Existence and Uniqueness of Solution for Caginalp

0 downloads 0 Views 66KB Size Report
Jan 23, 2018 - We prove the existence and the uniqueness of solutions for Caginalp hyperbolic .... (Uniqueness) If the assumptions of the theorem (1) hold.
Journal of Mathematics Research; Vol. 10, No. 1; February 2018 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education

Existence and Uniqueness of Solution for Caginalp Hyperbolic Phase- Field System with a Polynomial Potential Franck Davhys Reval Langa1 , Daniel Moukoko1 , Dieudonn Ampini1 & Fidle Moukamba1 1

Facult´e des Sciences et Techniques Universit´e Marien Ngouabi, Congo-Brazzaville

Correspondence: Franck Davhys Reval Langa, Facult´e des Sciences et Techniques Universit´e Marien Ngouabi, CongoBrazzaville. E-mail: [email protected] Received: October 25, 2017

Accepted: November 13, 2017

doi:10.5539/jmr.v10n1p124

Online Published: January 23, 2018

URL: https://doi.org/10.5539/jmr.v10n1p124

Abstract We prove the existence and the uniqueness of solutions for Caginalp hyperbolic phase-field system with initial conditions, Dirichlet boundary homogeneous conditions and a regular potential of order 2p − 1, in bounded domain. Keywords: Caginalp hyperbolic phase-field system, Dirichlet boundary homogeneous conditions, Polynomial potential 1. Introduction We are interested on the study of the following Caginalp hyperbolic phase-field system in a smooth and bounded domain Ω ⊂ Rn (1 ≤ n ≤ 3) ∂2 u ∂u + − △u + f (u) = ∂t ∂t2 ∂2 α ∂α ∂α + −△ − △α = 2 ∂t ∂t ∂t

ϵ

α, −u −

in ∂u , ∂t

R+ × Ω,

(1)

R+ × Ω,

in

(2)

with homogenous Dirichlet conditions u|∂Ω = α|∂Ω = 0

(3)

and initial conditions

∂u ∂α |t=0 = u1 , α|t=0 = α0 , |t=0 = α1 , (4) ∂t ∂t where ϵ > 0 is a relaxation parameter, u = u(x, t) the order parameter and α = α(t, x) are the unknown functions, f is a regular potential. u|t=0 = u0 ,

The hyperbolic system has been extensively studied with Dirichlet boundary condition and regular or singular potential (see, eg., (Agmon, S. (1965)), (Caginalp, G. (1986)), (1988)), (Goyaud, M. E. I., Moukamba, F., Moukoko, D., & Langa, F. D. R. (2015)), (Miranville, A., & Zelik, S. (2008)), (Moukoko, D. (2014)), (Temam, R. (1997))). Consider the following polynomial potential of order 2p − 1 f (s) =

2p−1 ∑

bk sk ,

b2p−1 > 0,

p ≥ 2.

k=1

The function f satisfies the following properties 1 3 b2p−1 s2p − c1 ≤ f (s).s ≤ b2p−1 s2p + c1 , 2 2 −κ ≤

b2p−1 2p−2 s − c2 ≤ f ′ (s) ≤ 3pb2p−1 s2p−2 + c2 , 2p

3 1 b2p−1 s2p − c3 ≤ F(s) ≤ b2p−1 s2p + c3 4p 4p

where

c1 > 0,

∀s ∈ R,

κ > 0,



s

F(s) =

f (τ)dτ,

(5) c2 > 0, c3 > 0.

(6) (7)

0

We denote by ∥.∥ the usual L2 -norm (with associated product scalar (., .)), △ denotes the Laplace operator with Dirichlet boundary conditions. Throughout this paper, Ci (i = 1, ..., n) denote positive constants which may change from line to line, or even the same line. 124

http://jmr.ccsenet.org

Journal of Mathematics Research

Vol. 10, No. 1; 2018

2. Method To prove our main results, we have to use classical methods of functional analysis applied in the theory of Partial Differential Equations. 3. Results In this paper, we first prove the existence and the uniqueness of solutions theorems. The two first results being proven in a larger space, we will seek the solution with more regularity. 3.1 A priori Estimates We multiply (1) by

