21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
Experimental Model of Skeletal Muscle Laceration in Rats Investigations of Early Nutrition Effects on Long-Term Health pp 397-401 | Cite as Phablo Abreu (1) (2) Email author (
[email protected]) Gabriel Nasri Marzuca-Nassr (3) Sandro Massao Hirabara (1) (4) Rui Curi (5) (4) 1. Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil 2. Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil 3. Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile 4. Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil 5. Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil Protocol First Online: 30 January 2018 166 Downloads Part of the Methods in Molecular Biology book series (MIMB, volume 1735)
Abstract This is a modified experimental model previously developed in mouse to study skeletal muscle laceration in rats. All experimental procedures are performed during the light period, including anesthesia and surgery. The animals are randomly distributed into control and injured groups prior to the procedure. This experimental model can be used to investigate skeletal muscle laceration repair.
Key words Skeletal muscle injury Repair Muscle regeneration Damage Trauma This is a preview of subscription content, log in to check access
Notes
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
1/7
21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
Acknowledgments FAPESP, CNPq, CAPES, Dean’s Office for Postgraduate Studies, and Research of the Cruzeiro do Sul University supported this study.
References 1.
Menetrey J, Kasemkijwattana C, Fu FH, Moreland MS, Huard J (1999) Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model. Am J Sports Med 27:222–229 CrossRef (https://doi.org/10.1177/03635465990270021801) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10102105) Google Scholar (http://scholar.google.com/scholar_lookup? title=Suturing%20versus%20immobilization%20of%20a%20muscle%20laceratio n.%20A%20morphological%20and%20functional%20study%20in%20a%20mous e%20model&author=J.%20Menetrey&author=C.%20Kasemkijwattana&author=F H.%20Fu&author=MS.%20Moreland&author=J.%20Huard&journal=Am%20J% 20Sports%20Med&volume=27&pages=222-229&publication_year=1999)
2.
Turner NJ, Badylak JS, Weber DJ, Badylak SF (2012) Biologic Scaffold remodeling in a dog model of complex musculoskeletal injury. J Surg Res 176:490–502 CrossRef (https://doi.org/10.1016/j.jss.2011.11.1029) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22341350) Google Scholar (http://scholar.google.com/scholar_lookup? title=Biologic%20Scaffold%20remodeling%20in%20a%20dog%20model%20of% 20complex%20musculoskeletal%20injury&author=NJ.%20Turner&author=JS.% 20Badylak&author=DJ.%20Weber&author=SF.%20Badylak&journal=J%20Surg %20Res&volume=176&pages=490-502&publication_year=2012)
3.
Ghaly A, Marsh DR (2010) Aging-associated oxidative stress modulates the acute inflammatory response in skeletal muscle after contusion injury. Exp Gerontol 45:381–388 CrossRef (https://doi.org/10.1016/j.exger.2010.03.004) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20211238) Google Scholar (http://scholar.google.com/scholar_lookup?title=Agingassociated%20oxidative%20stress%20modulates%20the%20acute%20inflammat ory%20response%20in%20skeletal%20muscle%20after%20contusion%20injury &author=A.%20Ghaly&author=DR.%20Marsh&journal=Exp%20Gerontol&volum e=45&pages=381-388&publication_year=2010)
4.
Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH et al (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82:131–137 CrossRef (https://doi.org/10.1302/0301-620X.82B1.8954) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697329)
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
2/7
21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
Google Scholar (http://scholar.google.com/scholar_lookup? title=Growth%20factors%20improve%20muscle%20healing%20in%20vivo&auth or=J.%20Menetrey&author=C.%20Kasemkijwattana&author=CS.%20Day&autho r=P.%20Bosch&author=M.%20Vogt&author=FH.%20Fu&journal=J%20Bone%2 0Joint%20Surg%20Br&volume=82&pages=131-137&publication_year=2000) 5.
Minamoto VB, Grazziano CR, Salvini TF (1999) Effect of single and periodic contusion on the rat soleus muscle at different stages of regeneration. Anat Rec 254:281–287 CrossRef (https://doi.org/10.1002/(SICI)10970185(19990201)254%3A23.0.CO%3B2-Z) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9972813) Google Scholar (http://scholar.google.com/scholar_lookup? title=Effect%20of%20single%20and%20periodic%20contusion%20on%20the%2 0rat%20soleus%20muscle%20at%20different%20stages%20of%20regeneration& author=VB.%20Minamoto&author=CR.%20Grazziano&author=TF.%20Salvini&j ournal=Anat%20Rec&volume=254&pages=281-287&publication_year=1999)
6.
