Extended Laguerre Polynomials Associated with Hermite, Bernoulli

0 downloads 0 Views 2MB Size Report
Aug 9, 2012 - To derive inverse formula of 1.2 , let take one p x xn ∈ Pn. Then, by Proposition 2.1, one gets. Ck. 1. Γα k 1. ∫∞. 0. ( dk dxk e. −xxk α. ) xndx.
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 957350, 15 pages doi:10.1155/2012/957350

Research Article Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Numbers and Polynomials Taekyun Kim1 and Dae San Kim2 1 2

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

Correspondence should be addressed to Dae San Kim, [email protected] Received 14 June 2012; Accepted 9 August 2012 Academic Editor: Pekka Koskela Copyright q 2012 T. Kim and D. S. Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let Pn  {px ∈ Rx | deg px ≤ n} be an inner product space with the inner product px, ∞ qx  0 xα e−x pxqxdx, where px, qx ∈ Pn and α ∈ R with α > −1. In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for Pn . From those properties, we derive some interesting relations and identities of the extended Laguerre polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials.

1. Introduction/Preliminaries For α ∈ R with α > −1, the extended Laguerre polynomials are defined by the generating function as follows: exp−xt/1 − t 1 − tα1



∞ 

Lαn xtn ,

1.1

n0

see 1–6. From 1.1, we can derive the following: Lαn x 

n  −1r  nα n−r  r0

see 1–9.

r!

xr ,

1.2

2

Abstract and Applied Analysis As is well known, Rodrigues’ formula for Lαn x is given by Lαn x

  1 −α x dn −x nα e x ,  x e n! dxn

1.3

see 1–6, 8, 9. From 1.3, we note that ∞ 0

xα e−x Lαm xLαn xdx 

1 Γα  n  1δm,n , n!

α > −1,

1.4

where δm,n is the Kronecker symbol. From 1.1, 1.2, and 1.3, we can derive the following identities: n  1Lαn1 x  x − α − 2n − 1Lαn x  n  αLαn−1 x  0, d α d α Ln x − L x  Lαn−1 x  0, dx dx n−1 x

n ∈ N,

for n ≥ 1,

d α L x  nLαn x − n  αLαn−1 x  0, dx n

n ≥ 1,

1.5 1.6 1.7

and Lαn x is a solution of xy  α  1 − xy  xy  0. The derivatives of general Laguerre polynomials are given by d α L x  −Lα1 n−1 x, dx n d  −x α  e Ln x  −e−x Lα1 n x, dx

d α α x Ln x  n  αxα−1 Lα−1 n x, dx d  α −x α  x e Ln x  n  1xα−1 e−x Lα−1 n1 x. dx

1.8

The nth Bernoulli polynomials, Bn x, are defined by the generating function to be

et

∞  tn t ext  eBxt  Bn x , n! −1 n0

1.9

see 10–17, with the usual convention about replacing Bn x by Bn x. In the special case, x  0, Bn 0  Bn are called the nth Bernoulli numbers. It is well known that the nth Euler polynomials are also defined by the generating function to be ∞  tn 2 xt Ext , e  e  E x n n! et  1 n0

see 18–22, with the usual convention about replacing En x by En x.

1.10

Abstract and Applied Analysis

3

The Hermite polynomials are given by

Hn x  H  2xn 

n    n l0

l

2l xl Hn−l ,

1.11

see 23, 24, with the usual convention about replacing H n by Hn . In the special case, x  0, Hn 0  Hn are called the nth Hermite numbers. From 1.11, we note that d Hn x  2nH  2xn−1  2nHn−1 x, dx

1.12

see 23, 24, and Hn x is a solution of Hermite differential equation which is given by y − 2xy  ny  0,

1.13

see 1–6, 23–32. Throughout this paper we assume that α ∈ R with α > −1. Let Pn  {px ∈ Rx| deg px  ∞ α −x ≤ n}. Then Pn is an inner product space with the inner product px, qx  x e pxqxdx, where px, qx ∈ Pn . By 1.4 the set of the extended Laguerre 0 polynomials {Lα0 x, Lα1 x, . . . , Lαn x} is an orthogonal basis for Pn . In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for Pn . From those properties, we derive some new and interesting relations and identities of the extended Laguerre polynomials associated with Hermite, Bernoulli and Euler numbers and polynomials.