∂u ∂t

and (2) by γ ∂α ∂t where γ > 0, integrate over Ω. This gives ) ∂u 2 d ( ∂u 2 ϵ∥ ∥ + ∥ ∇u ∥2 +2(F(u), 1) + C + ∥ ∥ ≤∥ α ∥2 dt ∂t ∂t

(8)

and

) ∂α 2 ∂α ∂u 2 d ( ∂α 2 γ∥ ∥ + γ ∥ ∇α ∥2 + γ ∥ ∥ +2γ∥∇ ∥2 ≤ 2γ ∥ u ∥2 +2γ ∥ ∥. dt ∂t ∂t ∂t ∂t Sum the two resulting differential inequalities with 1 − 2γ > 0. Due to the equation (7), we get ∫ dE1 ∂u 2 ( ∂α 2 ∂α 2 ) 2 F(u)dx + 2c3 |Ω|, + C1 ∥ ∥ +γ ∥ ∥ +2 ∥ ∇ ∥ ≤ C2 ∥ ∇α ∥ +C3 ∥ ∇u ∥ +2 dt ∂t ∂t ∂t Ω where E1 = ϵ∥

∂u 2 ∥ + ∥ ∇u ∥2 +2 ∂t

Using (7) we have



(10)



( ∂α ) F(u)dx + γ ∥ ∥2 + ∥ ∇α ∥2 . ∂t Ω

∫ 2

(9)

F(u)dx + 2c3 |Ω| ≥

1 b2p−1 ∥ u ∥2p , L2p 2p

b2p−1 > 0.

Inserting the above estimate in (10), we obtain a differential inequality of the form dE1 ∂u 2 ( ∂α 2 ∂α 2 ) + C1 ∥ ∥ +γ ∥ ∥ +2 ∥ ∇ ∥ ≤ kE1 + C, C > 0, dt ∂t ∂t ∂t

(11)

where the strictly positive constant k is independent of ϵ. Applying Gronwall’s lemma, we obtain for all t ∈ (0, T ) ∫ t( ∂u(s) 2 ∂α(s) 2 ∂α(s) 2 ) E1 (t) + C1 ∥ ∥ +γ ∥ ∥ +2γ ∥ ∇ ∥ ds ≤ E1 (0)ekT + C ∂t ∂t ∂t 0

(12)

which implies, in view of (7) ( ∂α(t) ) ∫ t ( ∂u(s) ∂u(t) 2 2p 2 2 2 ϵ∥ ∥ + ∥ ∇u(t) ∥ +C ∥ u(t) ∥L2p +γ ∥ ∥ + ∥ ∇α(t) ∥ + ∥ ∥2 ∂t ∂t ∂t 0 ∂α(s) 2 ∂α(s) 2 ) +γ ∥ ∥ +2 ∥ ∇ ∥ ds ≤ KekT + C, K > 0. ∂t ∂t Then we deduce that

u ∈ L∞ (0, T ; L2p (Ω) ∩ H01 (Ω)), α ∈ L∞ (0, T ; H01 (Ω)), ∂u ∈ L∞ (0, T ; L2 (Ω)) ∩ L2 (0, T ; L2 (Ω)) ∂t

and

∂α ∈ L∞ (0, T ; L2 (Ω)) ∩ L2 (0, T ; H01 (Ω)). ∂t The main result of this paper is the proof of the existence and the uniqueness theorems.

125

(13)

http://jmr.ccsenet.org

Journal of Mathematics Research

Vol. 10, No. 1; 2018

3.2 Existence and Uniqueness of Solutions Theorem 1. (Existence) Assume that (u0 , u1 , α0 , α1 ) ∈ (L2p (Ω) ∩ H01 (Ω)) × L2 (Ω) × H01 (Ω) × L2 (Ω), then the system (1)-(2) has at least one solution (u, α) such that u ∈ L∞ (0, T ; L2p (Ω) ∩ H01 (Ω)), α ∈ L∞ (0, T ; H01 (Ω)), ∂u ∈ L∞ (0, T ; L2 (Ω)) ∩ L2 (0, T ; L2 (Ω)) ∂t and

∂α ∈ L∞ (0, T ; L2 (Ω)) ∩ L2 (0, T ; H01 (Ω)) f or all T > 0. ∂t The proof is based on a priori estimates obtained in the previous section and on a standard Galerkin scheme.

