Exact Solutions for Non-linear Volterra-Fredholm Integro-Differential ...

6 downloads 0 Views 77KB Size Report
Abstract: In this article, an application of He's homotopy perturbation method is applied to solve non-linear. Volterra-Fredholm integro-differential equations.
ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(2010) No.3,pp.285-289

Exact Solutions for Non-linear Volterra-Fredholm Integro-Differential Equations by He’s Homotopy Perturbation Method J. Biazar βˆ— , M. Eslami Department of Mathematics, Faculty of Sciences, University of Guilan P.O. Box 413351914 P.C. 4193833697, Rasht, Iran (Received 21 September 2009, accepted 10 December 2009)

Abstract: In this article, an application of He’s homotopy perturbation method is applied to solve non-linear Volterra-Fredholm integro-differential equations. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Keywords: homotopy perturbation method; non-linear Volterra-Fredholm integro-differential equations

1

Introduction

Homotopy perturbation method has been used by many mathematicians and engineers to solve various functional equations. This method continuously deforms difficult problem, mostly because of non-linearly, into a simple, linear, equation [1-5]. Almost all perturbation methods are based on the assumption of the existence of a small parameter in the equation. But most non-linear problems do not have such a small parameter. This method has been proposed to eliminate the small parameter [6, 7]. In recent years, the application of homotopy perturbation theory has appeared in many researches [1014]. In this paper, we propose homotopy perturbation method to solve non-linear Volterra-Fredholm integro-differential equations. Consider the following equation [8] π‘š βˆ‘

𝑝𝑗 (π‘₯)𝑦 𝑗 (π‘₯) =𝑓 (π‘₯) + πœ†1

𝑗=0

∫

π‘₯

π‘Ž

∫

𝑝

π‘˜1 (π‘₯, 𝑑) [𝑦(𝑑)] 𝑑𝑑 + πœ†2

𝑏 π‘Ž

π‘ž

π‘˜2 (π‘₯, 𝑑) [𝑦(𝑑)] 𝑑𝑑,

(1)

where 𝑝𝑗 (π‘₯)(𝑗 = 0 . . . π‘š), 𝑓 (π‘₯), π‘˜1 (π‘₯, 𝑑), π‘˜2 (π‘₯, 𝑑) are function having 𝑛 th (𝑛 β©Ύ π‘š) derivatives on an integral π‘Ž β©½ π‘₯, 𝑑 β©½ 𝑏, and π‘Ž, 𝑏, πœ†1 and πœ†2 are constants, 𝑝 and π‘ž are positive integer.

2

Homotopy perturbation method

To illustrate the homotopy perturbation method, we consider (1) as 𝐿(𝑦) =

π‘š βˆ‘ 𝑗=0

𝑝𝑗 (π‘₯)𝑦 𝑗 (π‘₯)βˆ’π‘“ (π‘₯) βˆ’ πœ†1

∫

π‘₯ π‘Ž

𝑝

∫

π‘˜1 (π‘₯, 𝑑) [𝑦(𝑑)] 𝑑𝑑 βˆ’ πœ†2

𝑏 π‘Ž

π‘ž

π‘˜2 (π‘₯, 𝑑) [𝑦(𝑑)] 𝑑𝑑,

(2)

with boundary conditions, 𝐡(𝑦, βˆ‚π‘¦/βˆ‚π‘›) = 0, and exact solution 𝑦(π‘₯) = 𝑔(π‘₯). By the homotopy technique, we can define homotopy 𝐻(𝑦, 𝑝) by 𝐻(𝑦, 𝑝) = (1 βˆ’ 𝑝)𝐹 (𝑦) + 𝑝𝐿(𝑦),

(3)

where 𝐹 (𝑦) is a functional operator with known solution 𝑦0 which generally satisfies the boundary conditions. Obviously, from Eq. (3) we have 𝐻(𝑦, 0) = 𝐹 (𝑦), 𝐻(𝑦, 1) = 𝐿(𝑦), βˆ— Corresponding

author.

