Extending the tooth mesowear method to extinct and extant equids

4 downloads 0 Views 904KB Size Report
Nov 23, 2001 - Cephalophus silvicultor. Afzelius, 1815 .... Afzelius, 1815. Rf. 14,0. 86,0. 0,0. 100,0 ...... WERDELIN L. (eds), Bjorn Kurten. A memorial vol- ume.
Extending the tooth mesowear method to extinct and extant equids Thomas M. KAISER Zoological Institute and Museum, University Greifswald, J. S. Bach Str. 11-12, D-17489 Greifswald (Germany) [email protected]

Nikos SOLOUNIAS Department of Anatomy, New York College of Osteopathic Medicine of the New York Institute of Technology, Old Westbury, NY 11568 8000 (USA) [email protected]

Kaiser T. M. & Solounias N. 2003. — Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25 (2) : 321-345.

KEY WORDS Equidae, Hippotherium, Equus burchelli, mesowear method, methodology, paleodiet, paleobiology, paleoenvironment.

ABSTRACT A new approach of reconstructing ungulate diets, the mesowear method, was introduced by Fortelius & Solounias (2000). Mesowear is based on facet development on the occlusal surfaces of the teeth. Restricting mesowear investigation on the M2 as has previously been suggested would limit application of the mesowear methodology to large ungulate assemblages. Most of the fossil, subfossil and recent ungulate assemblages that have been assigned to a single taxon have a smaller number of individuals. This results in the demand to extend the mesowear method to further tooth positions in order to obtain stable dietary classifications of fossil taxa. The focus of this paper is to test, if a consistent mesowear classification is obtainable for the remaining positions of the upper cheek tooth dentition (P2, P3, P4, M1 and M3) and for combinations of these tooth positions. For statistical testing, large assemblages of isolated cheek teeth of the Vallesian hipparionine horse Hippotherium primigenium Meyer, 1829 and of two populations of the recent zebra Equus burchelli Gray, 1824 are employed as models. Subsequently, all single cheek tooth positions and all possible combinations of these tooth positions are tested for their consistency in classification of the mesowear variables compared to the M2, the model tooth of Fortelius & Solounias (2000). As the most consistent model for the proposed “extended” mesowear method, the combination of four tooth positions P4, M1, M2, and M3 is identified, which allows to include the largest number of isolated tooth specimens from a given assemblage, and fulfills the demand of being consistent in the dietary mesowear classification with the “original” mesowear method. We propose the “extended” mesowear method to be particularly well suited for the reconstruction of paleodiets in hypsodont equids.

GEODIVERSITAS • 2003 • 25 (2) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris.

www.geodiversitas.com

321

Kaiser T. M. & Solounias N.

MOTS CLÉS Equidae, Hippotherium, Equus burchelli, méthode de mesowear, méthodologie, paléorégime, paléobiologie, paléoenvironnement.

RÉSUMÉ L’application de la méthode d’usure des dents (« mesowear ») aux équidés fossiles et actuels. Une nouvelle approche pour reconstruire le régime des ongulés a été proposée récemment par Fortelius & Solounias (2000) : la méthode du « mesowear ». Cette approche est fondée sur le développement des surfaces occlusales des dents. La restriction à l’utilisation d’une seule dent, la M2, comme il a été suggéré initialement, nécessite un échantillonnage d’une certaine importance en terme d’individus, ce qui réduit l’application de la méthode à un nombre limité d’ensembles fossilifères. En effet un taxon fossile, subfossile, ou même récent, présente rarement un nombre suffisant de spécimens pour en satisfaire les conditions optimales d’utilisation. D’où le besoin d’élargir la méthode aux autres dents de la rangée supérieure pour la rendre plus performante. L’objectif de cet article est de tester la cohérence de la méthode du mesowear avec les autres dents de la rangée supérieure (P2, P3, P4, M1 et M3), isolées ou en combinaisons différentes. La riche collection de dents jugales de l’équidé Vallesien Hippotherium primigenium Meyer, 1829 et celles de deux populations du zèbre récent Equus burchelli Gray, 1824 ont été utilisées pour tester l’approche à l’aide des méthodes statistiques. Ensuite, toutes les dents isolées et leurs combinaisons possibles ont été testées pour prouver la cohérence avec la méthode classique de Fortelius & Solounias (2000). Comme résultat de l’application de la méthode, quatre dents deviennent donc utilisables : P4, M1, M2 et M3 ; ce qui permet de considérer un plus grand nombre de spécimens par taxon dans le même ensemble fossile, sans perdre de cohérence avec l’approche classique. Nous concluons que la « méthode élargie du mesowear » est particulièrement bien adaptée pour la reconstitution des paléorégimes des équidés hypsodontes.

INTRODUCTION Reconstructing the dietary adaptation of fossil ungulates provides important information on the adaptation of individual species and ultimately on habitat conditions of terrestrial mammalian paleocommunities. Previous attempts have been undertaken using a variety of methods, which include stable isotope signatures (e.g., MacFadden et al. 1996, 1999) and tooth microwear analysis (Hayek et al. 1992; Solounias & Hayek 1993; Solounias & Moelleken 1993a; Solounias & Semprebon 2002). Teaford (1988) and Janis (1995) have reviewed microwear research. In addition, tooth crown height analysis (Janis 1988), and various masticatory morphology analyses (Solounias & Moelleken 1993b; Solounias & 322

Dawson-Saunders 1987; Eisenmann 1998) have also been used to interpret paleodiets. The two tooth microwear methods (scanning microscopy and light microscopy) have proven to be relatively laborious. The masticatory methods are usually based on a very small sample size. The original mesowear method covered large samples but examined only one apex per individual. The present study extends the mesowear to all apices and examines statistically varying results due to combinations of various tooth positions. As a result four tooth positions (P4, M1, M2, and M3) are identified as ideal for the interpretation of fossil specimens allowing to include the largest number of isolated tooth specimens from a given assemblage. These four positions are the model of the “extended” mesowear method. GEODIVERSITAS • 2003 • 25 (2)