Negishi S, Li Y, Usas A, Fu FH, Huard J (2005) The effect of relaxin treatment on skeletal muscle injuries. Am J Sports Med 33:1816–1824 CrossRef (https://doi.org/10.1177/0363546505278701) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157846) Google Scholar (http://scholar.google.com/scholar_lookup? title=The%20effect%20of%20relaxin%20treatment%20on%20skeletal%20muscle %20injuries&author=S.%20Negishi&author=Y.%20Li&author=A.%20Usas&auth or=FH.%20Fu&author=J.%20Huard&journal=Am%20J%20Sports%20Med&vol ume=33&pages=1816-1824&publication_year=2005)
7.
Li Y, Huard J (2002) Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol 161:895–907 CrossRef (https://doi.org/10.1016/S0002-9440(10)64250-2) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213718) PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867256) Google Scholar (http://scholar.google.com/scholar_lookup? title=Differentiation%20of%20musclederived%20cells%20into%20myofibroblasts%20in%20injured%20skeletal%20m uscle&author=Y.%20Li&author=J.%20Huard&journal=Am%20J%20Pathol&volu me=161&pages=895-907&publication_year=2002)
8.
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y et al (2004) Transforming growth factor beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019 CrossRef (https://doi.org/10.1016/S0002-9440(10)63188-4) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14982854) PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1614716) Google Scholar (http://scholar.google.com/scholar_lookup? title=Transforming%20growth%20factor%20beta1%20induces%20the%20differe
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
3/7
21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
ntiation%20of%20myogenic%20cells%20into%20fibrotic%20cells%20in%20inju red%20skeletal%20muscle%3A%20a%20key%20event%20in%20muscle%20fibr ogenesis&author=Y.%20Li&author=W.%20Foster&author=BM.%20Deasy&autho r=Y.%20Chan&author=V.%20Prisk&author=Y.%20Tang&journal=Am%20J%20P athol&volume=164&pages=1007-1019&publication_year=2004) 9.
Shen W, Li Y, Tang Y, Cummins J, Huard J (2005) NS-398, a cyclooxygenase-2specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am J Pathol 167:1105–1117 CrossRef (https://doi.org/10.1016/S0002-9440(10)61199-6) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192645) PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1603662) Google Scholar (http://scholar.google.com/scholar_lookup?title=NS398%2C%20a%20cyclooxygenase-2specific%20inhibitor%2C%20delays%20skeletal%20muscle%20healing%20by%2 0decreasing%20regeneration%20and%20promoting%20fibrosis&author=W.%20 Shen&author=Y.%20Li&author=Y.%20Tang&author=J.%20Cummins&author=J. %20Huard&journal=Am%20J%20Pathol&volume=167&pages=11051117&publication_year=2005)
10.
Kaar JL, Li Y, Blair HC, Asche G, Koepsel RR, Huard J et al (2008) Matrix metalloproteinase-1 treatment of muscle fibrosis. Acta Biomater 4:1411–1420 CrossRef (https://doi.org/10.1016/j.actbio.2008.03.010) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18440885) Google Scholar (http://scholar.google.com/scholar_lookup? title=Matrix%20metalloproteinase1%20treatment%20of%20muscle%20fibrosis&author=JL.%20Kaar&author=Y.% 20Li&author=HC.%20Blair&author=G.%20Asche&author=RR.%20Koepsel&auth or=J.%20Huard&journal=Acta%20Biomater&volume=4&pages=14111420&publication_year=2008)
11.
Chan YS, Hsu KY, Kuo CH, Lee SD, Chen SC, Chen WJ et al (2010) Using lowintensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study. Ultrasound Med Biol 36:743–751 CrossRef (https://doi.org/10.1016/j.ultrasmedbio.2010.02.010) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20381949) Google Scholar (http://scholar.google.com/scholar_lookup?title=Using%20lowintensity%20pulsed%20ultrasound%20to%20improve%20muscle%20healing%2 0after%20laceration%20injury%3A%20an%20in%20vitro%20and%20in%20vivo %20study&author=YS.%20Chan&author=KY.%20Hsu&author=CH.%20Kuo&aut hor=SD.%20Lee&author=SC.%20Chen&author=WJ.%20Chen&journal=Ultrasou nd%20Med%20Biol&volume=36&pages=743-751&publication_year=2010)
12.