2. On the Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Polynomials For px ∈ Pn , px is given by

px 

n 

Ck Lαk x,

for uniquely determined real numbers Ck .

2.1

k0

From 1.3, 1.4, and 2.1, we note that

px, Lαk x







Ck Lαk x, Lαk x



 Ck

∞ 0

xα e−x Lαk xLαk xdx  Ck

Γα  k  1 . k!

2.2

4

Abstract and Applied Analysis

Thus, by 2.2, we get

k! px, Lαk x Γα  k  1  1 ∞ dk kα −x k! pxdx  x e Γα  k  1 k! 0 dxk  ∞ k 1 d kα −x  pxdx. x e Γα  k  1 0 dxk

Ck 

2.3

Therefore, by 2.1 and 2.3, we obtain the following proposition. Proposition 2.1. For px ∈ Pn , let px 

n 

Ck Lαk x,

α > −1.

2.4

k0

Then one has the following: 1 Ck  Γα  k  1

 ∞ 0

dk kα −x pxdx. x e dxk

2.5

To derive inverse formula of 1.2, let take one px  xn ∈ Pn . Then, by Proposition 2.1, one gets dk −x kα xn dx e x k dx 0 ∞ k nn − 1 · · · n − k  1 e−x xαn dx  −1 Γα  k  1 0

1 Ck  Γα  k  1

 −1k 

 ∞

nn − 1 · · · n − k  1 Γα  n  1 Γα  k  1

2.6

−1k n!α  n · · · αΓα α  k · · · αΓαn − k!

  α  n · · · α  k  1 αn k  −1 n! .  −1 n! n−k n − k! k

Therefore, by 2.6, we obtain the following corollary. Corollary 2.2 Inverse formula of Lαn x. For n ∈ Z , one has xn  n!

 n   αn k0

n−k

−1k Lαk x.

2.7

Abstract and Applied Analysis

5

Let one takes Bernoulli polynomials of degree n with px  Bn x ∈ Pn . Then Bn x can be written as Bn x 

n 

Ck Lαk x,

α ∈ R with α > −1.

2.8

k0

From Proposition 2.1, one has 1 Ck  Γα  k  1

 ∞ 0

dk −x kα Bn xdx e x dxk

−1k nn − 1 · · · n − k  1  Γα  k  1

∞

e−x xkα Bn−k xdx

0

∞  n−k  −1k nn − 1 · · · n − k  1  n−k  e−x xkαl dx Bn−k−l l Γα  k  1 0 l0 

2.9

 n−k  −1k nn − 1 · · · n − k  1  n−k Bn−k−l Γα  k  l  1. l Γα  k  1 l0

By the fundamental property of gamma function, one gets  αkl    Γα  k  l  1 α  l  k · · · α  k  1Γα  k  1n − k! n−k l  .  l Γα  k  1n − k! Γα  k  1n − k!n − k − l!l! n − k − l! 2.10 Therefore, by 2.8, 2.9, and 2.10, we obtain the following theorem. Theorem 2.3. For n ∈ Z , α ∈ R with α > −1, one has

Bn x  n!

n−k n   k0 l0

 −1k

 Bn−k−l αkl Lα x. l n − k − l! k

2.11

As is known, relationships between Hermite and Laguerre polynomials are given by

 x2 , H2m x  −1m 22m m!L−1/2 m

2.12

 x2 , H2m1 x  −1m 22m1 m!L−1/2 m

2.13

see 1–6. In the special case α  −1/2, by 2.12 and 2.13, we obtain the following corollary.

6

Abstract and Applied Analysis

Corollary 2.4. For n ∈ Z , one has ⎞ ⎛ 1 n−k n 

  H x  k  l − 2k ⎠ Bn−k−l . ⎝ 2 Bn x2  n! 2k n − k − l! l k0 l0 2 k!

2.14

By the same method as Theorem 2.3, one gets En x  n!

  En−k−l αkl Lα x, −1 l − k − l! k n l0

n  n−k  k0

k

2.15

where En x are the nth Euler polynomials. In the special case, x  0, En 0  En are called the nth Euler numbers. Let one considers the nth Hermite polynomials with px  Hn x ∈ Pn . Then Hn x can be written as Hn x 

n 

Ck Lαk x,

α ∈ R with α > −1.