Extending the tooth mesowear method

THE ORIGINAL MESOWEAR METHOD A new approach for reconstructing ungulate diet, the mesowear method, was introduced by Fortelius & Solounias (2000). Mesowear is based on facet development on the occlusal surfaces of the ungulate upper molar teeth. The degree of facet development reflects the relative proportions of tooth to tooth contact (attrition) and food to tooth contact (abrasion), attrition creating facets and abrasion obliterating them. The entire surface of the teeth is affected by tooth wear but that mesowear analysis focused on the buccal cutting edges of the enamel surfaces where the buccal wall (ectoloph) meets the occlusal plane. There, mesowear was simply defined by two variables: 1) as cusp relief (high or low); and 2) as cusp shape (sharp, rounded, or blunt) in buccal (lateral) view. These simple expressions of tooth wear were found to have strong dietary diagnostic capabilities for ungulate diets. In collecting the data the teeth are inspected at close range, using a hand lens when appropriate. The sharper buccal cusp of the second upper molar (either the paracone or the metacone) is scored. Occlusal relief is classified as high (h) or low (l), depending on how high the cusps rise above the valley between them. The second mesowear variable, cusp shape, includes three scored attributes: sharp (s), round (r) and blunt (b) according to the degree of facet development (Fig. 1). A sharp cusp terminates to a point and has practically no rounded area between the mesial and distal phase I facets, a rounded cusp has a distinctly rounded tip (apex) without planar facet wear but retains facets on the lower slopes, while a blunt cusp lacks distinct facets altogether. For each species the respective cusp shapes were summarized as percentages and are given in Table 1 as the three variables %sharp, %round and %blunt. The one apex of a single tooth mesowear method was tested and applied to hipparionine horses by Bernor et al. (in press), Kaiser (in press), Kaiser et al. (2000a, b, in press). HIPPARIONINE HORSES AS A MODEL Hipparionine horses are tridactyl and usually with well developed preorbital fossae and isolated GEODIVERSITAS • 2003 • 25 (2)

M2

HLMD-DIN+2757 M2 Hippotherium primigenium (Eppelsheim) h OR l

s

r

b

CS FIG. 1. — The mesowear variables of an hypsodont ungulate cheek tooth (as defined by Fortelius & Solounias 2000). The occlusal relief (OR) may be scored “high” (h) or “low” (l), the cusp shape (CS) is classified as “sharp” (s), “round” (r) and “blunt” (b). Reconstruction of Hippotherium primigenium Meyer, 1829 after O. Garreaux (in Bernor et al. 1997). Scale bar: 5mm.

protocones. They are ideal for the application of mesowear methods because they are abundant, they include many species, and species often have extensive geographic and chronological ranges. Moreover, the species are morphologically diverse and recent analyses of their cranial, dental and postcranial anatomy has shown, that they were adapted to a broad range of habitats and feeding adaptations (Bernor et al. 1990; Bernor & ArmourChelu 1999; Eisenmann & Sondaar 1998). ABBREVIATIONS

AMNH American Museum of Natural History, New York; HLMD Hessisches Landesmuseum, Darmstadt; SMF Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main; LSNK Landessammlungen für Naturkunde, Karlsruhe; LMM Landesmuseum, Mainz; Di Dinotheriensande (all localities); Ep Eppelsheim; Es Esselborn; We Westhofen; m.a. million years ago (Mega anum);

323

Kaiser T. M. & Solounias N.

OR CS RP(om) RP(em)

occlusal relief; cusp shape; reference position of the “original” mesowear method (after Fortelius & Solounias 2000); reference position of the “extended” mesowear method (as defined in this study).

ISSUES IN DEVELOPING THE MESOWEAR DATA AND MODEL The “original” mesowear method used only one apex per individual (the sharpest apex of the M2; Fortelius & Solounias 2000). The larger the number of tooth apices (positions) for each individual specimen included in a study the more reliable the representation of the diet eaten and hence of the paleodietary investigation. The focus of the present study is to test, if a consistent mesowear classification is obtainable for all apices in the dentition of the hipparionine species Hippotherium primigenium Meyer, 1829 and for two populations of modern Equus burchelli Gray, 1824, one northern (ebN) and one southern (ebS). The following conditions have to be fulfilled by a model tooth position: – 1) an isolated tooth, as is the case in many fossil assemblages, needs to be identified as to which tooth it is. In hypsodont equids identification of isolated teeth is possible for all marginal (P2-P3 and M2-M3 ) by means of the distinctly developed anterior or posterior tilts of these teeth (Fig. 2). In P4 and M1 however identification is difficult because the tooth tilts are only poorly and inconsistently developed. These tooth positions therefore are hard to identify with certainty, if the specimens are isolated; – 2) a model tooth position should emphasize the center of the tooth battery. The anterior and posterior margins of the tooth row participate less in food processing. A reduced amount of vegetation to be chewed at the margins may result in a more pronounced attrition (tooth to tooth contact); – 3) the masseter and pterygoid musculature are located posteriorly. Consequently, chewing pressures should vary along the tooth row, with higher pressures in the molars and lower pressures in the premolars. 324

These conditions collectively imply that the most ideal teeth for a model of chewing should be P3 and M2. P3 comes into occlusion before M2 (Joubert 1972) and therefore its wear stage should be more advanced than that of M2. Consequently, in any attritional assemblage of fossil individuals representing all age classes, upper second molars should therefore be more likely in early to medium wear than P3s. As a single model tooth, the M2 therefore actually appears the bestsuited single tooth position. Isolated teeth predominate in many fossil equid taphocoenoses. In addition, a single individual is frequently represented by only one tooth specimen in a given fossil assemblage (e.g., Behrensmeyer 1975; Kaiser 1997; Kaiser et al. 1995; Prindiville 1998). The larger the number of tooth positions available for reconstructing paleodiet, the larger the basis for statistical analysis, making dietary reconstruction more significant. According to Fortelius & Solounias (2000), a mesowear pattern becomes stable when at least 20 specimens are sampled. A large number of tooth positions incorporated into a model further on allows the incorporation of more individuals in a mesowear study than a single tooth model. The hipparionine assemblage of the Dinotheriensande (Germany, Vallesian, MN9) is one of the largest in Europe. However, in such a large assemblage, only 22 M2 specimens are known (Fig. 4). A number just large enough to allow a statistically meaningful mesowear classification. Restricting the mesowear investigation to the M2, as the single model tooth, would only allow comparisons to assemblages of comparable size and therefore would restrict mesowear analysis to only very few additional assemblages. An additional complication is that most of the other fossil assemblages and recent species in collections have lower numbers of individuals than those of the Dinotheriensande. Consequently, it is necessary to extend the original model of the mesowear method to additional tooth positions in order to obtain the most reliable dietary classifications of fossil taxa. The focus of this paper is therefore to test, if a consistent mesowear classification is obtainable GEODIVERSITAS • 2003 • 25 (2)