Theorem 2. (Uniqueness) If the assumptions of the theorem (1) hold. Then, the system (1)-(2) has a unique solution with the above regularity. (1) (1) (1) Proof. Let (u(1) , α(1) ) and (u(2) , α(2) ) be two solutions of the system (1)-(7) with initial data (u(1) 0 , u1 , α0 , α1 ) and (2) (2) (2) 2p 1 2 1 2 (u(2) 0 , u1 , α0 , α1 ) ∈ (L (Ω) ∩ H0 (Ω)) × L (Ω) × H0 (Ω) × L (Ω), respectively. We set

(u, α) = (u(1) , α(1) ) − (u(2) , α(2) ) and (2) (u0 , u1 , α0 , α1 ) = (u(1) 0 − u0 ,

(2) u(1) 1 − u1 ,

(2) α(1) 0 − α0 ,

(2) α(1) 1 − α1 ).

Then, (u, α) satisfies the following system ∂2 u ∂u + − △u + f (u(1) ) − f (u(2) ) = −α ∂t ∂t2

ϵ

u|t=0 Multiplying (14) by

(14)

∂2 α ∂α ∂α ∂u + −∆ − ∆α = −u − 2 ∂t ∂t ∂t ∂t ∂α ∂u |t=0 = α1 . = u0 , |t=0 = u1 , α|t=0 = α0 , ∂t ∂t

∂u ∂α and (15) by β where β > 0, integrating over Ω, we obtain ∂t ∂t ∫ ) d( ∂u 2 ∂u 2 ∂u 2 ϵ∥ ∥ + ∥ ∇u ∥ + ∥ ∥ +2 ( f (u(1) ) − f (u(2) )) dt ≤∥ α ∥2 dt ∂t ∂t ∂t Ω

(15)

(16)

and

) ( d( ∂α 2 ∂α 2 ∂∇α 2 ∂u 2 ) β∥ ∥ +β ∥ ∇α ∥2 + β ∥ ∥ +2β ∥ ∥ ≤ 2β ∥ u ∥2H 1 + ∥ ∥ . dt ∂t ∂t ∂t ∂t Summing (16) and (17), we obtain ) d( ∂u 2 ∂α 2 ∂u 2 ∂α 2 ϵ∥ ∥ + ∥ ∇u ∥2 +β ∥ ∥ +β ∥ ∇α ∥2 + (1 − 2β) ∥ ∥ +β ∥ ∥ dt ∂t ∂t ∂t ∂t ∫ ∂∇α 2 ∂u +2β ∥ ∥ ≤ −2 ( f (u(1) ) − f (u(2) )) dt+ ∥ α ∥2 +2β ∥ u ∥2H 1 , 1 − 2β > 0. ∂t ∂t Ω Note that f (u ) − f (u ) = (1)

(2)

2p−1 ∑

bk ((u(1) )k − (u(2) )k )

k=1

=

2p−1 k−1 ∑ ∑ ( ) bk (u(1) − u(2) ) b1 + b2 (u(1) + u(2) ) + (u(1) )k− j−1 .(u(2) ) j , k=3

j=0

which implies 2p−1 k−1 ∑ ∑ ) ( | bk | | u(1) |k− j−1 . | u(2) | j . | f (u(1) ) − f (u(2) ) |≤| u | | b1 | + | b2 | (| u(1) | + | u(2) |) + k=3

126

j=0

(17)

(18)

http://jmr.ccsenet.org

Journal of Mathematics Research

There exits C > 0 such that | bk |≤ C,

Vol. 10, No. 1; 2018

∀k ∈ {1, 2, · · · , 2p − 1}.