2.16

k0

From Proposition 2.1, one notes that 1 Ck  Γα  k  1 −2n  Γα  k  1

 ∞ 0

 ∞ 0

dk −x kα Hn xdx e x dxk dk−1 −x kα Hn−1 xdx e x dxk−1

 ··· 

−2n−2n − 1 · · · −2n − k  1 Γα  k  1

∞

e−x xkα Hn−k xdx

2.17

0

∞  n−k   −1k 2k n! n−k l e−x xkαl dx  Hn−k−l 2 l Γα  k  1n − k! l0 0  n−k   −1k 2k n! n−k  Hn−k−l 2l Γα  k  l  1. l Γα  k  1n − k! l0 It is not difficult to show that  n−k 

 αkl  Γα  k  l  1 n − k!α  k  l · · · α  k  1Γα  k  1 l   . Γα  k  1n − k! n − k − l!l!Γα  k  1n − k! n − k − l! l

Therefore, by 2.16, 2.17, and 2.18, we obtain the following theorem.

2.18

Abstract and Applied Analysis

7

Theorem 2.5. For n ∈ Z , α ∈ R with α > −1, one has Hn x  n!

n−k n  

 −1k 2kl

k0 l0

 Hn−k−l αkl Lα x. l n − k − l! k

2.19

In the special case, α  −1/2, we obtain the following corollary. Corollary 2.6. For n ∈ Z , one has ⎞ ⎛ 1 n−k l−k n 

  2 H2k x ⎝−  k  l⎠ Hn−k−l 2 . Hn x  n! 2 k! n − k − l! l k0 l0

2.20

For β ∈ R with β > −1, let one takes β

2.21

px  Ln x ∈ Pn . β

Then Ln x is also written as β

Ln x 

n 

Ck Lαk x.

2.22

k0

From Proposition 2.1, one can determine the coefficients of 2.22 as follows:  ∞ k d −x kα 1 β Ln xdx e x Ck  Γα  k  1 0 dxk  ∞ k−1 d 1 β1 −x kα Ln−1 xdx e x  Γα  k  1 0 dxk−1  ···  

1 Γα  k  1 1 Γα  k  1

∞ 0

n−k −1 

r

r0 r



2.23

βk

e−x xkα Ln−k xdx

nβ n−k−r

r!

nβ n−k−r

n−k −1  1 Γα  k  1 r0 r!





∞

e−x xkαr dx

0

Γk  α  r  1.

By the fundamental property of gamma function, one gets Γk  α  r  1 k  α  r · · · α  k  1Γα  k  1   r!Γα  k  1 r!Γα  k  1



 kαr . r

Therefore, by 2.22, 2.23, and 2.24, we obtain the following theorem.

2.24

8

Abstract and Applied Analysis

Theorem 2.7. For β ∈ R with β > −1, and n ∈ Z , one has

β

Ln x 

n−k n  

 −1r

k0 r0



 αkr α Lk x. r

2.25

  αkr Lαk x  0. r

2.26

nβ n−k−r

In the special case, α  β, one has n−1  n−k  k0

 −1

r

r0

nα n−k−r

Thus, by 2.26, we obtain the following corollary. Corollary 2.8. For 0 ≤ k ≤ n − 1, α ∈ R with α > −1, one has n−k 

 −1

r

r0

nα n−k−r



αkr r

  0.

2.27

Let one assumes that px 

n 

Bl xBn−l x ∈ Pn .

2.28

l0

Then px can be rewritten as a linear combination of Lα0 x, Lα1 x, . . . , Lαn x as follows: px 

n 

Bl xBn−l x 

l0

n 

Ck Lαk x.

2.29

k0

By Proposition 2.1, one can determine the coefficients of 2.29 as follows: n  1 Ck  Γα  k  1 l0

 ∞ 0

dk −x kα Bl xBn−l xdx. e x dxk

2.30

It is known that n  l0

see 25.