E-mail address: [email protected],eslami [email protected] c Copyright⃝World Academic Press, World Academic Union IJNS.2010.06.15/348

286

International Journal of NonlinearScience,Vol.9(2010),No.3,pp. 285-289

and the changing process of the parameter 𝑝 from 0 to 1, is just that of 𝐻(𝑦, 𝑝) from 𝐻(𝑦, 0) to 𝐻(𝑦, 1). In topology, it is called deformation, 𝐻(𝑦, 0) and 𝐻(𝑦, 1) are called homotopic. Applying the perturbation technique [10], due to the fact that 0 β©½ 𝑝 β©½ 1, can be considered as a small parameter. We can assume that the solution of (3) can be expressed as a series in as follows: 𝑦 = 𝑦0 + 𝑝𝑦1 + 𝑝2 𝑦2 + β‹… β‹… β‹… . (4) As 𝑝 β†’ 1, (3) tends to equation (2) and (4), in most cases it converges to an approximate solution of (2), i.e., 𝑔 = lim 𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + β‹… β‹… β‹… . 𝑝→1

3

Numerical Examples

In this part, three examples are provided. These examples are considered to illustrate the ability and reliability of the method. These examples are solved numerically in [15, 16]. Example1. Let’s solve the following non-linear Volterra-Fredholm integro-differential equation [15] ∫ π‘₯ ∫ 1 3 𝑦 β€² (π‘₯) + 2π‘₯𝑦(π‘₯) = 𝑓 (π‘₯) + (π‘₯ + 𝑑)[𝑦(𝑑)] 𝑑𝑑 + (π‘₯ βˆ’ 𝑑)𝑦(𝑑)𝑑𝑑, 0

0

where 𝑓 (π‘₯) = (βˆ’ 23 π‘₯ + 19 )𝑒3π‘₯ + (2π‘₯ + 1)𝑒π‘₯ + ( 43 βˆ’ 𝑒)π‘₯ + 89 , with condition 𝑦(0) = 1 and exact solution 𝑦(π‘₯) = 𝑒π‘₯ . We construct a homotopy Ξ© Γ— [0, 1] β†’ ℝ which satisfies 𝑦 β€² (π‘₯) + (1 βˆ’ 𝑝)2π‘₯𝑒π‘₯ + 𝑝2π‘₯𝑦(π‘₯)βˆ’ ∫ 1 ∫ 3 3 𝑓 (π‘₯) βˆ’ (1 βˆ’ 𝑝)(π‘₯ + 𝑑)[𝑒𝑑 ] + 𝑝(π‘₯ + 𝑑)[𝑦(𝑑)] 𝑑𝑑 βˆ’ 0

π‘₯

0

(1 βˆ’ 𝑝)(π‘₯ βˆ’ 𝑑)𝑒𝑑 + 𝑝(π‘₯ βˆ’ 𝑑)𝑦(𝑑)𝑑𝑑 = 0.

Substituting (4) in to (5), and equating the coefficients of the terms with the identical powers of 𝑝, we have: ∫ 1 3 (π‘₯ + 𝑑)[𝑒𝑑 ] 𝑑𝑑 + (π‘₯ βˆ’ 𝑑)𝑒𝑑 𝑑𝑑 = 0 β‡’ 𝑦0 (π‘₯) = 𝑒π‘₯ . 0 0 ∫ π‘₯ 3 3 1 β€² π‘₯ 𝑝 : 𝑦 1 (π‘₯) βˆ’ 2π‘₯𝑒 + 2π‘₯𝑦0 (π‘₯) = βˆ’(π‘₯ + 𝑑)[𝑒𝑑 ] + (π‘₯ + 𝑑)[𝑦0 (𝑑)] 𝑑𝑑

𝑝0 : 𝑦 β€² 0 (π‘₯) + 2π‘₯𝑒π‘₯ = 𝑓 (π‘₯) +

∫ +

0

1

∫

π‘₯

0

βˆ’(π‘₯ βˆ’ 𝑑)𝑒𝑑 + (π‘₯ βˆ’ 𝑑)𝑦0 (𝑑)𝑑𝑑 = 0 β‡’ 𝑦1 (π‘₯) = 0.

𝑝2 : 𝑦 β€² 2 (π‘₯) + 2π‘₯𝑦1 (π‘₯) = 𝑝3 : 𝑦 β€² 3 (π‘₯) + 2π‘₯𝑦2 (π‘₯) =

∫ ∫

π‘₯ 0

π‘₯

0

3

∫

(π‘₯ + 𝑑)[𝑦1 (𝑑)] 𝑑𝑑 + 3

(π‘₯ + 𝑑)[𝑦2 (𝑑)] 𝑑𝑑 +

∫

1 0

0

1

(π‘₯ βˆ’ 𝑑)𝑦1 (𝑑)𝑑𝑑 = 0 β‡’ 𝑦2 (π‘₯) = 0. (π‘₯ βˆ’ 𝑑)𝑦2 (𝑑)𝑑𝑑 = 0 β‡’ 𝑦3 (π‘₯) = 0.

