Explicit Formulas involving q-Euler Numbers and Polynomials

5 downloads 312116 Views 133KB Size Report
Apr 4, 2012 - SERKAN ARACI, MEHMET ACIKGOZ, AND JONG JIN SEO. Abstract. In this paper, we deal with q-Euler numbers and q-Bernoulli num- bers.
arXiv:1203.6399v2 [math.NT] 4 Apr 2012

EXPLICIT FORMULAS INVOLVING q-EULER NUMBERS AND POLYNOMIALS SERKAN ARACI, MEHMET ACIKGOZ, AND JONG JIN SEO Abstract. In this paper, we deal with q-Euler numbers and q-Bernoulli numbers. We derive some interesting relations for q-Euler numbers and polynomials by using their generating function and derivative operator. Also, we show between the q-Euler numbers and q-Bernoulli numbers via the p-adic q-integral in the p-adic integer ring.

1. PRELIMINARIES Imagine that p be a fixed odd prime number. Throughout this paper we use the following notations, by Zp denotes the ring of p-adic rational integers, Q denotes the field of rational numbers, Qp denotes the field of p-adic rational numbers, and Cp denotes the completion of algebraic closure of Qp . Let N be the set of natural numbers and N∗ = N ∪ {0}. The p-adic absolute value is defined by 1 |p|p = . p In this paper we assume |q − 1|p < 1 as an indeterminate. [x]q is a q-extension of x which is defined by [x]q =

1 − qx , 1−q

we note that limq→1 [x]q = x (see[1-12]). We say that f is a uniformly differentiable function at a point a ∈ Zp , if the difference quotient f (x) − f (y) Ff (x, y) = x−y has a limit f´(a) as (x, y) → (a, a) and denote this by f ∈ U D (Zp ). Let U D (Zp ) be the set of uniformly differentiable function on Zp . For f ∈ U D (Zp ), let us start with the expressions X X  1 f (ξ) µq ξ + pN Zp , f (ξ) q ξ = N [p ]q N N 0≤ξ 0. Γ (m + n)

=

As a result, we obtain the following theorem Theorem 1. For n ∈ N, we have max{k,m} 

X

q

j=1

=

q

  e   Ek+m−j+1,q k j m + (−1) k+m−j+1 j j

m+1

(−1) (k + m + 1)

k+m k

 − [2]q

ek+m+1,q E . k+m+1

Substituting m = k + 1 into Theorem 1, we readily get   e k+1 X  k  E2k+2−j,q j k+1 q + (−1) j j 2k + 2 − j j=1 =

q

k e2k+2,q (−1) E . − [2]  q 2k + 2 (2k + 2) 2k+1 k

By (2.1), it follows that max{k,m}

X j=0

     k j m ek+m−j−1,q (x) (k + m − j) q + (−1) E j j m−1

= [2]q xk−1 (x − 1)

((k + m) x − k) .

Let m = k in (2.1), we see that   k    X k j k e2k−j,q (x) = [2] xk (x − 1)k q + (−1) E q j j j=0

Last from equality, we discover the following (2.12) [ k2 ]    [ k2 ]  X X k e k e2k−2j−1,q (x) = [2] xk (x − 1)k . [2]q E2k−2j,q (x) + (q − 1) E q 2j 2j + 1 j=0 j=0

KIM’S q-EULER NUMBERS AND POLYNOMIALS

5

Here [.] is Gauss’ symbol. Then, taking integral from 0 to 1 both sides of last equality, we get

− [2]q−1 [2]q

[ k2 ]   e X k E2k−2j+1,q

2j 2k − 2j + 1

j=0

k

+ [2]q−1 (1 − q)

[ k2 ]  X j=0

e k E2k−2j,q 2j + 1 2k − 2j

= [2]q (−1) B (k + 1, k + 1) k

=

[2]q (−1) (2k + 1)

2k k

.