Bl xBn−l x 

 n−2  2  n2 Bn−l Bl x  n  1Bn x, l n  2 l0

2.31

Abstract and Applied Analysis

9

From 2.30 and 2.31, one notes that  ∞

 dn −x nα e x Bn xdx dxn 0 ∞ n1 n  1!−1n Γn  α  1  e−x xnα dx  −1n n! Γα  n  1 Γα  n  1 0

n1 Cn  Γα  n  1

Cn−1

 n  1!−1n ,  ∞ n−1 d n1 −x n−1α Bn xdx  e x Γα  n 0 dxn−1 ∞ n1 n−1 e−x xn−1α B1 xdx  −1 n! Γα  n 0   1 n1  −1n−1 n! Γα  n  1 − Γα  n Γα  n 2   1  n  1!−1n−1 n  α − . 2

2.32

For 0 ≤ k ≤ n − 2, one has

1 Ck  Γα  k  1

1  Γα  k  1



 ∞ k  n−2  d −x kα 2  n2 Bl xdx e x Bn−l l n  2 l0 dxk 0   ∞ k d −x kα Bn xdx e x n  1 dxk 0



∞  n−2  2  n2 k e−x xkα Bl−k xdx Bn−l −1 ll − 1 · · · l − k  1 l n  2 lk 0  ∞ e−x xkα Bn−k xdx

n  1−1k nn − 1 · · · n − k  1

0

⎧ ∞   n−2  l−k  ⎨ 2   l! 1 n2 l−k k e−x xkαj dx  Bn−l −1 Bl−k−j l j Γα  k  1 ⎩ n  2 lk l − k! j0 0 n  1−1k

n! n − k!

 n−k   n−k j0

j

∞ Bn−k−j 0

e−x xkαj dx

⎫ ⎬ ⎭

⎧    n−2  l−k  ⎨ 2    1 l! l−k n2  Bl−k−j Γ α  k  j  1 Bn−l −1k j l Γα  k  1 ⎩ n  2 lk j0 l − k!

10

Abstract and Applied Analysis ⎫  n−k    ⎬ n! n−k n  1−1k Bn−k−j Γ α  k  j  1 ⎭ j n − k! j0    l−k  n−2  α  k  j · · · α  k  1Bl−k−j 2  n2 k  Bn−l −1 l!   l n  2 lk j0 j! l − k − j !   n−k α  k  j · · ·  α  k  1  n  1−1 n! Bn−k−j   j! n − k −j ! j0 k



   l−k  n−2  Bl−k−j 2  αkj n2 Bn−l −1k l!   j l n  2 lk j0 l−k−j !  n  1−1k n!

 n−k   αkj j0

j



Bn−k−j

. n−k−j ! 2.33

Therefore, by 2.29 and 2.32, we obtain the following theorem. Theorem 2.9. For n ∈ Z , α ∈ R with α > −1, one has n  k0

Bk xBn−k x ⎧     n−2 ⎨ n−2   Bl−k−j 2  αkj k n2  l!Bn−l   −1 ⎩ l j n  2 l − k−j ! k0 lk 0≤j≤n−k ⎫   ⎬  B n−k−j α  k  j n  1!   Lαk x −1k j n − k − j !⎭ 0≤j≤n−k

2.34

    1 α α L x .  −1 n  1! Ln x − n  α − 2 n−1 n

Let one takes the polynomial px in Pn as follows:  px  Bi1 xBi2 x · · · Bir x ∈ Pn . i1 ···ir n

2.35

From the orthogonality of {Lα0 x, . . . , Lαn x}, one notes that px 

 i1 ···ir n

Bi1 xBi2 x · · · Bir x 

n 

Ck Lαk x,

2.36

k0

where 1 Ck  Γα  k  1

 ∞ 0

dk −x kα pxdx. e x dxk

2.37

Abstract and Applied Analysis

11

It is known in 25 that  i1 ···ir n

Bi1 x · · · Bir x

⎧    n−2   1 nr−1 ⎨ r  ⎩max{0,kr−n}≤a≤r a i k 2 k0



1 ···ia na−k−r



 i1 ···ir n−k

Bi1 · · · Bir

⎫ ⎬

Ek x 



Bi1 Bi2 · · · Bia

2.38

  nr−1 En x. n

From 2.35, 2.37, and 2.38, one notes that

Cn    Cn−1  

 nr−1 

 ∞

 dn −x nα e x En xdx Γα  n  1 0 dxn  nr−1  ∞ n xnα e−x dx −1n n! Γα  n  1 0  nr−1    nr−1 n n −1 n!Γα  n  1  −1n n!, n Γα  n  1  nr−1   ∞ n−1 d n −x nα−1 e x En xdx Γα  n 0 dxn−1  nr−1  ∞ n

n

Γα  n  nr−1 

2.39

e−x xnα−1 E1 xdx

−1n−1 n!