And by repeating this approach, we obtain 𝑦4 (π‘₯) = 𝑦5 (π‘₯) = ... = 0. Therefore, the approximation to the solution of Example 1 can be readily obtained by 𝑦=

∞ βˆ‘

𝑦𝑖 = 𝑒π‘₯ + 0 + 0 + β‹… β‹… β‹… .

𝑖=0

And hence,

𝑦(π‘₯) = 𝑒π‘₯ ,

which is an exact solution of Example 1. Example 2. Consider the following Volterra-Fredholm integro-differential equation [15] ∫ π‘₯ ∫ 1 2 𝑦 β€²β€² (π‘₯) βˆ’ π‘₯𝑦 β€² (π‘₯) + π‘₯𝑦(π‘₯) = 𝑓 (π‘₯) + (π‘₯ βˆ’ 2𝑑)[𝑦(𝑑)] 𝑑𝑑 + π‘₯𝑑𝑦(𝑑)𝑑𝑑, βˆ’1

βˆ’1

IJNS email for contribution: [email protected]

(5)

J. Biazar and M. Eslami: Exact Solutions for Non-linear Volterra-Fredholm Integro-Differential Equations β‹… β‹… β‹…

287

2 6 23 where 𝑓 (π‘₯) = 25 π‘₯ βˆ’ 13 π‘₯4 + π‘₯3 βˆ’ 2π‘₯2 βˆ’ 15 π‘₯ + 53 , with condition 𝑦(0) = βˆ’1, 𝑦 β€² (0) = 0 and exact solution 𝑦(π‘₯) = π‘₯2 βˆ’ 1. By using the He’s homotopy perturbation method, we have

𝑦 β€²β€² (π‘₯) βˆ’ (1 βˆ’ 𝑝)π‘₯(2π‘₯) βˆ’ 𝑝π‘₯𝑦 β€² (π‘₯) + (1 βˆ’ 𝑝)π‘₯(π‘₯2 βˆ’ 1) + 𝑝π‘₯𝑦(π‘₯) βˆ’ 𝑓 (π‘₯) ∫ π‘₯ ∫ 1 2 2 βˆ’ (1 βˆ’ 𝑝)(π‘₯ βˆ’ 2𝑑)[π‘₯2 βˆ’ 1] + 𝑝(π‘₯ βˆ’ 2𝑑)[𝑦(𝑑)] 𝑑𝑑 + (1 βˆ’ 𝑝)π‘₯𝑑(π‘₯2 βˆ’ 1) + 𝑝π‘₯𝑑𝑦(𝑑)𝑑𝑑 = 0. βˆ’1

(6)

βˆ’1

Substituting (4) in to (6), and equating the∫coefficients of the terms with the identical powers of 𝑝, we have:

𝑝0 : 𝑦 β€²β€² 0 (π‘₯) βˆ’ π‘₯(2π‘₯) + π‘₯(π‘₯2 βˆ’ 1) βˆ’ 𝑓 (π‘₯) βˆ’ ∫ +

1

βˆ’1

π‘₯

βˆ’1

2

(π‘₯ βˆ’ 2𝑑)[π‘₯2 βˆ’ 1] 𝑑𝑑

π‘₯𝑑(π‘₯2 βˆ’ 1)𝑑𝑑 = 0, β‡’ 𝑦0 (π‘₯) = π‘₯2 βˆ’ 1,

𝑝1 : 𝑦 β€²β€² 1 (π‘₯) + π‘₯(2π‘₯) βˆ’ π‘₯𝑦 β€² 0 (π‘₯) βˆ’ π‘₯(π‘₯2 βˆ’ 1) + π‘₯𝑦0 (π‘₯) ∫ π‘₯ ∫ 2 2 βˆ’ βˆ’(π‘₯ βˆ’ 2𝑑)[π‘₯2 βˆ’ 1] + (π‘₯ βˆ’ 2𝑑)[𝑦0 (𝑑)] 𝑑𝑑 + βˆ’1

2

β€²β€²

∫

β€²

𝑝 : 𝑦 2 (π‘₯) βˆ’ π‘₯𝑦 1 (π‘₯) + π‘₯𝑦1 (π‘₯) βˆ’ 𝑝3 : 𝑦 β€²β€² 3 (π‘₯) βˆ’ π‘₯𝑦 β€² 2 (π‘₯) + π‘₯𝑦2 (π‘₯) βˆ’