Park JK, Ki MR, Lee EM, Kim AY, You SY, Han SY et al (2012) Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factorbeta and fibrosis in skeletal muscle injury. Cell Transplant 21:2407–2424 CrossRef (https://doi.org/10.3727/096368912X637055) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22507443)
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
4/7
21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
Google Scholar (http://scholar.google.com/scholar_lookup? title=Losartan%20improves%20adipose%20tissuederived%20stem%20cell%20niche%20by%20inhibiting%20transforming%20gro wth%20factorbeta%20and%20fibrosis%20in%20skeletal%20muscle%20injury&author=JK.%2 0Park&author=MR.%20Ki&author=EM.%20Lee&author=AY.%20Kim&author=S Y.%20You&author=SY.%20Han&journal=Cell%20Transplant&volume=21&pages =2407-2424&publication_year=2012) 13.
Hwang JH, Kim IG, Piao S, Jung AR, Lee JY, Park KD et al (2013) Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials 34:6037–6045 CrossRef (https://doi.org/10.1016/j.biomaterials.2013.04.049) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23688603) Google Scholar (http://scholar.google.com/scholar_lookup? title=Combination%20therapy%20of%20human%20adiposederived%20stem%20cells%20and%20basic%20fibroblast%20growth%20factor% 20hydrogel%20in%20muscle%20regeneration&author=JH.%20Hwang&author= IG.%20Kim&author=S.%20Piao&author=AR.%20Jung&author=JY.%20Lee&aut hor=KD.%20Park&journal=Biomaterials&volume=34&pages=60376045&publication_year=2013)
14.
Foster W, Li Y, Usas A, Somogyi G, Huard J (2003) Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res 21:798–804 CrossRef (https://doi.org/10.1016/S0736-0266(03)00059-7) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12919866) Google Scholar (http://scholar.google.com/scholar_lookup? title=Gamma%20interferon%20as%20an%20antifibrosis%20agent%20in%20skel etal%20muscle&author=W.%20Foster&author=Y.%20Li&author=A.%20Usas&au thor=G.%20Somogyi&author=J.%20Huard&journal=J%20Orthop%20Res&volu me=21&pages=798-804&publication_year=2003)
15.
Hwang JH, Ra YJ, Lee KM, Lee JY, Ghil SH (2006) Therapeutic effect of passive mobilization exercise on improvement of muscle regeneration and prevention of fibrosis after laceration injury of rat. Arch Phys Med Rehabil 87:20–26 CrossRef (https://doi.org/10.1016/j.apmr.2005.08.002) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16401433) Google Scholar (http://scholar.google.com/scholar_lookup? title=Therapeutic%20effect%20of%20passive%20mobilization%20exercise%20on %20improvement%20of%20muscle%20regeneration%20and%20prevention%20 of%20fibrosis%20after%20laceration%20injury%20of%20rat&author=JH.%20H wang&author=YJ.%20Ra&author=KM.%20Lee&author=JY.%20Lee&author=SH. %20Ghil&journal=Arch%20Phys%20Med%20Rehabil&volume=87&pages=2026&publication_year=2006)
16.
Freitas LS, Freitas TP, Silveira PC, Rocha LG, Pinho RA, Streck EL (2007) Effect of therapeutic pulsed ultrasound on parameters of oxidative stress in skeletal muscle after injury. Cell Biol Int 31:482–488 CrossRef (https://doi.org/10.1016/j.cellbi.2006.11.015)
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
5/7
21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17196843) Google Scholar (http://scholar.google.com/scholar_lookup? title=Effect%20of%20therapeutic%20pulsed%20ultrasound%20on%20parameter s%20of%20oxidative%20stress%20in%20skeletal%20muscle%20after%20injury &author=LS.%20Freitas&author=TP.%20Freitas&author=PC.%20Silveira&autho r=LG.%20Rocha&author=RA.%20Pinho&author=EL.%20Streck&journal=Cell%2 0Biol%20Int&volume=31&pages=482-488&publication_year=2007) 17.