Applying Young’s inequality, we obtain | u(1) |k− j−1 . | u(2) | j

k−1 k−1 j k − 1 − j (1) k− j−1 k−1− (| u | ) j+ (| u(2) | j ) j k−1 k−1 k − j − 1 (1) k−1 j |u | + | u(2) |k−1 , k−1 k−1

≤ ≤

which implies k−1 ∑

| u(1) |k− j−1 . | u(2) | j



j=0



k−1 k−1 ∑ k − j − 1 (1) k−1 ∑ j |u | + | u(2) |k−1 k − 1 k − 1 j=0 j=0

) k ( (1) k−1 | u | + | u(2) |k−1 . 2

Then we obtain | f (u(1) ) − f (u(2) ) | ≤

( | u | | b1 | + | b2 | (

1 1 | u(1) |2p−2 + | u(2) |2p−2 +C) 2p − 2 2p − 2

2p−1 ∑

) k | bk | (| u(1) |k−1 + | u(2) |k−1 ) 2 k=3 ( 1 ≤ C | u | | b1 | + | b2 | (| u(1) |2p−2 + | u(2) |2p−2 ) 2p − 2 2p−1 ∑ ) (k − 1)k + | bk | (| u(1) |2p−2 + | u(2) |2p−2 ) + 1 4(p − 1) k=3 ( 1 ≤ C|u| (| u(1) |2p−2 + | u(2) |2p−2 ) 2p − 2 2p−1 ) | u(1) |2p−2 + | u(2) |2p−2 ∑ + k(k − 1) + 1 , 4(p − 1) k=3 +

which on yields to

( ) | f (u(1) ) − f (u(2) ) |≤ C | u | | u(1) |2p−2 + | u(2) |2p−2 +1 .

Therefore, one gets ∫

∂u | f (u ) − f (u )|| |dx ∂t Ω (1)

(2)

∫ ≤ C



( ) ∂u | u | | u(1) |2p−2 + | u(2) |2p−2 +1 | |dx. ∂t

In this proof, we consider the two cases n = 1 and n = 2 or 3. • For n=1. ¯ and are both bounded. u(1) , u(2) ∈ H01 (Ω), then u(1) , u(2) ∈ C(Ω) There exits C > 0 such that sup | u(1) (x) |≤ C, it is the same for u(2) . Then we have ¯ x∈Ω

∫ Ω

| f (u(1) ) − f (u(2) )||

∂u |dx ∂t



( ) ∂u | u | | u(1) |2p−2 + | u(2) |2p−2 +1 | |dx ∂t Ω ∫ ( ) ∂u (2) 2p−2 ≤ C ∥ u(1) ∥2p−2 ∥L∞ +1 | u | | |dx L∞ + ∥ u ∂t Ω ∂u ≤ C|u|| | ∂t ∂u ≤ C ∥ u ∥H 1 ∥ ∥. ∂t ≤ C

• For n=2 or 3. 127

(19)

http://jmr.ccsenet.org

Journal of Mathematics Research

Vol. 10, No. 1; 2018

We have H 1 (Ω) ⊂ Lq (Ω) for q ∈ [1, 6]. Applying the H¨older inequality to (19), we obtain the following inequality ∫ ( ) ∂u ∂u | f (u(1) ) − f (u(2) )|| |dx ≤ C ∥ u ∥L6 ∥| u(1) |2p−2 ∥L3 + ∥| u(2) |2p−2 ∥L3 +1 ∥ ∥. ∂t ∂t Ω Since ∥| u(1) |2p−2 ∥L3

= = =

(∫ Ω

(∫

(| u(1) |2p−2 )3 dx

) 13 1

(| u(1) |3(2p−2) )dx) 3(2p−2)

Ω (1)

∥u

)2p−2

∥2p−2 , L3(2p−2)

similarly for ∥| u(2) |2p−2 ∥L3 . Note that L6p (Ω) ⊂ L3(2p−2) (Ω), then there exists C > 0 such that ∥ u(1) ∥L3(2p−2) ≤ C ∥ u(1) ∥L6p , which implies ∥| u(1) |2p−2 ∥L3

≤ ∥ u(1) ∥2p−2 L3(2p−2) ≤ C ∥ u(1) ∥2p−2 , L6p

thus ∥ u(1) ∥L6p

=

(∫

(| (u(1) ) |6p )dx

) 6p1

=

Ω 1 (∫ 1)p ( (| u(1) | p )6 dx) 6

=

∥| u(1) | p ∥Lp6



1

1

≤ C ∥| u(1) | p ∥Hp 1 ≤ C ∥ u(1) ∥H 1 . Then, we have ∥| u(1) |2p−2 ∥L3

≤ C ∥ u(1) ∥2p−2 H1

(20)

and ∥| u(2) |2p−2 ∥L3 ≤ C ∥ u(2) ∥2p−2 . H1 Hence

∫ Ω

Finally, for n = 1,

| f (u(1) ) − f (u(2) )||

2 or

∂u |dx ∂t

(21)