π‘₯

βˆ’1 ∫ π‘₯ βˆ’1

1 βˆ’1

βˆ’π‘₯𝑑(π‘₯2 βˆ’ 1) + π‘₯𝑑𝑦0 (𝑑)𝑑𝑑 = 0, β‡’ 𝑦1 (π‘₯) = 0, ∫

2

(π‘₯ βˆ’ 2𝑑)[𝑦1 (𝑑)] 𝑑𝑑 + 2

(π‘₯ βˆ’ 2𝑑)[𝑦2 (𝑑)] 𝑑𝑑 +

1

βˆ’1 ∫ 1 βˆ’1

π‘₯𝑑𝑦1 (𝑑)𝑑𝑑 = 0 β‡’ 𝑦2 (π‘₯) = 0, π‘₯𝑑𝑦2 (𝑑)𝑑𝑑 = 0 β‡’ 𝑦3 (π‘₯) = 0.

And by repeating this approach, we obtain 𝑦4 (π‘₯) = 𝑦5 (π‘₯) = ... = 0. Therefore the approximation to the solution of Example 2 can be readily obtained by 𝑦=

∞ βˆ‘

𝑦𝑖 = π‘₯2 βˆ’ 1 + 0 + 0 + β‹… β‹… β‹… .

𝑖=0

And hence, 𝑦(π‘₯) = π‘₯2 βˆ’ 1, which is an exact solution of Example 2. Example 3. Consider the following non-linear Volterra-Fredholm integro-differential equation [16] ∫

β€²β€²β€²

𝑦 (π‘₯) + 𝑦(π‘₯) = 𝑓 (π‘₯) +

π‘₯ 0

∫

2

𝑦 (𝑑)𝑑𝑑 +

0

1

(π‘₯2 𝑑 + π‘₯𝑑2 )𝑑𝑑,

β€² β€²β€² where 𝑓 (π‘₯) = βˆ’ 15 π‘₯5 + 23 π‘₯3 + 56 π‘₯2 βˆ’ 113 105 π‘₯ βˆ’ 1, with condition 𝑦(0) = 1, 𝑦 (0) = 0, 𝑦 (0) = βˆ’2, and exact solution 2 𝑦(π‘₯) = 1 βˆ’ π‘₯ He’s homotopy perturbation method consists of the following scheme

β€²β€²β€²

∫

2

𝑦 (π‘₯) + (1 βˆ’ 𝑝)(1 βˆ’ π‘₯ ) + 𝑝𝑦(π‘₯) βˆ’ 𝑓 (π‘₯) βˆ’ ∫ βˆ’

0

1

2

2

2 2

2

0

π‘₯

2

2

(1 βˆ’ 𝑝)[1 βˆ’ π‘₯2 ] + 𝑝[𝑦(𝑑)] 𝑑𝑑 (7)

2

2

(1 βˆ’ 𝑝)(π‘₯ 𝑑 + π‘₯𝑑 )[1 βˆ’ π‘₯ ] + 𝑝(π‘₯ 𝑑 + π‘₯𝑑 )[𝑦(𝑑)] 𝑑𝑑 = 0.

Substituting (4) in to (7), and equating the coefficients of the terms with the identical powers of 𝑝, we have:

IJNS homepage: http://www.nonlinearscience.org.uk/

288

International Journal of NonlinearScience,Vol.9(2010),No.3,pp. 285-289

𝑝0 : 𝑦 β€²β€²β€² 0 (π‘₯) + (1 βˆ’ π‘₯2 ) βˆ’ 𝑓 (π‘₯) βˆ’ ∫

1

∫

1

βˆ’ 2

𝑝 :𝑦

0 β€²β€²β€²

2

π‘₯ 0

2

[1 βˆ’ π‘₯2 ] 𝑑𝑑

(π‘₯ 𝑑 + π‘₯𝑑 )[1 βˆ’ π‘₯ ] 𝑑𝑑 = 0 β‡’ 𝑦0 (π‘₯) = 1 βˆ’ π‘₯2 , 0 ∫ π‘₯ 2 2 1 β€²β€²β€² 𝑝 : 𝑦 1 (π‘₯) βˆ’ (1 βˆ’ π‘₯2 ) + 𝑦0 (π‘₯) βˆ’ βˆ’[1 βˆ’ π‘₯2 ] + [𝑦(𝑑)] 𝑑𝑑 βˆ’