0

  1 −1n−1 n! Γα  n  1 − Γα  n Γα  n 2     1 nr−1 .  −1n−1 n! n  α − n 2



n

For 0 ≤ k ≤ n − 2, by 2.37 and 2.38, one gets ⎧ ⎛    n−2  ⎨1   1 nr−1 ⎝ r Ck  l a Γα  k  1 ⎩ 2 l0 i max{0,lr−n}≤a≤r



1 ···ia na−l−r



 i1 ···ir n−l

Bi1 · · · Bir

 ∞ 0

⎫ ⎬

   ∞ k d −x nα nr−1  e x En xdx ⎭ n dxk 0

Bi1 Bi2 · · · Bia

dk −x nα El xdx e x dxk

12

Abstract and Applied Analysis ⎧ ⎛    n−2  ⎨1   1 nr−1 ⎝ r  l a Γα  k  1 ⎩ 2 lk i max{0,lr−n}≤a≤r



1 ···ia na−l−r



 ×

∞

i1 ···ir n−l

Bi1 Bi2 · · · Bia



−1k ll − 1 · · · l − k  1

Bi1 · · · Bir

e−x xkα El−k xdx

0

⎫ ∞  ⎬ nr−1  e−x xkα En−k xdx −1k nn − 1 · · · n − k  1 ⎭ n 0 

⎧ ⎛  n−2  ⎨1   1 nr−1 ⎝  l Γα  k  1 ⎩ 2 lk max{0,lr−n}≤a≤r  ×

∞

 i1 ···ir n−l

 i1 ···ia na−l−r



Bi1 · · · Bia

 l−k  −1k l!  l−k El−k−j j l − k! j0

Bi1 · · · Bir

e−x xkαj dx

0

⎫ ∞   k n−k  ⎬ n  r − 1 −1 n!  n−k  e−x xkαj dx En−k−j ⎭ n j n − k! j0 0 

⎛  n−2   1 nr−1 ⎝  l 2 lk max{0,lr−n}≤a≤r × −1k l!

 l−k   αkj j0

j



 i1 ···ia na−l−r

Bi1 · · · Bia 

 i1 ···ir n−l



Bi1 · · · Bir ⎠

El−k−j

 l−k−j !

  n−k   En−k−j αkj nr−1 k   . −1 n! j n n −k−j ! j0 

2.40

Therefore, by 2.36, 2.39, and 2.40, we obtain the following theorem. Theorem 2.10. For n ∈ Z , r ∈ N, and α ∈ R with α > −1, one has  i1 ···ir n

Bi1 xBi2 x · · · Bir x

⎧ ⎛    k ⎨ n−2 n−2    −1 nr−1 ⎝ r  l! ⎩ l a 2 k0 lk i max{0,lr−n}≤a≤r



1 ···ia na−l−r



 i1 ···ir n−l

Bi1 · · · Bir



Bi1 · · · Bia

Abstract and Applied Analysis

13

 l−k   αkj

  nr−1 ×    −1k n! j n l−k−j ! j0 ⎫    n−k   En−k−j ⎬ α αkj nr−1 ×   Lk x  −1n−1 n! ⎭ j n n − k − j ! j0 El−k−j

    1 α nr−1 Ln−1 x  × nα− −1n n!Lαn x. n 2

2.41 For m, s ∈ Z with m  s  n, let one assumes that px  Lαs xLαm x ∈ Pn . By Proposition 2.1, one sees that px can be written as px  Lαs xLαm x 

n 

α ∈ R with α > −1.