Piedade MC, Galhardo MS, Battlehner CN, Ferreira MA, Caldini EG, de Toledo OM (2008) Effect of ultrasound therapy on the repair of gastrocnemius muscle injury in rats. Ultrasonics 48:403–411 Google Scholar (https://scholar.google.com/scholar? q=Piedade%20MC%2C%20Galhardo%20MS%2C%20Battlehner%20CN%2C%20 Ferreira%20MA%2C%20Caldini%20EG%2C%C2%A0de%20Toledo%20OM%20 %282008%29%20Effect%20of%20ultrasound%20therapy%20on%20the%20rep air%20of%20gastrocnemius%20muscle%20injury%20in%20rats.%20Ultrasonics %2048%3A403%E2%80%93411)
18.
Abreu P, Pinheiro CH, Vitzel KF, Vasconcelos DA, Torres RP, Fortes MS et al (2016) Contractile function recovery in severely injured gastrocnemius muscle of rats treated with either oleic or linoleic acid. Exp Physiol 101:1392–1405 CrossRef (https://doi.org/10.1113/EP085899) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27579497) Google Scholar (http://scholar.google.com/scholar_lookup? title=Contractile%20function%20recovery%20in%20severely%20injured%20gast rocnemius%20muscle%20of%20rats%20treated%20with%20either%20oleic%20 or%20linoleic%20acid&author=P.%20Abreu&author=CH.%20Pinheiro&author= KF.%20Vitzel&author=DA.%20Vasconcelos&author=RP.%20Torres&author=MS. %20Fortes&journal=Exp%20Physiol&volume=101&pages=13921405&publication_year=2016)
19.
Souza JD, Gottfried C (2013) Muscle injury: review of experimental models. J Electromyogr Kinesiol 23:1253–1260 CrossRef (https://doi.org/10.1016/j.jelekin.2013.07.009) PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24011855) Google Scholar (http://scholar.google.com/scholar_lookup? title=Muscle%20injury%3A%20review%20of%20experimental%20models&autho r=JD.%20Souza&author=C.%20Gottfried&journal=J%20Electromyogr%20Kinesi ol&volume=23&pages=1253-1260&publication_year=2013)
20.
Abreu P (2014) Effect of linoleic and oleic acids on regeneration of gastrocnemius muscle after laceration in rats. Ph.D. thesis. Instituto de Ciências Biomédicas, University of São Paulo, Brazil Google Scholar (https://scholar.google.com/scholar? q=Abreu%20P%20%282014%29%20Effect%20of%20linoleic%20and%20oleic%2 0acids%20on%20regeneration%20of%20gastrocnemius%20muscle%20after%20l aceration%20in%20rats.%20Ph.D.%20thesis.%20Instituto%20de%20Ci%C3%AA ncias%20Biom%C3%A9dicas%2C%20University%20of%20S%C3%A3o%20Paulo %2C%20Brazil)
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
6/7
21/3/2018
Experimental Model of Skeletal Muscle Laceration in Rats | SpringerLink
Copyright information © Springer Science+Business Media, LLC 2018
About this protocol Cite this protocol as: Abreu P., Marzuca-Nassr G.N., Hirabara S.M., Curi R. (2018) Experimental Model of Skeletal Muscle Laceration in Rats. In: Guest P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY DOI (Digital Object Identifier) https://doi.org/10.1007/978-1-4939-7614-0_27 Publisher Name Humana Press, New York, NY Print ISBN 978-1-4939-7613-3 Online ISBN 978-1-4939-7614-0 eBook Packages Springer Protocols About this book Reprints and Permissions
Personalised recommendations
© 2017 Springer International Publishing AG. Part of Springer Nature. Not logged in Maastricht University UL Randwyck – Media (1600277806) - Universiteit Maastricht UB Binnenstad Verw - UKB (2000147549) - Universiteit Maastricht (4500103700) - Maastricht University Tav Finance - Accounts payble (4500547139) - Consortium UKB Netherlands Landolt Börnstein (3000092004) - UKB Consortium p/a SURFmarket B.V. (3000174899) - SURFmarket B.V. Springer Compact (3001974408) 137.120.158.131
https://link.springer.com/protocol/10.1007%2F978-1-4939-7614-0_27
7/7