Document not found! Please try again

Explicitly correlated PNO-MP2 and PNO-CCSD and its application to

0 downloads 0 Views 2MB Size Report
34 Pentane-Pentane. -5.947. -2.585. -2.583. 0.015. 35 Neopentane-Pentane. -4.158. -1.846. -1.843. 0.063. 36 Neopentane-Neopentane. -2.869. -1.195. -1.194.
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supporting Information to: Explicitly correlated PNO-MP2 and PNO-CCSD and its application to the S66 set and large molecular systems Gunnar Schmitz1 , Christof H¨attig1 and David P. Tew2 1

Lehrstuhl f¨ ur Theoretische Chemie, Ruhr-Universit¨at Bochum, Universit¨atsstraße 150, D-44801 Bochum, Germany 2 Center for Computational Chemistry, University of Bristol, Bristol BS8 1TS

1

supplementary material

1.1

Integral screening for short range operators

For the integral screening we follow the work of Adler et al. [?] and implemented their introduced bounds. Additional we derived simpler and cheaper estimates by using only the most diffuse functions1 and setting the corresponding contraction coefficients Cµ etc. to one. In this way many quantities can be precomputed and with the additional approximation that the distance x of the Gaussians is set to the shortest distance x0 between the center of the auxiliary function and the line connecting the atoms at which, the two Gaussians are located (see Figure 1), we get always an upper bound to their estimate. To denote the we used the most diffuse functions we use a prime for the corresponding exponents α and β and basis functions µ, ν. The bounds are given as: atom a; basis func. i

x atom k; aux. func.

rij

y rik

~rij · ~rik ||rij || · ||rjk || √ x0 = sin α·||rjk || = 1 − cos2 α||rjk || cos α =

a

y 0 = cos α · ||rjk || =

~rij · ~rik ||rij ||

atom b; basis func. j

Figure 1: Demonstration how the distance x0 of the auxiliary function to the basis functions is calculated. 1

In our derivation we assumed normalized functions, otherwise the normalization hast to be incorporated

S1

f12 :

ln

XX µν

CQ Cµ Cν Kµν (Sµν | f12 |Q )

Q

≤ − ln γ + 3 ln π aµ0 aν 0 2 3 r − ln (aµ0 ν 0 β 0 ) − γx0 + γ 2 /(4ξ 0 ) − 2 aµ0 ν 0 ab

f12 g12 :

ln

XX µν

CQ Cµ Cν Kµν (Sµν | f12 g12 |Q )

Q

≤ − ln γx0 + 3 ln π aµ0 aν 0 2 3 − ln (aµ0 ν 0 β 0 ) − γx0 + γ 2 /(4ξ 0 ) − r 2 aµ0 ν 0 ab 2 : f12

ln

XX µν

CQ Cµ Cν Kµν Sµν | f12 2 |Q



Q

≤ −2 ln γ + 3 ln π 3 aµ0 aν 0 2 − ln (aµ0 ν 0 β 0 ) − 2γx0 + γ 2 /ξ 0 − r 2 aµ0 ν 0 ab 2 2 f12 r12 :

ln

XX µν

CQ Cµ Cν Kµν Sµν | f12 2 |Q



Q

  2 − 3 ln π ≤ ln 1 + γx aµ 0 aν 0 2 3 r + ln (aµ0 ν 0 β 0 ) − γx0 + γ 2 / (4ξ 0 ) − 2 aµ0 ν 0 ab As usual Kµν is the preexponential factor of a Gaussian product center, αµν is the β sum of the exponents αµ αν and ξ is defined as ξ = ααµνµν+β . Moreover rab is the distance of two Gaussians centered at Atom A and B and Sµν an overlap. In our algorithm first the cheap estimate is used. If the matrix element is smaller than the threshold it is discarded, but if it is in tolerance range of +2 on a logarithmic scale it is checked again with the estimate involving the contracted GTOs. For large systems we expect a benefit of this approach. Nevertheless also the more evolved estimate is relatively cheap to compute.

1.2

CCSD/CBS limits for the S66 set

S2

Dimer 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Water-Water Water-MeOH Water-MeNH2 Water-Peptide MeOH-MeOH MeOH-MeNH2 MeOH-Peptide MeOH-Water MeNH2-MeOH MeNH2-MeNH2 MeNH2-Peptide MeNH2-Water Peptide-MeOH Peptide-MeNH2 Peptide-Peptide Peptide-Water Uracil-Uracil BP Water-Pyridine MeOH-Pyridine AcOH-AcOH AcNH2-AcNH2 AcOH-Uracil AcNH2-Uracil Benzene-Benzene π-π Pyridine-Pyridine π-π Uracil-Uracil π-π Benzene-Pyridine π-π Benzene-Uracil π-π Pyridine-Uracil π-π Benzene-Ethene Uracil-Ethene Uracil-Ethyne Pyridine-Ethene Pentane-Pentane Neopentane-Pentane Neopentane-Neopentane Cyclopentane-Neopentane Cyclopentane-Cyclopentane Benzene-Cyclopentane Benzene-Neopentane Uracil-Pentane Uracil-Cyclopentane Uracil-Neopentane Ethene-Pentane Ethyne-Pentane Peptide-Pentane Benzene-Benzene TS Pyridine-Pyridine TS Benzene-Pyridine TS Benzene-Ethyne CH-π Ethyne-Ethyne TS Benzene-AcOH OH-π Benzene-AcNH2 NH-π Benzene-Water OH-π Benzene-MeOH OH-π