Consequently, we derive the following theorem Theorem 2. The following identity

[2]q

(2.13)

[ k2 ]   e X k E2k−2j+1,q

2j 2k − 2j + 1

j=0

+ (q − 1)

j=0

k+1

q (−1) (2k + 1)

=

2k k

is true.

[ k2 ]  X

e k E2k−2j,q 2j + 1 2k − 2j

.

In view of (2.1) and (2.12), we discover the following applications:

(2.14)=

k+1  X j=0

=

=

    k j k+1 e2k+1−j,q (x) q + (−1) E j j

e2k+1,q (x) + [2]q E

k+1      [X 2 ]  k k k e2k+1−2j,q (x) q + + E 2j 2j 2j − 1 j=1

k+1 [X      2 ]  k k k e2k−2j,q (x) + q − − E 2j + 1 2j + 1 2j j=0   [ k2 ]   [ k2 ]   X X k e q−1 k  e2k−2j+1 (x) − E2k−2j,q (x) + E  2j 2j + 1 1 + q j=0 j=0

+ [2]q

[ k2 ]   X k j=0

+ (q − 1)

2j

[ k2 ]  X j=0

e2k+1−2j,q (x) + E

[ k2 ]  X j=1

 k e2k+1−2j,q (x) E 2j − 1

[ k2 ]    k q−1 X k e e2k−2j+1 (x) E2k−2j,q (x) + E 2j + 1 1 + q j=0 2j + 1

By expressions (2.12) and (2.14), we have the following Theorem

6

S. ARACI, M. ACIKGOZ, AND J J. SEO

Theorem 3. For k ∈ N, we have  [ k2 ]  [ k2 ]   X X k e k e2k+1−2j,q (x) E2k+1−2j,q (x) + E [2]q 2j 2j − 1 j=0 j=1

(2.15)

+ (q − 1)

[ k2 ]  X

k 2j + 1

j=0

=

k

k

x (x − 1)



 e2k−2j,q (x) + E

[2]q x − q



 1 e E2k−2j+1 (x) 1+q

3. p-adic integral on Zp associated with Kim’s q-Euler polynomials In this section, we consider Kim’s q-Euler polynomials by means of p-adic qintegral on Zp . Now we start with the following assertion. Let m, k ∈ N, Then by (2.8), Z m xk (x − 1) dµ−q (x) I1 = [2]q Zp

= [2]q

m   X m

l

l=0

= [2]q

m   X m

l

l=0

(−1)m−l

Z

xl+k dµ−q (x)

Zp

m−l

(−1)

el+k,q E

On the other hand, right hand side of (2.8),   k+m−j Z max{k,m}    X k + m − j  X k j m e q + (−1) I2 = Ek+m−j−l,q xl dµ−q (x) j j l Z p j=0 l=0

=

  k+m−j   X k + m − j  k j m el,q ek+m−j−l,q E q + (−1) E j j l

max{k,m} 

X j=0

l=0

Equating I1 and I2 , we get the following theorem

Theorem 4. For m, k ∈ N, we have   k+m−j max{k,m}    X k + m − j  X k j m el,q ek+m−j−l,q E q + (−1) E j j l j=0 l=0 m   X m m−l e = [2]q (−1) El+k,q . l l=0

Let us take fermionic p-adic q-inetgral on Zp left hand side of (2.15), we get Z   k xk (x − 1) [2]q x − q dµ−q (x) I3 = Zp

=

[2]q

k   X k l=0

=

[2]q

l

k   X k l=0

l

k−l

(−1)

Z

k+l+1

x

dµ−q (x) − q

Zp

k−l

(−1)

ek+l+1,q − q E

k   X k l=0

k   X k l=0

l

l

k−l

(−1)

k−l

(−1)

ek+l,q E

Z

Zp

xk+l dµ−q (x)