Extending the tooth mesowear method

P4

M1

M2

M3

P3

P2 C j1

j2

P1

j3

j1

p2 j2

j3

p3

p4

m1

m2

m3

C

FIG. 2. — Longitudinal section of the scull of a six year old individual of Equus ferus Boddaert, 1785 (after Butz & Böttger 1946). The tooth alveolae are opened. Note the differences in tilt of the individual cheek tooth positions as indicated by lines. In the upper premolars P2 and P3 the angle between the occlusal surface and the anterior wall of the tooth is open, in the upper P4 and M1 it is about rectangular, and in the upper molars M2 and M3 the occlusal surface forms a close angle with the anterior wall (bold lines). P2 and P3, as well as M2 and M3 are therefore easily to be identified if isolated. P4 and M1 however are to be distinguished with a great degree of uncertainty. The same applies to the lower premolars and molars. Scale bar: 5 cm.

for the remaining tooth positions (P2, P3, P4, M1 and M3) and for various combinations of these tooth positions. We therefore identify a combination of tooth positions as a new reference model for a proposed “extended” mesowear method, which provides a mesowear classification consistent with the “original” mesowear method by Fortelius & Solounias (2000). This reference model has to meet the following conditions: – 1) to provide a large number of data; as many cheek tooth positions (apices) as possible. We plan to maximize the number of tooth positions into the model; – 2) as a means of consistency with the “original” mesowear method, the same variables are to be used. MATERIAL Two samples of recent zebras and one fossil Miocene assemblage were used. One of the extant samples consisted of 32 individuals of Equus burchelli treated as 182 tooth specimens (ebN, GEODIVERSITAS • 2003 • 25 (2)

Appendix A; from the AMNH and the SMF). All specimens belonged to wild shot animals collected from different localities from Sudan, Kenya and Tanzania. The sample contained 27 P2s, 30 P3s, 31 P4s, 33 M1s, 33 M2s and 28 M3s (Fig. 5E). The second extant sample (ebS, Appendix B) consisted of 23 wild shot individuals of Equus burchelli from Botswana, Namibia and Angola. The sample consisted of 117 specimens; 20 P2s, 20 P3s, 19 P4s, 21 M1s, 20 M2s and 17 M3s (Fig. 5F). As a fossil reference sample, a large number of isolated cheek teeth of Hippotherium primigenium from the upper Miocene (Vallesian, MN9) is one of the largest in Europe (Dinotheriensande, Rheinhessen, Germany; Appendix C). The chronological homogeneity of the Dinotheriensande sample, which includes several localities (Fig. 3), is uncertain, but using tooth morphology, there is no reason to believe that more than one species is present in this sample. The Dinotheriensande localities are all placed within the 325

Kaiser T. M. & Solounias N.

TABLE 1. — Frequency of mesowear variables in the recent comparison taxa (data from Fortelius & Solounias 2000), and the fossil populations of Vallesian (MN9) Hippotherium primigenium Meyer, 1829 and recent Equus burchelli Gray, 1824 (ebN and ebS) investigated in this study. Abbreviations: low, percent low occlusal relief; high, percent high occlusal relief; sharp, percent sharp cusps; round, percent round cusps; blunt, percent blunt cusps; code 1: m, “mabra group” after Fortelius & Solounias (2000); n, neutral species; t, species with typical dietary adaptation; r, reference samples investigated; code 2: classification of dietary preferences according to the conservative classification by Fortelius & Solounias (2000); G, grazer; M, mixed feeder; B, browser; f, fossil taxon.

Taxon Alces alces Ammodorcas clarkei Antilocapra americana Boocercus euryceros Capreolus capreolus Cephalophus dorsalis Cephalophus natalensis Cephalophus niger Cephalophus nigrifrons Cephalophus silvicultor Dendrohyrax arboreus Dendrohyrax dorsalis Dicerorhinus sumatrensis Diceros bicornis Giraffa camelopardalis Heterohyrax brucei Hyaemoschus aquaticus Litocranius walleri Odocoileus hemionus Odocoileus virginianus Okapia johnstoni Rhinoceros sondaicus Tragelaphus strepsiceros Alcelaphus buselaphus Alcelaphus lichtensteinii Bison bison Ceratotherium simum Connochaetes taurinus Damaliscus lunatus Equus burchelli Equus grevyi Hippotragus equinus Hippotragus niger Kobus ellipsiprymnus Redunca redunca Aepyceros melampus Antidorcas marsupialis Axis axis Axis porcinus Boselaphus tragocamelus Budorcas taxicolor Camelus dromedarius Capra ibex Carpicornis sumatraensis Cervus canadensis Cervus duvauceli Cervus unicolor Gazella granti Gazella thomsoni Lama glama Lama vicugna Ourebia ourebi

326

Author

Abbrev.

Low (%)

High (%)

Sharp Round Blunt Code 1 Code 2 (%) (%) (%)

Linnaeus, 1758 Thomas, 1891 Ord, 1815 Ogilby, 1837 Linnaeus, 1758 Gray, 1846 Smith, 1834 Gray, 1846 Gray, 1871 Afzelius, 1815 Smith, 1827 Fraser, 1855 Fisher, 1814 Linnaeus, 1758 Linnaeus, 1758 Gray, 1868 Ogilby, 1841 Brooke, 1879 Rafinesque, 1817 Zimmermann, 1780 Sclater, 1901 Desmarest, 1822 Pallas, 1766 Pallas, 1766 Lichtenstein, 1812 Linnaeus, 1758 Burchell, 1817 Lichtenstein, 1812 Burchell, 1823 Gray, 1824 Oustalet, 1882 Desmarest, 1804 Harris, 1838 Ogilby, 1833 Pallas, 1767 Lichtenstein, 1812 Zimmermann, 1780 Erxleben, 1777 Zimmermann, 1780 Pallas, 1766 Hodgson, 1850 Linnaeus, 1758 Linnaeus, 1758 Bechstein, 1799 Linnaeus, 1758 Cuvier, 1823 Kerr, 1792 Brooke, 1872 Gunther, 1884 Linnaeus, 1758 Molina, 1782 Zimmermann, 1783