2

∫

2 2

0

βˆ’(π‘₯ 𝑑 + π‘₯𝑑 )[1 βˆ’ π‘₯ ] + (π‘₯2 𝑑 + π‘₯𝑑2 )[𝑦0 (𝑑)]2 𝑑𝑑 = 0 β‡’ 𝑦1 (π‘₯) = 0,

2 (π‘₯)

2

2

2 2

∫ + 𝑦1 (π‘₯) βˆ’

𝑝3 : 𝑦 β€²β€²β€² 3 (π‘₯) + 𝑦2 (π‘₯) βˆ’

∫

π‘₯ 0

0

π‘₯

∫

2

𝑝[𝑦1 (𝑑)] 𝑑𝑑 βˆ’

0

∫

2

𝑝[𝑦2 (𝑑)] 𝑑𝑑 βˆ’

1

1

0

2

(π‘₯2 𝑑 + π‘₯𝑑2 )[𝑦1 (𝑑)] 𝑑𝑑 = 0 β‡’ 𝑦2 (π‘₯) = 0, 2

(π‘₯2 𝑑 + π‘₯𝑑2 )[𝑦2 (𝑑)] 𝑑𝑑 = 0 β‡’ 𝑦3 (π‘₯) = 0.

And by repeating this approach, we obtain 𝑦4 (π‘₯) = 𝑦5 (π‘₯) = ... = 0. Therefore the approximation to the solution of Example 3 can be readily obtained by 𝑦=

∞ βˆ‘

𝑦𝑖 = 1 βˆ’ π‘₯2 + 0 + 0 + β‹… β‹… β‹… .

𝑖=0 2

And hence, 𝑦(π‘₯) = 1 βˆ’ π‘₯ , which is an exact solution of Example 3.

4

Conclusion

In this work, we used homotopy perturbation method for solving non-linear Volterra-Fredholm integro-differential equations. The results have been approved the efficiency of this method for solving these problems. The solution obtained by homotopy perturbation method is valid for not only weakly non-linear equations but also for strong ones. Furthermore, accurate solutions were derived from first-order approximations in the examples presented in this paper.

References [1] J. H. He. The homotopy perturbation method for nonlinear oscillators with discontinuities.Applied Mathematics and Computation, 151:(2004),287-292. [2] J. H. He. Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons and Fractals, 26:(2005),695-700. [3] J. H. He. Homotopy perturbation method for solving boundary value problems. Physics Letters A, 350:(2006),87-88. [4] J. H. He. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178:(1999),257-262. [5] J. H. He. A coupling method of homotopy technique and perturbation technique for nonlinear problems. International Journal of Non-Linear Mechanics, 35(1):(2000),37-43. [6] S. J. Liao. An approximate solution technique not depending on small parameter: A special example. In J Nonlinear Mech., 30(3):(1995),371-80. [7] S. J. Liao. Boundary element method for general non-linear differential operators. Eng Anal Boundary Element, 20(2):(1997),91-99. [8] L. M. Delves and J. L. Mohamed. Computational methods for integral equation .Cambridge: Cambridge University press(1985). [9] A. H. Nayfeh. Problems in perturbation. New York: Wiley(1985). [10] A. M. Siddiqui, A. Zeb and Q. K. Ghori. Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder. Physics Letters A, 352:(2006),404-410. [11] L. Cveticanin. Homotopy-perturbation method for pure nonlinear differential equation. Chaos, Solitons and Fractals, 30:(2006),1221-1230.

IJNS email for contribution: [email protected]

J. Biazar and M. Eslami: Exact Solutions for Non-linear Volterra-Fredholm Integro-Differential Equations β‹… β‹… β‹…

289

[12] J. Biazar, M. Eslami and H. Ghazvini. Homotopy Perturbation Method for Systems of Partial Differential Equations. International Journal of Non-Linear sciences and numerical simulation,8(3):(2007),411-416. [13] J. Biazar, H. Ghazvini and M. Eslami. He’s homotopy perturbation method for systems of integro-differential equations. Chaos, Solitons and Fractals, 39:(2009),1253-1258. [14] S. Abbasbandy. Application of the integral equations: Homotopy perturbation method and Adomian’s decomposition method. Applied Mathematics and Computation, 173:(2006),493-500. [15] K. Maleknejad and Y. Mahmudi. Taylor polynomial solution of high-order solving non-linear Volterra-Fredholm integro-differntial equations. Applied Mathematics and Computation, 145:(2003),641-653. [16] W. Wang. An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equations. Applied Mathematics and Computation, 172:(2006),1-23.

IJNS homepage: http://www.nonlinearscience.org.uk/