) ∂u ∥ u(1) ∥2p−2 + ∥ u(2) ∥2p−2 +1 ∥ ∥ H1 H1 ∂t ∂u ≤ C ∥ u ∥ L6 ∥ ∥ ∂t ∂u ≤ C ∥ u ∥H 1 ∥ ∥. ∂t ≤ C ∥ u ∥ L6

(

3, we obtain

) ( ) d( ∂u 2 ∂α 2 ϵ∥ ∥ + ∥ ∇u ∥2 +β ∥ ∥ +β ∥ ∇α ∥2 ≤ C ∥ u ∥2H 1 + ∥ α ∥2 , C > 0. dt ∂t ∂t We deduce the continuous dependence of the solution with respect to the initial conditions, hence the uniqueness of the solution of problem (1)-(7), is proved. The existence and the uniqueness of the solution to problem (1)-(7) being proven in a larger space, we now establish the solution with more regularity. 128

http://jmr.ccsenet.org

Journal of Mathematics Research

Vol. 10, No. 1; 2018

Remark 1 In the proof of the uniqueness solution, we have obtained that when the assumptions of theorem (1) hold, the solution (u, α) of the system (1)-(2) is such that 1

∥| u |2p−2 ∥Lp3 ≤ C. Theorem 3 Assume (u0 , u1 , α0 , α1 ) ∈ (H 2 (Ω) ∩ H01 (Ω)) × H01 (Ω) × (H 2 (Ω) ∩ H01 (Ω)) × H01 (Ω), then the system (1)-(7) possesses a unique solution (u, α) such that u, α ∈ L∞ (0, T ; H 2 (Ω) ∩ H01 (Ω)), ∂u ∈ L∞ (0, T ; H01 (Ω)) ∩ L2 (0, T ; H01 (Ω)), ∂t ∂α ∈ L∞ (0, T ; H01 (Ω)) ∩ L2 (0, T ; H 2 (Ω) ∩ H01 (Ω)), ∂t ∂2 u ∈ L2 (0, T ; L2 (Ω)) ∂t2 and

∂2 α ∈ L2 (0, T ; L2 (Ω)) ∂t2

f or

all

T > 0.

Proof In view of theorems (1) and (2), the system (1)-(7) possesses an uniqueness solution (u, α) such that u ∈ L∞ (0, T ; L2p (Ω) ∩ H01 (Ω)), α ∈ L∞ (0, T ; H01 (Ω)), ∂u ∈ L∞ (0, T ; L2 (Ω)) ∩ L2 (0, T ; L2 (Ω)) ∂t and

∂α ∈ L∞ (0, T ; L2 (Ω)) ∩ L2 (0, T ; H01 (Ω)) ∂t

for

all T > 0.

Multiply (1) by −△ ∂u ∂t and integrate over Ω, we have ) d( ∂u 2 ∂u 2 ϵ∥∇ ∥ + ∥ △u ∥2 + 2 ∥ ∇ ∥ dt ∂t ∂t

= = =

∂u ∂u ) + 2(∇α, ∇ ) ∂t ∂t ∂u ∂u −2( f ′ (u)∇u, ∇ ) + 2(∇α, ∇ ) ∂t ∂t ∫ ∂u ∂u −2 f ′ (u)∇u∇ dx + 2(∇α, ∇ ). ∂t ∂t Ω

−2(∇ f (u), ∇

We deduce the following inequality ) ∂u 2 ∂u 2 d( ϵ∥∇ ∥ + ∥ △u ∥2 + 2 ∥ ∇ ∥ dt ∂t ∂t

∫ ≤

2



| f ′ (u) || ∇u || ∇

∂u ∂u | dx + 2 ∥ ∇α ∥∥ ∇ ∥. ∂t ∂t (22)