AA EI AM BE OL DR NA NI NG SL DA DD DS DB GC HB HY LW OH OV OJ RS TT ab al bb cs ct dl eb eg he hn ke rr Me Ma Ax Ap Tr Bt Cl Ci Ca Cc Cd Cu Gg Gt Lg Lv Oo

0,0 0,0 4,0 0,0 4,0 7,0 0,0 9,0 18,0 20,0 0,0 18,0 0,0 0,0 6,0 64,0 0,0 4,0 0,0 0,0 0,0 0,0 0,0 43,0 18,0 100,0 100,0 45,0 80,0 100,0 100,0 15,0 15,0 4,0 9,0 0,0 4,0 21,0 12,0 13,0 5,0 0,0 3,0 0,0 0,0 33,0 9,0 12,0 12,0 0,0 0,0 4,0

100,0 100,0 96,0 100,0 96,0 93,0 100,0 91,0 82,0 80,0 100,0 82,0 100,0 100,0 94,0 36,0 100,0 96,0 100,0 100,0 100,0 100,0 100,0 57,0 82,0 0,0 0,0 55,0 20,0 0,0 0,0 85,0 85,0 96,0 91,0 100,0 96,0 79,0 88,0 87,0 95,0 100,0 97,0 100,0 100,0 67,0 91,0 88,0 88,0 100,0 100,0 96,0

100,0 28,5 88,6 44,4 72,0 32,1 16,6 35,4 25,0 0,0 50,0 46,4 80,0 94,1 73,7 81,8 16,6 33,3 72,7 88,8 87,5 100,0 0,0 3,2 5,8 0,0 0,0 15,3 20,0 27,0 34,4 3,8 0,0 0,0 6,4 35,2 73,0 6,9 4,1 0,0 42,1 31,2 54,1 45,4 47,3 12,0 14,2 50,0 55,4 28,1 41,6 21,8

0,0 71,4 11,3 55,5 25,0 60,7 83,3 61,2 70,4 94,8 50,0 53,5 20,0 5,8 26,2 18,1 83,3 66,6 27,2 11,1 12,5 0,0 100,0 66,6 82,3 26,6 72,0 55,7 60,0 39,3 41,3 96,1 85,0 100,0 90,9 64,7 26,9 67,4 95,8 100,0 57,8 68,7 37,5 50,0 52,6 64,0 80,9 50,0 43,1 68,7 58,3 77,3

0,0 0,0 0,0 0,0 2,9 7,1 0,0 3,2 4,5 5,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 28,0 11,7 73,3 28,0 28,8 20,0 33,6 24,1 0,0 15,0 0,0 2,5 0,0 0,0 25,5 0,0 0,0 0,0 0,0 8,3 4,5 0,0 24,0 4,7 0,0 1,3 3,1 0,0 0,7

t n n n n m m m m m m m t t t m m n t t t t n t n t t t t t t t t t t t n n n n n n n t t n n t t n n n

B B B B B B B B B B B B B B B B B B B B B B B G G G G G G G G G G G G M M M M M M M M M M M M M M M M M

GEODIVERSITAS • 2003 • 25 (2)

Extending the tooth mesowear method

Taxon

Author

Abbrev.

Low (%)

High (%)

Ovibos moschatus Ovis canadensis Procavia capensis Redunca fulvorufula Rhinoceros unicornis Saiga tatarica Syncerus caffer Taurotragus oryx Tetracerus quadricornis Tragelaphus angasi Tragelaphus imberbis Tragelaphus scriptus

Zimmermann, 1780 Shaw, 1804 Pallas, 1766 Afzelius, 1815 Linnaeus, 1758 Linnaeus, 1766 Sparrman, 1799 Pallas, 1766 Blainville, 1816 Gray, 1849 Blyth, 1869 Pallas, 1766

Om Oc Pc Rf Ru St Sc To Tq Ta Ti Ts

19,0 13,0 54,0 14,0 0,0 60,0 0,0 0,0 9,0 0,0 0,0 0,0

81,0 87,0 46,0 86,0 100,0 40,0 100,0 100,0 91,0 100,0 100,0 100,0

57,6 48,3 62,5 0,0 80,0 60,0 0,0 50,0 28,5 35,0 61,2 51,0

42,3 51,6 37,5 100,0 20,0 40,0 93,5 50,0 71,4 65,0 38,7 48,9

0,0 0,0 0,0 0,0 0,0 0,0 6,4 0,0 0,0 0,0 0,0 0,0

t n m n n n n t n n n t

M M M M M M M M M M M M

Equus burchelli (north) Equus burchelli (south)

Gray, 1824 Gray, 1824

ebN ebS

80,3 93,5

19,7 6,5

23,4 19,5

43,7 44,2

33,0 36,4

r r

G G

Hippotherium primigenium (Dinotheriensande) Hippotherium primigenium (Eppelsheim) Hippotherium primigenium (Esselborn) Hippotherium primigenium (Westhofen)

Meyer, 1829

hP-Di

1,8

98,2

17,4

82,6

0,0

r

f

Meyer, 1829

hP-Ep

3,6

96,4

16,3

83,7

0,0

r

f

Meyer, 1829

hP-Es

0,0 100,0

17,9

82,1

0,0

r

f

Meyer, 1829

hP-We

0,0 100,0

11,1

88,9

0,0

r

f

lower part of MN9, the age of which is believed to be about 10.5 m.a. (Steininger et al. 1996; Andrews & Bernor 1999). Besides being the largest sample of teeth known for Hippotherium primigenium, this sample is known entirely from isolated teeth allowing height measurements to be taken which is important for ultimately knowing the wear stage and age of the individual at death. This attribute of the sample makes this fossil assemblage more suitable for tooth height measurements and age estimations of individuals from such measurements. In other samples, bone often covers the teeth making such measurements rare or impossible. Only upper cheek teeth are investigated in this analysis. The sample investigated comprises a total of n = 349 upper cheek tooth specimens assignable to H. primigenium. From the total of 349 tooth specimens there were 93 P2s, 73 P3s, 63 P4s, 52 M1s, 22 M2s and 50 M3s (Fig. 4). The most frequently preserved tooth position is the P2, the least frequent however is the M2. In order to attain consistency with Fortelius & Solounias (2000), tooth specimens not yet in occlusion and specimens showing initial wear GEODIVERSITAS • 2003 • 25 (2)

