMPactivated  protein  kinase  (AMPK),  phospho-AMPK,  acetylCoA  carboxylase  (ACC),  phospho-ACC,  mammalian  target  of  rapamycin  (mTOR),  phospho-mTOR,  p70S6K  and  phosphop70S6K were from Cell Signaling Technology (Beverly, MA, U.S.A.)  and  anti-actin  was  from  Santa  Cruz  Biotechnology  (Santa  Cruz,  CA,  U.S.A.).  Ca2+-calmodulin  dependent  protein  kinase  kinase  (CAMKK)  and  phospho-Ser/Thr  antibodies  were from BD Biosciences (San Jose, CA, U.S.A.). Reverse transcriptase,  cell  proliferation  assay  kits  and  Dual  luciferase  assay  system  were  supplied  by  Promega  (Madison,  WI,  U.S.A.), and compound C, STO-609 and rapamycin were from  Calbiochem (Darmstadt, Germany). Protein extraction, EASYBLUE  total  RNA  extraction,  ECL-reagent,  Taq polymerase, SYBR-green  and  lipofectamin  were  from  Intron  Biotechnology Inc. (Beverly, MA, U.S.A.), and protein assay kit was from  Bio-Rad  (Hercules,  CA,  U.S.A.).  Regular  diet  (RD)  and  HFD  (Table  1)  were  purchased  from  Research  Diets,  Inc.  (New  © 2014 The Pharmaceutical Society of Japan

1342

Vol. 37, No. 8

Brunswick,  NJ,  U.S.A.).  The  other  reagents  and  chemicals  were of analytical grade commercially available. Cell Culture and Viability Assay The human hepatoma cell  line  HepG2  was  purchased  from  Korean  Cell  Line  Bank  (Seoul,  Korea),  and  rat  hepatocytes  were  isolated  by  collagenase perfusion of the liver of SD rat. HepG2 cells and primary rat  hepatocytes  were  grown  in  Dulbecco’s  modified  Eagle’s  medium  (DMEM)  (Gibco  BRL,  Grand  Island,  NY,  U.S.A.)  supplemented  with  10%  fetal  bovine  serum  (FBS),  100  unit/ mL  penicillin  and  100 µg/mL  streptomycin.  Cells  were  maintained  at  subconfluent  conditions  in  a  humidified  incubator  at  37°C  with  ambient  oxygen  and  5%  CO2.  The  cytotoxicity  of  eugenol  was  determined  by  a  Cell  Titer  96  AQueous  One  solution  Cell  Proliferation  Assay  kit  (Promega).  In  brief,  cells  were seeded at 1.5×104 cells/well in a 96-well plate and treated  with eugenol as indicated. After 48 h of treatment, 20 µL  of  3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium  (MTS)  solution  was  added  and incubated at 37°C for 30 min and then the absorbance was  recorded  at  490 nm  using  an  enzyme-linked  immunosorbent  assay  (ELISA)  plate  reader  (Thermo  LabSystem,  Helsinki,  Finland). Isolation of Primary Rat Hepatocytes   For  hepatic  lipid  accumulation,  male  SD  rats  were  fed  a  HFD,  starting  at  3  weeks  of  age  for  the  next  4  weeks.  Primary  hepatocytes  were  isolated  by  a  two-step  collagenase  perfusion  in situ.12) Briefly,  under  anesthesia  with  pentobarbital  (intraperitoneal,  30 mg/kg  body  weight),  livers  were  perfused  with  a  Ca2+-free  Hanks’  balanced  solution  (Invitrogen,  MA,  U.S.A.)  at  10 mL/ min  for  20 min,  followed  by  a  continuous  perfusion  with 