Ck Lαk x,

2.42

k0

From the orthogonality of {Lα0 x, Lα1 x, . . . , Lαn x}, one has 1 Ck  Γα  k  1

 ∞ 0

dk −x kα pxdx. e x dxk

2.43

By 1.2, 1.3, and 1.8, one gets Lαs xLαm x





  s  −1r1 s  α r1 x s − r1 r1 ! r1 0

r1

  m  −1r2 m  α r2 x m − r2 r2 ! r2 0

    r x r sα n−sα . −1 r s − r α  r − r r! 1 1 1 0

n r   r0



2.44

r

Thus, from 2.44, one has Lαs xLαm x



n r   r0

    r x r sα n−sα . −1 l α  l α  r − l r! l0 r

By 2.44 and 2.45, one gets      n r   1 1 r sα n−sα r Ck  −1 l αl αr−l Γα  k  1 r0 r! l0  ∞ k d −x kα xr dx e x × dxk 0       n r   1 r sα n−sα 1 r  −1 l αl α  r − l r! Γα  k  1 rk l0

2.45

14

Abstract and Applied Analysis × −1k rr − 1 · · · r − k  1

∞

e−x xrα dx

0

      n r   1 r sα n−sα 1 r  −1 l αl α  r − l r! Γα  k  1 rk l0 −1k r! Γα  r  1 r − k!     n r   r sα n − s  α α  rα  r − 1 · · · α  k  1 rk  −1 l αl αr−l r − k! rk l0 ×



n 

−1

rk

     r  r sα n−sα αr

rk

l0

αl

l

αr−l

r−k

. 2.46

Therefore, by 2.42 and 2.46, we obtain the following theorem. Theorem 2.11. For s, m ∈ Z with s  m  n, α ∈ R with α > −1, one has

Lαs xLαm x



n n   k0 rk

−1

rk

     r  r sα n−sα αr l0

l

αl

αr−l

r−k

Lαk x.

2.47

Acknowledgments The authors would like to express their sincere gratitude to referee for his/her valuable comments and information. This research was supported by Basic Science Research Program through the National Research Foundation of Korea NRF funded by the Ministry of Education, Science, and Technology 2012R1A1A2003786.

References 1 L. Carlitz, “Bilinear generating functions for Laguerre and Lauricella polynomials in several variables,” Rendiconti del Seminario Matematico della Universit`a di Padova, vol. 43, pp. 269–276, 1970. 2 L. Carlitz, “Some generating functions for Laguerre polynomials,” Duke Mathematical Journal, vol. 35, pp. 825–827, 1968. 3 L. Carlitz, “The product of several Hermite or Laguerre polynomials,” Monatshefte fur ¨ Mathematik, vol. 66, pp. 393–396, 1962. 4 L. Carlitz, “A characterization of the Laguerre polynomials,” Monatshefte fur ¨ Mathematik, vol. 66, pp. 389–392, 1962. 5 L. Carlitz, “On the product of two Laguerre polynomials,” Journal of the London Mathematical Society, vol. 36, pp. 399–402, 1961. 6 L. Carlitz, “A note on the Laguerre polynomials,” The Michigan Mathematical Journal, vol. 7, pp. 219– 223, 1960. 7 D. Zill and M. R. Cullen, Advanced Engineering Mathematics, Jonesand Bartlert, 2005. 8 S. Khan, M. W. Al-Saad, and R. Khan, “Laguerre-based Appell polynomials: properties and applications,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 247–259, 2010.