Sharp Round Blunt Code 1 Code 2 (%) (%) (%)

were excluded as well as specimens with a persisting crown height of less than 15 mm and specimens where the actual tooth type (tooth position) cannot be known. After excluding such teeth, 330 specimens were used (Fig. 5A). METHODS Mesowear variables (low, high, sharp, round and blunt) were scored for the two recent zebra samples (ebN and ebS) and 330 specimens from the Dinotheriensande (as in Fortelius & Solounias 2000). Relative frequencies (percentages) were calculated for each isolated tooth position and each of the 63 combinations of tooth positions possible with one to six cheek tooth positions (Fig. 5). Fortelius & Solounias (2000) used the tooth microwear of 53 ungulates and the literature as a basis for developing the dietary categorization of the mesowear data base of 64 ungulate species. Among these were species with variously problematic diets (namely the water chevrotain, the duikers and the hyraxes), which were grouped together in the mesowear study as the “mabra” group of “minute abraded brachydont”. These 327

Kaiser T. M. & Solounias N.

Germany

8°E

R he

in Mainz 50°N

Se

Bingen

Nahe

lz Nierstein BadKreuznach Oppenheim

ei n Rh

Alzey Ep 10 km

Es

We

FIG. 3. — Geographic situation of the Vallesian (MN9) fossil localities of the Dinotheriensande (black signatures). The localities of Eppelsheim (Ep), Esselborn (Es) and Westhofen (We) are highlighted (after Franzen 1997 and Kaiser et al. in press).

species were excluded in the present study. Analysis was undertaken using a reduced set of 27 “typical” recent species as a comparative set, which have been shown to provide reliable dietary data without complications in both mesowear and microwear analyses (Solounias & Semprebon 2002). Fortelius & Solounias (2000) found that for the 64 living species they investigated, the single variable that classified the species best was the index of hypsodonty (hypind) but the diagnostic resolution increased, as additional variables were included. We do not include the index of hypsodonty (from Janis 1988) into this study, because of its strong influence on the 328

dietary classification it is expected to diminish the influence of the mesowear variables on the result of classification. Of the several dietary classifications Fortelius & Solounias (2000) tested, the conservative classification resulted in the most correct classification of species based on mesowear variables and the index of hypsodonty; more correct in terms of tooth microwear analysis (Solounias & Semprebon 2002). We presently follow the Fortelius & Solounias (2000) classification of extant species into the three broad dietary categories browser, mixed feeder and grazer. Molar and premolar crown height measurements were taken twice averaged and rounded to 0.1 mm GEODIVERSITAS • 2003 • 25 (2)

Extending the tooth mesowear method

using digital calipers. We refer to the conventions of Eisenmann et al. (1988) and Bernor et al. (1997). STATISTICS Chi-square “corresponding probabilities” (p) are computed between each of the 62 combinations of single and multiple tooth positions remaining and the M2 (Fig. 5) in order to test, if incorporating one or more tooth positions into the model has an influence on the mesowear classification. The resulting matrices are sorted in descending order after the p-value. The closer a single model is to the M2, the more similar is the distribution pattern of the mesowear variables. The M2, which is acting as the reference of this chi-square analysis has the p-value 1, while the p-values of all the other matrix columns are ≤ 1. The closer a column is to the p-value of 1, the higher is the probability, that the distribution of the mesowear variables of this model of tooth positions is not different from the reference position (M2). Hierarchical cluster analysis was further applied, with complete linkage (to enhance the distinctiveness of clusters), using the mesowear variables (%high, %sharp, %round and %blunt). For this analysis we use the original dataset of Fortelius & Solounias (2000) for the extant comparison species and the data presented in this study for Equus burchelli and Hippotherium primigenium (Table 1). All statistical tests were computed using Systat 9.0. TESTING THE “EXTENDED” MODELS The consistency in classification of the proposed “extended” model is tested using cluster analysis. The relative frequencies of mesowear variables ▲ FIG. 4. — Frequency of tooth specimens in the total assemblages of Hippotherium primigenium Meyer, 1829 known from the Dinotheriensande. Single tooth positions and combinations of tooth positions are sorted by number of specimens in descending order. Grey lines indicate all single tooth positions P2, P3, P4, M1, M2 and M3, the total of all positions of the cheek tooth row (P2-M3) and the combinations of tooth positions discussed as proposed models for the “extended” mesowear method in this contribution (1-tooth model (M2), 3tooth model (P4+M2+M3) and 4-tooth model (P4-M3)). Abbreviation: n, number of specimens.

GEODIVERSITAS • 2003 • 25 (2)