Therefore, in view of (6) and remark (1), we have ∫ ∫ ( ) ∂u ∂u ′ | dx ≤ | dx | f (u) || ∇u || ∇ 3pb2p−1 | u2p−2 | +c2 | ∇u || ∇ ∂t ∂t Ω Ω 1 ( ) ∂u ≤ 3pb2p−1 ∥| u |2p−2 ∥Lp3 +c2 ∥ ∇u ∥L6 ∥ ∇ ∥ ∂t ( ) ∂u ≤ C ∥ u ∥2p−2 +1 ∥ △u ∥∥ ∇ ∥ 1 H ∂t ∂u ≤ C ∥ △u ∥∥ ∇ ∥. ∂t 129

http://jmr.ccsenet.org

Journal of Mathematics Research

Vol. 10, No. 1; 2018

Inserting estimate according to the using (22), we obtain ) d( ∂u 2 ∂u 2 ϵ∥∇ ∥ + ∥ △u ∥2 + 2 ∥ ∇ ∥ dt ∂t ∂t ) d( ∂u 2 ∂u 2 ϵ∥∇ ∥ + ∥ △u ∥2 + ∥ ∇ ∥ dt ∂t ∂t

∂u ∂u ∥ +2 ∥ ∇α ∥∥ ∇ ∥ ∂t ∂t ∂u 2 ∥ ≤ C ∥ △u ∥2 +2 ∥ ∇α ∥2 + ∥ ∇ ∂t

≤ C ∥ △u ∥∥ ∇

≤ C ∥ △u ∥2 +2 ∥ ∇α ∥2 .

By using Gronwall’s lemma, we deduce that u ∈ L∞ (0, T ; H 2 (Ω) ∩ H01 (Ω)) and

∂u ∈ L∞ (0, T ; H01 (Ω)) ∩ L2 (0, T ; H01 (Ω)). ∂t

Multiply (2) by −△ ∂α ∂t and integrate over Ω. We obtain ) d( ∂α 2 ∂α 2 ∂α 2 ∂α ∂u ∂α ∥∇ ∥ + ∥ △α ∥2 + 2 ∥ ∇ ∥ +2 ∥ △ ∥ = 2(u, △ ) + 2( , △ ), dt ∂t ∂t ∂t ∂t ∂t ∂t we deduce the following inequality ) d( ∂α 2 ∂α 2 ∂α 2 ∥∇ ∥ + ∥ △α ∥2 + 2 ∥ ∇ ∥ +2 ∥ △ ∥ dt ∂t ∂t ∂t



2 ∥ u ∥2 + ∥ △

∂α 2 ∂u 2 ∥ +2 ∥ ∥, ∂t ∂t

which implies ) d( ∂α 2 ∂α 2 ∂α 2 ∥∇ ∥ + ∥ △α ∥2 + 2 ∥ ∇ ∥ +∥△ ∥ dt ∂t ∂t ∂t Hence

2 ∥ u ∥2 +2 ∥

∂u 2 ∥ . ∂t

α ∈ L∞ (0, T ; H 2 (Ω) ∩ H01 (Ω))

and

∂α ∈ L∞ (0, T ; H01 (Ω)) ∩ L2 (0, T ; H 2 (Ω) ∩ H01 (Ω)). ∂t ∂2 u ∂t2

Multiplying (1) by

and integrating over Ω, we find

∂2 u d ∂u 2 ∥ ∥ +2ϵ ∥ 2 ∥2 dt ∂t ∂t

= = ≤ ≤ ≤

then

Multiply (2) by



∂2 u ∂2 u ∂2 u ) − 2( f (u), ) + 2(α, ) ∂t2 ∂t2 ∂t2 2 2 √ ∂u 2△u √ ∂ u 2 2α √ ∂2 u ( √ , ϵ 2 ) − ( √ f (u), ϵ 2 ) + ( √ , ϵ 2 ) ∂t ∂t ∂t ϵ ϵ ϵ 2 2 3ϵ ∂ u 2 2 ∥ △u ∥2 + ∥ 2 ∥2 + ∥ f (u) ∥2 + ∥ α ∥2 ϵ 2 ϵ ϵ ∂t ) 3ϵ ∂2 u 2( ∥ △u ∥2 + ∥ f (u) ∥2 + ∥ α ∥2 + ∥ 2 ∥2 ϵ 2 ∂t ) 2( 2 2 2 ∥ △u ∥ + ∥ f (u) ∥ + ∥ α ∥ , ϵ