serum-free  DMEM  containing  collagenase  H  (Roche,  Indianapolis, IN, U.S.A.), 10 m M N-(2-hydroxyethyl) perazine-N′-2ethanesulfonic acid (HEPES) and 0.004 N  NaOH  at  10 mL/min  for 20 min. Hepatocytes were harvested and then centrifuged for 5 min at 350 rpm. The supernatant was discarded and the pellet, representing the hepatocytes, was gently resuspended in  50 mL  DMEM  media  containing  10%  FBS,  10−7 M  dexametasone, 10−8 M  insulin,  100 unit/mL  penicillin  and  100 µg/mL  streptomycin. After 4 h incubation in a humidified atmosphere  of 95% air 5% CO2, the medium was changed to remove unattached hepatocytes, and after 16–18 h cells were suspended in DMEM  media  containing  10%  FBS,  100 unit/mL  penicillin  and 100 µg/mL streptomycin. Immunoprecipitation and Western Blot Analysis Protein  extracts  from  HepG2  cells  were  prepared  by  addition  of  protein  extraction  reagent  to  cells  after  washing  with  ice-cold  phosphate  buffered  saline  (PBS).  To  harvest  proteins  in  liver,  liver  was  removed  and  homogenized  for  30 s,  and  then  insoluble  protein  was  removed  by  centrifugation  at  13000 rpm  for 20 min. The protein concentration of the cell lysates was measured  using  a  Bio-Rad  protein  assay  kit.  For  immunoprecipitation, 300 µg of cell lysate was cleared with 20 µL of protein  G-sepharose  beads  (Santa  Cruz,  CA,  U.S.A.)  and  1 µg of anti-CAMKK  antibody  was  used.  After  the  addition  of  20 µL  of  G-sepharose  beads,  incubation  was  continued  for  an  additional 2 h at 4°C. The beads were then collected by centrifugation and washed three times with PBS, the supernatant was removed, 30 µL  of  2×  loading  buffer  was  added,  and  samples  were  run  on  a  8%  sodium  dodecyl  sulfate-polyacrylamide  gel  electrophoresis  (SDS-PAGE).  For  Western  blot  analysis,  the 

Table  1.  Composition of the Experimental Diets RD 10% kcal g% Protein Carbohydrate Fat

19.2 67.3 4.3

Total (kcal/gm)

3.85

Ingredient

g

Casein, 80 mesh L-Cystine Corn starch Maltodextrin 10 Sucrose Cellulose, BW 200 Soybean oil Lard Mineral mix S10026 Dicalcium phosphate Calcium carbonate Potassium citrate Vitamin mix v10001 Choline bitartrate FD&C Yellow dye #5 (RD) Red dye #40 (HFD) Total

HFD 45% kcal kcal% 20 70 10

g% 24 41 24

100

kcal% 20 35 45 100

4.73 kcal

g

kcal

200 3 315 35 350 50 25 20 10 13 5.5 16.5 10 2 0.05

800 12 1260 140 1400 0 225 180 0 0 0 0 40 0 0

200 3 72.8 100 172.8 50 25 177.5 10 13 5.5 16.5 10 2 0.05

800 12 291 400 691 0 225 1598 0 0 0 0 40 0 0

1055.05

4057

858.15

4057

August 20141343 Table  2.  RT-PCR and Real-Time PCR Primer Sequence Gene (Forward/reverse)

PCR (5′→3′)

Real-time PCR (5′→3′)

hSREBP1

GTGGCGGCTGCATTGAGAGTGAAG AGGTACCCGAGGGCATCCGAGAAT CAAGAACTGCACGGAGGTGT AGCTGCCAGAGTCGGAGAAC TGCCAGCTCTAGCCTTTAAATTC GTACCGCTGGCACATCAACTT TGCAGCACTCACCACCTTC TAGGCATCCATGACAACTA CCAGCCTGTGCTACCTTCTC GAAGCTTCTTGTCCCACTG GAAGCTTCTTGTCCCACTG TCTTGCTGCCTGAATGTGAGTTGG GGGCTATAGGGATCCATTTTTG CCTTTCAGATTAACGTCGGATTC TCCACCACCCTGTTGCTGTA ACCACAGTCCATGCCATCAC ACGACGGAGCCATGGATTG TTTGATTGGAGGCCCAGGGG GCAGTCGCTCATCAAGCTCT GGCTCATTTTCCAGGCTACC GTGTTGAACCTTCCCCGACT TGGAGGTAGGGAGGATCTGG GGCCAACTATGGTGGACATCA TACCAATCTGGCTGCACGAA TGATCAGCCAGGAGCAGCTG AGACAGTATGTGGCACTCTC TATGTGAGGATGCTGCTTCC CTCGGAGAGCTAAGCTTGTC GAAGCATCGAAGAATCTGAAGAG TCCAACACCAAGTAAGACCATC ATGGTCAACCCACCGTG CTTAGAGGGACAAGTGGCG TCCTACACGAGGATCAAGCG AGTCGCAATGCAAAGACCTG GATCCTGGAACGAGAACAC TGCTGCCAAAAGACAAGGG GATCCTGGAACGAGAACAC AGACTGTGGAACACGGTGGT CGAGGGTTGGTTGTTGATCTG ATAGCACTGTTGGCCCTGGA GGTAGTGGATACTCTGTCGTCCA CAGCAACATCATTCGGT TCCTCTGACATTTGCAGGTCTATC GTGAATCCAGTTATGGGTTCCC ATCATGTATCGCCGCAAACT GGGATGCGTGTAGTGTTGAAC ACTATATTTGGCCAATTTTGTG TGTGGCAGTGGTTTCCAAGCC CTGACAGAGGCACCACTGAA CAGAGGCATAGAGGGACAGC GTGGACCTCCTGGACCTCAG AGGAGCTCCGTTTTCACCAG GACACCCTCAGCATGTTCATC AGGGTTGCACTAAACATGTCAG GGACTCCTATGGTGGGTGACGAGG GGGAGAGCATAGCCCTCGTAGAT