P2 P3 P4 M1 M2 M3

n

#

§&§ §&§ §&§

M2

§&§

22

#

§&§ §&§ §&§ §&§

M3

50

#

§&§ §&§

M1

§&§ §&§

52

#

§&§

§&§ §&§ §&§

63

#

§&§ §&§ §&§

#

P3

#

§&§ §&§

M1

M2

§&§

74

#

§&§

§&§

M2

§&§

85

§&§ §&§ §&§ §&§ §&§

93

P2

P4

M3

72

§&§ §&§ §&§ §&§

73

P4

M2

§&§

95

M1

§&§

M3

102

P4

M1

§&§ §&§

111

P4

§&§ §&§

#

P3

#

§&§ §&§

#

§&§

#

§&§

P2

M2

§&§ §&§

M3

113

M2

§&§

115

§&§ §&§ §&§

M3

123

§&§ §&§ §&§

#

P3

#

§&§ §&§

M1

M2

M3

124

#

P3

§&§

M1

§&§ §&§

125

#

§&§

P4

M1

M2

§&§

133

#

§&§

P4

§&§

M2

M3

135

#

P3

P4

§&§ §&§ §&§

136

P2 #

§&§ §&§ §&§ §&§

M3

143

P3

M3

145

§&§ §&§

M2

§&§ §&§

M1

§&§ §&§

145

#

P3

§&§

M1

M2

147

P2

§&§

P4

§&§ §&§ §&§

156

#

P3

P4

§&§

M2

§&§

158

#

§&§

P4

161

P2

§&§

M1

§&§

M3

P2

§&§ §&§ §&§

M2

M3

165

P2

P3

§&§ §&§ §&§ §&§

166

P2

§&§ §&§

M1

M2

§&§

167

#

P3

§&§

M1

§&§

M3

175

P2

§&§

P4

§&§

M2

§&§

178

#

§&§

P4

M1

M2

M3

183

#

P3

P4

M1

§&§ §&§

184

P4

§&§ §&§

#

P3

P2

P3

P2

§&§ §&§

M1

§&§ §&§

M3

1-tooth model

3-tooth model

4-tooth model

186

M2

§&§

188

§&§

M3

195

M3

197

#

P3

§&§

M1

M2

P2

§&§

P4

M1

§&§ §&§

P2

§&§

P4

§&§ §&§

M3

206

#

P3

P4

M1

M2

§&§

206

#

P3

P4

§&§

M2

M3

208

P2

P3

§&§ §&§ §&§

M3

216

P2

§&§ §&§

M1

M2

M3

217

204

P2

P3

§&§

M1

§&§ §&§

218

P2

§&§

P4

M1

M2

§&§

226

P2

§&§

P4

§&§

M2

M3

228

P2

P3

P4

§&§ §&§ §&§

229

#

P3

P4

M1

§&§

M3

234

P2

P3

§&§ §&§

M2

M3

238

P2

P3

§&§

M1

M2

§&§

240

P2

P3

P4

§&§

M2

§&§

251

P2

§&§

P4

M1

§&§

M3

254

#

P3

P4

M1

M2

M3

256

P2

P3

§&§

M1

§&§

M3

268

P2

§&§

P4

M1

M2

M3

276

P2

P3

P4

M1

§&§ §&§

277

P2

P3

P4

§&§ §&§

M3

279

P2

P3

§&§

M1

M2

M3

290

P2

P3

P4

M1

M2

§&§

299

P2

P3

P4

§&§

M2

M3

301

P2

P3

P4

M1

§&§

M3

327

P2

P3

P4

M1

M2

M3

349

329

Kaiser T. M. & Solounias N.

(%high, %sharp and %blunt) are computed for the reference combination of the proposed extended model (P4-M3), and for the M2, the reference position of the “original” mesowear method after Fortelius & Solounias (2000) and are plotted in a cluster analysis together with a set of extant reference taxa. As reference taxa the set of “typical” taxa and the classification of dietary adaptations in the extant comparison taxa follow Fortelius & Solounias (2002). In addition to the total of all specimens of H. primigenium from all the Vallesian Dinotheriensande, these analyses are undertaken independently for the Dinotheriensande localities (Fig. 3) of Eppelsheim, Esselborn and Westhofen. CHI-SQUARE RANKING MATRICES RESULTS OF CHI-SQUARE RANKING MATRICES In the two recent zebra samples investigated, the corresponding probability (p) of the isolated tooth positions and of any combinations of tooth positions range between p = 1 for M2, the model position of Fortelius & Solounias (2000) and p < 0.001. The total of all tooth positions (P2+P3+P4+M1+M2+M3) has p-values of 0.009 for E. burchelli ebS (Fig. 5F) and 0.046 for E. burchelli ebN (Fig. 5E). This combination is therefore most likely different from the M2 data. Two combinations of 5-tooth positions are consistently classified in the range of corresponding probabilities indicating no difference in the

classification from the M2 data. These are the combinations P3-M3 and P2+P4-M3. Only one combination of 4-tooth positions (P4+M1+ M2+M3) is consistently within this range, and classifies better than the two 5-tooth models identified. One combination of 3-tooth positions (P4+M2+M3) classifies better than the 4-tooth model identified (P4+M1+M2+M3) in the two assemblages (Fig. 5E, F). In Hippotherium primigenium, the corresponding probability (p) of all isolated tooth positions and of any combinations of tooth positions range between p = 1 for the M2, and p = 0.170 for the P2 for the Dinotheriensande assemblage as a whole (Fig. 5A). The total of all cheek tooth positions (P2-M3) ranges between 26 for Westhofen (Fig. 5D) and 33 for Eppelsheim (Fig. 5B) of 63 possible positions in the ranking of chi-square probabilities and thus occupies an intermediate position. The p-values for this combination range between 0.626 (Dinotheriensande, all localities, Fig. 5A) and 0.9 (Esselborn, Fig. 5C) and therefore are most likely not different from the M2. The only combination of 5-tooth positions consistently classifying better than the total of all positions is the 5-tooth model P3-M3, and only the combination of 4-tooth positions (4-tooth model) P4+M1+M2+M3 is consistently better classified than is the total of all cheek teeth. With the exception of M2, the “original” 1-tooth model, only one 3-tooth model (P4+M2+M3) is classified better than the 4-tooth model P4+M1+ ▲

FIG. 5. — Chi-square ranking matrix of the absolute frequencies of mesowear variables “low” (l), “high” (h), “sharp” (s), “round” (r) and “blunt” (b) calculated for 63 single and multiple tooth positions. Wear stages incorporated exclude very early wear and specimens with less than 15 mm of crown height. Abbreviations: R, ranking position; P, number of combination of single and multiple tooth positions; l, h, s, r, b, absolute numbers of mesowear scores; %l, %h, %s, %r, %b, calibrated frequency (percentages) of mesowear variables; n, number of tooth specimens in a certain model; p, chi-square corresponding probability giving the probability, the null-hypotheses of independence should be rejected at an error probability of 0.05. The reference position for each test is the M2 (left column of the matrix, P = 62). The columns are sorted by decreasing p-values. Large p-value (left), small p-value (right). M2 (R = 1) always has the p-value of 1, because this position is the model position of the “original” mesowear method; hi, - (minus), null-hypotheses of independence should be rejected at an error probability of 0.05; the distribution patterns are likely to be equal; + (plus), null-hypotheses of independence cannot be rejected, the distribution patterns are likely to be different. Grey background: all single tooth positions P2, P3, P4, M1, M2 and M3, the total of all tooth positions (P2-M3) and the combination of tooth positions (4-tooth model) which is discussed as models for the proposed “extended” mesowear method. The bar charts to the bottom of each matrix plot indicate the calibrated frequencies (percentages) of mesowear variables for each column of the matrix. Gray, %h; black, %s, %r and %b. A-D, Hippotherium primigenium Meyer, 1829; A, from the Vallesian (MN9) Dinotheriensande (all localities); B, Eppelsheim; C, Esselborn; D, Westhofen; specimens housed at the HLMD, SMF, SNMK and LMM; E, Recent Equus burchelli Gray 1824 (sample ebN) from Sudan, Kenya and Tanzania; F, Equus burchelli (sample ebS) from Botswana, Namibia and Angola; specimens housed at the AMNH and the SMF.

