Colby College. Expectation Values – Particle in a Box. Most Probable Position:
Maximum in Ψ2. Ψ(x) = . . . . . 2 a. ½ sin. . . . . . nπx a. Ψ2.
Expectation Values – Particle in a Box Most Probable Position: Maximum in 2 2½ nπx (x) = sin a a
0.2
2 0.1
2 nπx 2(x) = sin2 a a for n = 1
0
xmp = 0.5 a
0
2
4
6 8 x (cm)
10
=
- * o^ dx -
if is real and normalized: = - o^ dx
dx *
Average Position: = * x dx
integral “over all space”
½ 2 nπx 2½ nπx = sin a x a sin a dx - a
average x
a 2 2nπx = 0 x asin a dx
average x
2 dx = probability distribution
nπx dy nπ a = x= y a dx a nπ 2 2 a n = y sin2(y) dx a n 0 y=
2 2 a 2 y y sin 2y cos 2y n = – – 4 8 0 a n 4
dx =
a dy nπ x2 x sin 2x cos 2x x sin (x) dx = 4 – 4 – 8 2
sin(0) = sin(2n) = 0, cos(0) = cos(2n) = 1
2 2 2a n a = = 2 2 n 4 2
Momentum: p^ =
ħ d i dx
^
Ek =
p^ 2 ħ2 d2 =– 2m 2m dx2
ħ d
= - * p^ dx = - * dx i dx
p^ =
ħ d ħ 2½ d sin(nπx/a) ħ 2½ n nπx = = cos i dx i a dx i a a a
=
ħ 2 n a nπx nπx sin cos dx i a a 0 a a
=
ħ 2 n a n sin y cos y dy = 0 i a a n 0
Colby College
n
n
0 sin y cos y dy = [ ½ sin2y | 0 = 0