7

KIM’S q-EULER NUMBERS AND POLYNOMIALS

In other word, we consider right hand side of (2.15) as follows: I4

[ k2 ]   2k−2j+1 Z X 2k − 2j + 1 X k e2k+1−2j−l,q xl dµ−q (x) E = [2]q 2j l Z p j=0 l=0

[ ] X k 2

+

j=1

[ ] X k 2

+

j=0

k 2j − 1 k 2j + 1

 2k−2j+1 X  l=0

"

 Z 2k − 2j + 1 e E2k+1−2j−l,q xl dµ−q (x) l Zp

# R P2k−2j 2k−2j  l e2k−2j−l,q (q − 1) j=0 E l Zp x dµ−q (x) R P2k−2j+1 2k−2j+1 e2k−2j−l+1 xl dµ−q (x) E + q−1 1+q

l=0

l

Zp

[ ]   2k−2j+1 X 2k − 2j + 1 X k el,q e2k+1−2j−l,q E = [2]q E 2j l j=0 k 2

l=0

+

[ k2 ]  X j=1

+

[ k2 ]  X j=0

k 2j − 1 k 2j + 1

 2k−2j+1 X  l=0

"

 2k − 2j + 1 e el,q E2k+1−2j−l,q E l

# P2k−2j 2k−2j  e el,q (q − 1) j=0 E2k−2j−l,q E l  q−1 P2k−2j+1 2k−2j+1 e el,q + 1+q E2k−2j−l+1 E l=0 l

Equating I3 and I4 , we get the following theorem

Theorem 5. For k ∈ N, we have k   i h X k k−l ek+l+1,q − q E ek+l,q [2]q E (−1) l l=0

=

[ k2 ]   2k−2j+1 X 2k − 2j + 1 X k el,q e2k+1−2j−l,q E E [2]q 2j l j=0 l=0

+

[ k2 ]  X j=1

l=0

[ ] X k 2

+

 2k−2j+1 X 2k − 2j + 1 k el,q e2k+1−2j−l,q E E 2j − 1 l

j=0

k 2j + 1

(

) P2k−2j 2k−2j  e el,q (q − 1) j=0 E2k−2j−l,q E l P2k−2j+1 2k−2j+1 el,q e2k−2j−l+1 E + q−1 E l=0 1+q l

Now, we consider (2.8) and (2.1) by means of q-Volkenborn integral. Then, by (2.8), we see Z m xk (x − 1) dµq (x) [2]q Zp

=

[2]q

m   X m l=0

=

[2]q

l

m   X m l=0

l

m−l

(−1)

Z

xl+k dµq (x)

Zp

m−l

(−1)

el+k,q B

8

S. ARACI, M. ACIKGOZ, AND J J. SEO

On the other hand,   k+m−j Z max{k,m}    X k + m − j  X k j m e q + (−1) xl dµq (x) Ek+m−j−l,q j j l Z p j=0 l=0

max{k,m} 

X

=

j=0

  k+m−j   X k + m − j  k j m el,q ek+m−j−l,q B q + (−1) E j j l l=0

Therefore, we get the following theorem Theorem 6. For m, k ∈ N, we have m   X m m−l e [2]q (−1) Bl+k,q l l=0

=

max{k,m} 

X

q

j=0

  k+m−j   X k + m − j  k j m el,q ek+m−j−l,q B + (−1) E j j l l=0

By using fermionic p-adic q-integral on Zp left hand side of (2.15), we get Z k xk (x − 1) ([2] x − q) dµq (x) I5 = [2]q Zp

=

=

k  X

 Z Z k   X k k k−l k−l k+l+1 [2]q (−1) x dµq (x) − q (−1) xk+l dµq (x) l l Z Z p p l=0 l=0 k   k   X X k k ek+l+1,q − q ek+l,q [2]q (−1)k−l B (−1)k−l B l l l=0

l=0

Also, we consider right hand side of (2.15) as follows: I6

= [2]q

[ k2 ]   2k−2j+1 X 2k − 2j + 1 X k j=0

+

[ k2 ]  X j=1

+

[ k2 ]  X j=0

= [2]q

j=0

[ ] X j=1

[ ] X k 2

+

k 2j − 1 k 2j + 1

l

l=0

 2k−2j+1 X  l=0

"

j=0

2j

k 2j − 1 k 2j + 1

xl dµq (x)