330

GEODIVERSITAS • 2003 • 25 (2)

0

20

40

60

80

100

hi

p

n

P l h s r b %l %h %s %r %b

3 #

4 #

M1 M1

P4 P4

2 #

3

39

1

55

7 #

8 #

2

41

M3

2

60

3

52

M2

3

22

0

57

2

54

42

1

40

3

1

61 12

7 11

20

56 1

19 12

M3 M3 M3 M3

M2 M2

P4

12

18 10

21 11

35 0

63

M3 M3 M3

M2 M2

P4

P3 P3 P3

M1 M1 M1 M1

P4 P4 P4

P3 P3 P3

M1 M1 M1 M1

P4 P4

M3 M3 M3 M3 M3

M2 M2

M1 M1

12

33

M1

P4

9

38 10

37

M3 M3

M2

P4

10

36 11

34

M2 M2

M1 M1

9

51

M3

10

49

M1

11

48 29

1 20

6

M3 M3

9

50 29

3

M3

29

2 28

4 20

15 20

14 19

16 27

5

M3 M3

29

8

M1 M1

28

10

M3

20

27

M1

28

9

M2

P4

27

12

18

17

19

29

M3 M3 M3

M2

M1 M1

P3 P3

P4 P4 P4 P4

P3 P3 P3

M2 M2 M2

M1 M1 M3 M3

M2 M2

M1 M1

P4 P4 P4 P4 P4 P4

P3 P3 P3 P3

M2 M2 M2

M1 M1

P4 P4 P4

P3 P3 P3 P3 P3 P3 P3 P3 P3

P4

27

11

26

13

M3 59 9

19

28

23

P4

27

24

P3

18

31

26

26

M3 M3

M1 M1

P3 P3 P3

28

M2 M2 M2

M1

P3 P3

18

30

M2

M1

P3

32 17

19

M3

26

25

M2 M2 44

P4

18

45

M1

26

43

P3

17

47

M3

17

46

8

0

89

15

0

47

10

0

86

18

6

0

43

25

0

0

99

98

97

97

1.9

0

98 100 98

0

0

23

20

0

0.9

99

0

2

98

71 102 75

16

8

29

22

27

18

19

24

20

10

17

16

22

14

12

14

98

2

0

95

5

2

2

0

2

2

2

94

95

99

94

95

0

0

2

2

2

2

2

12

2

88

10

43

39

93

94

93

92

92

14 12

41

33

36

37

29

32

38

31

34

27

26

36

34

30

28

30

22

2

11

9

91

92

9 15 17

92

4

9

9

9

11

11

92

91

91

90

89

89

11

11

90

10

9

88

12

11

89

11

11

9

91

90

8.9 9.7

9

88

12

11

88

12

11

2 13

9 11

6

90

9.9 8.3 9.3 8.9 9.9 11

11

87

90

10

11

89

91

9.3

11

8 15 13 14 18 15 17 16 13 15 16 12 16 19 18 14 15 15

90

10

2

0

0

0.928 62

0

0.940 167

0

0.945 105

0

0.949 59

0

0.952 121

0

0.955 67

0

0.962 123

0

1

0.848 220

1

0.850 192

1

0.868 238

0

0.899 49

0

6

5

5

0.485 230

5

0.493 195

5

0.497 203

5

0.506 256

5

0.508 240

5

0.513 197

5

0.538 266

5

0.543 268

5

0.548 274

5

0.549 213

5

0.566 215

4

0.569 241

4

0.576 284

4

0.580 286

4

0.594 312

3

0.606 89

4

0.613 259

4

0.626 330

2

0.716 130

2

0.736 120

2

0.744 115

2

0.770 148

2

0.788 138

1

0.797 164

2

0.797 133

1

0.810 176

0

0.821 44

1

0.822 174

1

0.832 182

1

0.839 194

0

0.842 93

0.902 111

0.970 77

1.000 18

24

26

32

28

24

20

26

20

22

18

24

87

13

11

90

9.7

9

87

13

11

89

11

9

9 11 89

9 13 87

86

14

11

87

13

9

84

16

11

88

13

9

85

15

9

75

82

18

9

61

14

12 14 20 15 17 15 19 12 18 12 20 16 17

87

13

11

76

16

7

6

6

6

6

6

3

11

9

7

8

7

7

6

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0

0.919 149

0.926 103

0

0.474 169

0.476 225

88 88 86 82 83 88 85 82 78 82 82 79 80 85 86 84 77 87 83 85 74 87 85 83 87 89 84 86 89 81 79 90 81 82 81 78 80 78 80 82 81 79 83 79 76 77 81 80 79 90 82 80 75 79 77 78 75 81 75 80 73 75 73

9

93

6

99 234 178 71 219 206 203 163 150 147 192 191 188 135 175 177 136 132 164 160 119 56 160 149 121 145 108 104 104 132 93 117 89

6.8 6.8 6.1 7.2 7.4 7.8 8.3 8.5 8.8 7.7

2

94 100 93

5.7 5.5 1.1 6.2 5.5 6.3

2

32 173 142 158 60 145 131 127 28 130 99 116 103 114 84

12 12 14 18 17 12 15 18 22 18 18 21 20 14 13 14 23 11 15 13 26 11 14 16 12

98

12

74 117 43

13

2.6 2.4 1.5 1.7 3.4 2.9 1.8

0

58

17

58

§§

M2 §&

§§

§§

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 # # # # # # # # # # # # # # # # # # # # # P2 P2 # P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 # P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2

75 120 66 119 57 102 164 62 101 146 110 48 226 181 208 92 182 172 163 44 164 124 154 128 137 106 110 119 301 239 80 283 257 256 221 195 194 247 239 238 177 212 229 185 176 203 199 150 62 194 185 167 181 141 132 137 155 123 137 119 93