Abstract and Applied Analysis

15

9 S. Khan, G. Yasmin, R. Khan, and N. A. Makboul Hassan, “Hermite-based Appell polynomials: properties and applications,” Journal of Mathematical Analysis and Applications, vol. 351, no. 2, pp. 756–764, 2009. 10 H. Ozden, I. N. Cangul, and Y. Simsek, “Remarks on q-Bernoulli numbers associated with Daehee numbers,” Advanced Studies in Contemporary Mathematics, vol. 18, no. 1, pp. 41–48, 2009. 11 H. Ozden, I. N. Cangul, and Y. Simsek, “Multivariate interpolation functions of higher-order q-Euler numbers and their applications,” Abstract and Applied Analysis, vol. 2008, Article ID 390857, 16 pages, 2008. ¨ 12 M. A. Ozarslan and C. Kaanoglu, ˘ “Multilateral generating functions for classes of polynomials involving multivariable Laguerre polynomials,” Journal of Computational Analysis and Applications, vol. 13, no. 4, pp. 683–691, 2011. 13 C. S. Ryoo, “Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials,” Proceedings of the Jangjeon Mathematical Society, vol. 14, no. 2, pp. 239–248, 2011. 14 C. S. Ryoo, “Some relations between twisted q-Euler numbers and Bernstein polynomials,” Advanced Studies in Contemporary Mathematics, vol. 21, no. 2, pp. 217–223, 2011. 15 P. Rusev, “Laguerre’s polynomials and the nonreal zeros of Riemann’s ζ-function,” Comptes Rendus de l’Acad´emie Bulgare des Sciences, vol. 63, no. 11, pp. 1547–1550, 2010. 16 Y. Simsek, “Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions,” Advanced Studies in Contemporary Mathematics, vol. 16, no. 2, pp. 251– 278, 2008. 17 Y. Simsek and M. Acikgoz, “A new generating function of q- Bernstein-type polynomials and their interpolation function,” Abstract and Applied Analysis, vol. 2010, Article ID 769095, 12 pages, 2010. 18 S. Araci, J. J. Seo, and D. Erdal, “New construction weighted h, q-Genocchi numbers and polynomials related to zeta type functions,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 487490, 7 pages, 2011. 19 S. Araci, D. Erdal, and J. J. Seo, “A study on the fermionic p-adic q-integral representation on Zp associated with weighted q-Bernstein and q-Genocchi polynomials,” Abstract and Applied Analysis, vol. 2011, Article ID 649248, 10 pages, 2011. 20 A. Bayad, “Modular properties of elliptic Bernoulli and Euler functions,” Advanced Studies in Contemporary Mathematics, vol. 20, no. 3, pp. 389–401, 2010. 21 A. Bayad and T. Kim, “Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials,” Russian Journal of Mathematical Physics, vol. 18, no. 2, pp. 133–143, 2011. 22 I. N. Cangul, V. Kurt, H. Ozden, and Y. Simsek, “On the higher-order w-q-Genocchi numbers,” Advanced Studies in Contemporary Mathematics, vol. 19, no. 1, pp. 39–57, 2009. 23 D. S. Kim, T. Kim, S. H. Rim, and S. H. Lee, “Hermite polynomials and their applications associated with Bernoulli and Euler numbers,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 974632, 13 pages, 2012. 24 T. Kim, J. Choi, Y. H. Kim, and C. S. Ryoo, “On q-Bernstein and q-Hermite polynomials,” Proceedings of the Jangjeon Mathematical Society, vol. 14, no. 2, pp. 215–221, 2011. 25 D. S. Kim, D. V. Dolgy, T. Kim, and S. H. Rim, “Some formulae for the product of two Bernoulli and Euler polynomials,” Abstract and Applied Analysis, vol. 2012, Article ID 784307, 14 pages, 2012. 26 L. Carlitz, “Congruence properties of Hermite and Laguerre polynomials,” Archiv fur ¨ Mathematische Logik und Grundlagenforschung, vol. 10, pp. 460–465, 1959. 27 M. Cenkci, “The p-adic generalized twisted h, q-Euler-l-function and its applications,” Advanced Studies in Contemporary Mathematics, vol. 15, no. 1, pp. 37–47, 2007. 28 M. W. Coffey, “On finite sums of Laguerre polynomials,” The Rocky Mountain Journal of Mathematics, vol. 41, no. 1, pp. 79–93, 2011. 29 N. S. Jung, H. Y. Lee, and C. S. Ryoo, “Some relations between twisted h, q-Euler numbers with weight α and q-Bernstein polynomials with weight α,” Discrete Dynamics in Nature and Society. An International Multidisciplinary Research and Review Journal, vol. 2011, Article ID 176296, 11 pages, 2011. 30 T. Kim, “On the weighted q-Bernoulli numbers and polynomials,” Advanced Studies in Contemporary Mathematics, vol. 21, no. 2, pp. 207–215, 2011. 31 T. Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp ,” Russian Journal of Mathematical Physics, vol. 16, no. 4, pp. 484–491, 2009. 32 T. Kim, “Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Zp ,” Russian Journal of Mathematical Physics, vol. 16, no. 1, pp. 93–96, 2009.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014