ATACCACCAGCGTCTACC CACCAACAGCCCATTGAG CGGCTCGCCCACCT CGGGCCGCAAAGC TCCTGGTAGCATTATTCAGTAGTT TTGGAGACTTTCTCCGGTCAT AACAGACGGAAGCCCAAGC TCGGTGAGTGACCATTGCTC AACCCCAGTATCCCGTCTTT CAGTCACATTGGTGGCAAC ACAGTCGGTGAGGCCTCTTATGAA TCTGCTGCCTGAATGTGAGTTGG TTGATGTGCAAAATCCACAGG TGTGTTGTCCTCAGCGTCCT CGACGACCCATTCAAAAATC AACCCTGATTCCCCATCAC CAGGTCCTTGAGCTCCACAATC GCCCACAATGCCATTGAGA CAACCTGCATTTCCACAACCCCAA ACCTCCGAAGCCAAACGAGTTGAT CAGAGCCAGGTGCCACTTTT TGCTAGAGGGTGTACCAAGCTTT GCCCTCAGCTATGGTATTAC AGGAACTGCTCTCACAATGC TGATCAGCCAGGAGCAGCTG AGACAGTATGTGGCACTCTC TATGTGAGGATGCTGCTTCC CTCGGAGAGCTAAGCTTGTC GACCATCGGCGGCGATGAGAAA CCAGGCCCAGGAGCTTTATT TTAGAGTTGTCCACAGTTCGGAGA GGACATCTAAGGGCATCACA TCGCAAATGCCGCCA TCAAGCGGATCTGTTCTTCTGA GCAGTCTGCTTTGGAACCTC CCTCCTGTGTACTTGCCCAT CCCTTGATGAAGAGGGATCA ACTCCACAGGTGGGAACAAG GCGATACACTCTGGTGCTCA CTGGCAGAGTCGAAGGG CCAGCCTGTGCTACCTTCTC GAAGCTTCTTGTCCCACTGC TACCTGGGAGTTGGCGAGAA TTGCCACGTCATCTGGGTTT GTGACTGGTGGGAGGAATAC GAGCATCTCCATGGCGTAG GTGCAGCTCAGAGTCTGTCCAA TACTGCTGCGTCTGAAAATCCA CTGCTCCAGCTATGTGTGA TTACAGAGCCCAGAGCCATT CCAAGGGTAACAGCGGTGAA CCTCGTTTTCCTTCTTCTCCG TCATCAATGACTGGGTGGAA GCCAGGGTTGCACTAAACAT TGACAGGATGCAGAAGGAGA CGCTCAGGAGGAGCAATG

hFAS hSCD1 hACO hGPAT hCPT-1 hCD36 hGAPDH rSREBP1 rFAS rSCD1 rACO rGPAT rCPT-1 rCD36 rCPN/18S mLXRαα mSREBP1 mFAS mSCD1 mGPAT mCD36 mCPT-1 mACO mα-SMA mCol-I mPAI-1 mActin

1344

Vol. 37, No. 8

Fig.  1.  Effects of Eugenol on Lipid Accumulation in HepG2 Cells and Primary Rat Hepatocytes (A, E) HepG2 cells and primary rat hepatocytes were treated with different concentrations (50, 75, 100, 200 µM) of eugenol for 48 h, and cell viability was determined by  MTS assay. (B, F) HepG2 cells were pretreated with eugenol as indicated for 2 h and incubated with 200 µM PA for 48 h. In rat primary hepatocytes, eugenol was treated for 24 h. To determine lipid levels, cells were stained with 0.2% Oil Red O and examined by light microscopy at a magnification of 200×. Relative intracellular lipid levels were determined by quantifying each lipid droplet using spectrophotometer at 490 nm. The mRNA levels of lipogenesis- and lipolysis-related genes were measured using  RT-PCR  (C,  G)  and  real-time  PCR  (D,  H).  Data  are  mean±S.E.  of  three  independent  experiments.  # p