CCSD Elim (kcal/mol) -1.062 -1.590 -1.929 -1.938 -1.850 -2.735 -2.460 -1.258 -1.796 -2.726 -3.243 -2.323 -2.546 -3.311 -3.270 -1.425 -3.368 -2.009 -2.583 -2.777 -3.237 -2.971 -3.068 -5.362 -5.712 -7.950 -5.581 -7.199 -6.971 -3.448 -3.804 -3.237 -3.605 -5.947 -4.158 -2.869 -3.906 -4.614 -5.223 -4.082 -6.708 -5.911 -4.670 -3.175 -2.634 -5.798 -3.476 -3.533 -3.433 -2.152 -0.811 -3.235 -2.828 -2.027 -3.496

HF CCSD EaQZ + Elim (kcal/mol) -4.728 -5.306 -6.542 -7.723 -5.383 -6.985 -7.687 -4.752 -2.705 -3.639 -4.727 -6.846 -5.690 -6.774 -7.881 -4.840 -16.220 -6.446 -6.829 -18.372 -15.547 -18.681 -18.378 -1.403 -2.382 -7.571 -1.964 -3.759 -4.901 -0.585 -2.408 -2.861 -0.978 -2.585 -1.846 -1.195 -1.600 -2.033 -2.361 -1.952 -3.264 -2.746 -2.604 -1.360 -1.171 -3.003 -2.029 -2.667 -2.490 -2.377 -1.328 -3.916 -3.693 -2.789 -3.356

S3

HF,CABS CCSD EaTZ + Elim (kcal/mol) -4.718 -5.294 -6.535 -7.711 -5.372 -6.980 -7.677 -4.743 -2.699 -3.635 -4.720 -6.839 -5.682 -6.771 -7.872 -4.834 -16.200 -6.441 -6.824 -18.351 -15.528 -18.660 -18.358 -1.401 -2.379 -7.563 -1.962 -3.754 -4.895 -0.584 -2.406 -2.859 -0.976 -2.583 -1.843 -1.194 -1.598 -2.031 -2.359 -1.950 -3.262 -2.744 -2.603 -1.359 -1.170 -3.000 -2.028 -2.666 -2.489 -2.378 -1.329 -3.914 -3.692 -2.786 -3.354

∆[F12],(2)F12 (kcal/mol) -0.019 0.010 -0.084 -0.013 -0.097 -0.045 -0.059 -0.073 -0.046 -0.013 -0.047 -0.110 -0.031 -0.082 -0.073 0.021 0.072 -0.042 -0.040 0.075 0.019 0.017 0.053 -0.048 -0.013 -0.244 -0.056 -0.087 -0.090 0.001 -0.072 -0.119 -0.048 0.015 0.063 -0.019 0.010 0.002 -0.035 0.028 -0.083 -0.012 -0.047 0.005 0.008 -0.039 -0.009 -0.084 -0.075 -0.155 0.061 -0.059 -0.006 -0.083 -0.039

56 57 58 59 60 61 62 63 64 65 66

Benzene-MeNH2 NH-π Benzene-Peptide NH-π Pyridine-Pyridine CH-N Ethyne-Water CH-O Ethyne-AcOH OH π Pentane-AcOH Pentane-AcNH2 Benzene-AcOH Peptide-Ethene Pyridine-Ethyne MeNH2-Pyridine

-3.510 -4.686 -2.444 -0.553 -1.813 -4.107 -4.657 -4.070 -2.884 -1.199 -3.619

-2.422 -4.168 -3.608 -2.759 -4.420 -2.021 -2.502 -2.810 -2.334 -3.727 -3.153

-2.420 -4.166 -3.605 -2.757 -4.422 -2.020 -2.500 -2.807 -2.331 -3.727 -3.149

-0.084 -0.097 -0.099 -0.064 -0.026 0.008 0.009 -0.021 -0.042 -0.049 -0.080

Table 2: Dimers in the S66 set with an absolute deviation to the PNO-CCSD[F12]/aTZ results larger 0.2 kcal/mol Dimer 24 Benzene-Benzene π-π 25 Pyridine-Pyridine π-π 26 Uracil-Uracil π-π 27 Benzene-Pyridine π-π 28 Benzene-Uracil π-π 29 Pyridine-Uracil π-π 30 Benzene-Ethene 31 Uracil-Ethene 32 Uracil-Ethyne 33 Pyridine-Ethene 34 Pentane-Pentane 38 Cyclopentane-Cyclopentane 39 Benzene-Cyclopentane 40 Benzene-Neopentane 41 Uracil-Pentane 42 Uracil-Cyclopentane 43 Uracil-Neopentane 46 Peptide-Pentane 47 Benzene-Benzene TS 48 Pyridine-Pyridine TS 49 Benzene-Pyridine TS 52 Benzene-AcOH OH π 55 Benzene-MeOH OH π 56 Benzene-MeNH2 NH π 57 Benzene-Peptide NH π 61 Pentane-AcOH 62 Pentane-AcNH2 63 Benzene-AcOH 66 MeNH2 -Pyridine

S4

|Lit.-PNO-CCSD[F12]/aTZ| 0.357 0.386 0.545 0.371 0.519 0.499 0.241 0.272 0.258 0.255 0.281 0.224 0.306 0.231 0.388 0.328 0.262 0.315 0.209 0.218 0.211 0.204 0.246 0.227 0.289 0.219 0.247 0.286 0.207

Suggest Documents