2(△u,

∂2 u ∈ L2 (0, T ; L2 (Ω)). ∂t2 ∂2 α ∂t2

and integrate over Ω, on gets

d ( ∂α 2 ∂α 2 ) ∂2 α ∥ ∥ +∥∇ ∥ + 2 ∥ 2 ∥2 dt ∂t ∂t ∂t ∂α 2 ) ∂2 α d ( ∂α 2 ∥ ∥ +∥∇ ∥ + ∥ 2 ∥2 dt ∂t ∂t ∂t

∂2 α ∂2 α ∂u ∂2 α , ) − 2(u, ) − 2( ) ∂t ∂t2 ∂t2 ∂t2 ( ∂2 α ∂u 2 ) ∥ + ∥ 2 ∥2 ≤ C ∥ △α ∥2 + ∥ u ∥2 + ∥ ∂t ∂t ) ( ∂u ∥2 , ≤ C ∥ △α ∥2 + ∥ u ∥2 + ∥ ∂t =

2(△α,

130

http://jmr.ccsenet.org

Journal of Mathematics Research

hence

Vol. 10, No. 1; 2018

∂2 α ∈ L2 (0, T ; L2 (Ω)). ∂t2

Then the proof of the theorem (3) is complete. 4. Discussion In this paper, we have confirmed the existence and the uniqueness of the solution for hyperbolic Caginalp phase-field system with all regular potential. We next study the existence of global and exponential attractors. We can also complete this work by studying this system with any other types of boundary conditions. Acknowledgements The authors wish to thank the Research Group in Functional Analysis and Partial Differential Equations of the Faculty of Science and Technology of Marien Ngouabi University. The authors are very grateful to referees for the care that they took in reading this article. References Agmon, S. (1965). Lectures on elliptic boundary value problems. Mathematical Studies. Van Nostrand, New York. Agmon, S., Douglis, A., & Nirenberg, L. (1959). Estimates near the boundary for solutions of elliptic partial differential equations. I, Commun. Pure Appl. Math, 12, 623-727. https://doi.org/10.1002/cpa.3160120405 Caginalp, G. (1986). An analysis of a phase-field model of a free boundary. Arch. Rational Mech. Anal, 92, 205-245. https://doi.org/10.1007/BF00254827 Caginalp, G. (1988). Conserved-phase field system: implications for kinetic undercooling. Phys. Rev. B, 38, 789-791. https://doi.org/10.1103/PhysRevB.38.789 Caginalp, G. (1990). The dynamics of conseved phase-field system: Stefan-Like, Hele-Shaw and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math, 44, 77-94. https://doi.org/10.1093/imamat/44.1.77 Caginalp, G., & Esenturk, E. (2011). Anisotropic phase-field equations of arbitrary order. Discrete Contin. Dyn. Systems S, 4, 311-350. Giacomin, G., & Lebowitz, J. L. (1997). Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits. J. Statist. Phys., 87, 37-61. https://doi.org/10.1007/BF02181479 Goyaud, M. E. I., Moukamba, F., Moukoko, D., & Langa, F. D. R. (2015). Existence and Uniqueness of Solution for Caginalp Phase Field System with Polynomial Growth Potential. Iternational Mathematical Forum, 10, 477-486. https://doi.org/10.12988/imf.2015.5757 Miranville, A., & Zelik, S. (2008). Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations., 4, C.M. Dafermos, M. Pokorny eds. Elsevier, Amsterdam, 103-200. https://doi.org/10.1016/S1874-5717(08)00003-0 Moukoko, D. (2014). Well -Posedness and Longtime Behaviors of a Hyperbolic Caginalp System. Journal of Applied Analysis and Computation, 4, 151-196. Temam, R. (1997). Infinite-dimensional dynamical systems in mechanics and physics, Second edition. Applied Mathematical Sciences, 68, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-0645-3 Copyrights Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

131