Zp

# R P2k−2j 2k−2j  e (q − 1) j=0 E2k−2j−l,q Zp xl dµq (x) l R  q−1 P2k−2j+1 2k−2j+1 e E2k−2j−l+1 Zp xl dµq (x) + 1+q l=0 l l

l=0

 2k−2j+1 X  l=0

"

Z

 Z 2k − 2j + 1 e xl dµq (x) E2k+1−2j−l,q l Zp

[ k2 ]   2k−2j+1 X 2k − 2j + 1 X k

k 2

+

2j

e2k+1−2j−l,q E

el,q e2k+1−2j−l,q B E

 2k − 2j + 1 e el,q E2k+1−2j−l,q B l

# P2k−2j 2k−2j  e el,q (q − 1) j=0 B E 2k−2j−l,q l  P2k−2j+1 2k−2j+1 el,q e2k−2j−l+1 B + q−1 E 1+q

l=0

l

Equating I5 and I6 , we get the following Corollary

KIM’S q-EULER NUMBERS AND POLYNOMIALS

9

Corollary 1. For k ∈ N, we get k   i h X k k−l ek+l+1,q − q B ek+l,q [2]q B (−1) l l=0

= [2]q

[ k2 ]   2k−2j+1 X 2k − 2j + 1 X k 2j

j=0

+

[ k2 ]  X j=1

[ ] X k 2

+

k 2j − 1

j=0

k 2j + 1

l

l=0

el,q e2k+1−2j−l,q B E

 2k−2j+1 X 2k − 2j + 1 el,q e2k+1−2j−l,q B E l l=0

(

) P2k−2j 2k−2j  e el,q (q − 1) j=0 B E 2k−2j−l,q l  P2k−2j+1 2k−2j+1 el,q e2k−2j−l+1 B + q−1 E l=0 1+q l References

[1] Araci, S., Erdal, D., and Seo, J-J., A study on the fermionic p-adic q-integral representation on Zp associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis, Volume 2011, Article ID 649248, 10 pages. [2] T. Kim, B. Lee, S. H. Lee, S-H. Rim, Identities for the Bernoulli and Euler numbers and polynomials, Accepted in Ars Combinatoria. [3] Kim, D., Kim, T., Lee, S-H., Dolgy, D-V., and Rim, S-H., Some new identities on the Bernoulli numbers and polynomials, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 856132, 11 pages. [4] Kim, T., Choi, J., and Kim, Y-H., Some identities on the q-Bernoulli numbers and polynomials with weight 0, Abstract And Applied Analysis, Volume 2011, Article ID 361484, 8 pages. [5] Kim, T., On a q-analogue of the p-adic log gamma functions related integrals, J. Number Theory, 76 (1999) no. 2, 320-329. [6] Kim, T., and Choi, J., On the q-Euler numbers and polynomials with weight 0, Abstract and Applied Analysis, Volume 2012, ID 795304, 7 pages, doi:10.1155/2012/795304. [7] Kim, T., On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465. [8] Kim, T., On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics 21(2011), no.2, p. 207-215, http://arxiv.org/abs/1011.5305. [9] Kim, T., q-Volkenborn integration, Russ. J. Math. phys. 9(2002) , 288-299. [10] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15–27. [11] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218–225. [12] Kim, T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp , Russ. J. Math. Phys., 16 (2009), no.4,484–491. University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY E-mail address: [email protected] University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY E-mail address: [email protected] Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea E-mail address: [email protected] (Corresponding author)

Suggest Documents