2

53

100 97

0

0

15

2

18

0

62

6 #

P4 P4 P4 P4

5 #

M2 M2 M2 M2 M2

1 #

0.463 71

R

0.462 222

0.00

0.435 212

0.10

0.433 185

0.20

0.423 207

0.30

0.404 151

0.421 159

0.40

0.395 154

0.50

0.378 181

0.60

0.342 141

0.70

0.314 163

0.80

0.312 136

GEODIVERSITAS • 2003 • 25 (2) 0.268 110

0.90

A 0.170 92

1.00

Extending the tooth mesowear method

Corresponding Probability (p)

331

0

20

40

60

80

100

hi

p

n

P l h s r b %l %h %s %r %b

#

1

#

2

#

3

#

4

#

5

#

6

#

7

#

8

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

# P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0

0

14

1

16

0

57

0

31

2

35

2

38

0

46

5

56

3

21

0

29

4

37

1

42

94

94

97

93

0

22

4

30

1

56

0

21

4

27

1

53

0

38

6

48

3

35

0

43

8

56

2

22

0

53

9

68

4

19

0

36

7

47

2

39

0

31

5

39

3

48

0

46

8

59

4

33

0

15

3

21

1

61

0

36

8

49

2

40

0

21

5

29

1

54

0

29

7

40

2

52

0

14

4

20

1

60

95

94

97

96

94

97

94

96

93

94

95

96

97

95

95

5

94

6

1

58

14

79

5

1

1

43

11

58

4

13

94

94

5.8 6.5

1

72

18

98

6

4

94

6

1

57

15

78

5

2

1

51

13

70

5

11

3

1

65

18

91

6

1

51

14

72

5

12

1

50

14

69

5

9

1

36

10

49

4

25

1

55

17

79

4

6

1

58

17

82

6

8

1

41

13

60

3

17

1

50

15

71

5

10

1

44

13

63

5

24

1

36

11

51

4

26

1

48

16

70

4

14

1

40

14

59

3

16

1

43

14

62

5

23

1

48

17

72

4

15

1

34

12

51

3

30

1

26

10

39

2

32

1

29

10

42

4

43

1

34

13

53

3

31

1

33

13

50

3

28

94

93

94

94

93

92

95

93

95

93

93

93

95

95

93

95

94

95

91

95

94

6.3 6.7 6.2 6.5 6.8 7.5 4.8 6.8 4.8 6.6 7.4 7.3 5.4 4.8 7.5 5.3 5.6 4.9 8.7 5.4 5.7

1

65

17

89

6

94

6

1

41

16

63

4

27

1

27

12

44

3

45

1

19

9

30

2

46

1

26

13

43

3

44

1

19

10

32

2

47

95

94

94

93

94

5.5 6.4 6.3 6.5 5.9

1

33

14

52

3

29

92

8

1

12

9

23

2

58

1

0.602 83

2

0.602 53

2

0.612 74

2

0.615 77

1

0.621 97

2

0.641 75

1

0.642 95

1

0.644 83

2

0.646 62

1

0.665 104

1

0.670 84

0

0.678 21

0

0.714 42

0

0.746 30

0

0.748 51

0

0.771 22

0

0.774 63

0

0.784 42

0

0.786 49

0

0.791 72

0

0.804 58

0

0.805 51

0

0.807 28

0

0.809 31

0

0.816 70

0

0.825 79

0

0.827 43

0

0.829 37

0

0.838 49

0

0.840 52

0

0.848 58

0

0.867 29

0

0.872 50

0

0.874 38

0

0.876 59

0

0.882 21

0

0.890 30

0

0.914 9

0

0.927 37

0

0.932 28

0

0.973 16

0

1.000 7

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5

3

3

3

3

2

2

2

2

3

3

2

2

2

2

2

2

2

2

2

1

0.591 88

9 12 12 11 12 15 11 13 13 15 16 14 16 15 16 14 15 17 18 19 19 22 19 20 20 21 20 20 21 21 22 21 23 22 24 23 22 23 25 25 24 26 26 27 25 27 28 28 29 30 31 33 33 41

95

0

53

8

66

4

18

5.1 5.7 3.2 3.6 5.9 3.4 5.6 4.1 7.1 6.3 4.5 3.9 3.3 4.8 4.8

0

60

9

75

4

7

0.588 63

6 10 12

97

7

0

32

4

40

3

49

0.586 76

8

0

28

5

36

1

41

0.575 68

7

94

0

38

5

46

3

34

0.569 55

93 96 94 88 92 94 90 88 91 88 88 89 88 85 89 87 87 85 84 86 84 85 84 86 85 83 82 81 81 78 79 79 78 78 78 78 77 77 77 77 75 76 75 76 76 75 74 73 74 73 72 70 73 71 70 71 69 68 66 65 63 55

97

0

39

5

49

3

37

0.564 74

0

95

0

45

6

55

3

20

3.4 5.2 5.8 6.1 2.7

0

22

3

28

1

55

0.554 62

100

90

6

0

39

4

47

3

36

0.543 67

6 13

0

17

1

19

2

59

6.7 9.5 5.1 2.6

0

24

2

28

2

51

0.538 76

4

0

0

7

1

9

0

63

95 100 93

7.1 5.4

0

24

1

26

2

50

100 100 93

0

0

7

0

7

0

62

§&§ M3 §&§ M3 M3 M3 §&§ M3 M3 §&§§&§ M3 M3 §&§ M3 §&§ M3 §&§ M3 §&§ M3 M3 M3 §&§§&§§&§§&§ M3 M3 §&§§&§ M3 M3 M3 M3 §&§§&§ M3 M3 §&§§&§ M3 §&§ M3 M3 §&§ M3 §&§ M3 §&§ M3 §&§ M3 §&§ M3 §&§§&§ M3 §&§§&§§&§ M3 §&§

M2 M2 M2 M2 §&§§&§§&§ M2 M2 M2 M2 M2 §&§ M2 M2 §&§ M2 M2 §&§ M2 §&§ M2 §&§ M2 §&§§&§§&§§&§§&§§&§§&§ M2 M2 M2 M2 M2 M2 §&§§&§ M2 M2 M2 §&§ M2 §&§§&§§&§ M2 M2 §&§§&§ M2 M2 §&§§&§ M2 §&§§&§§&§ M2 §&§§&§§&§

§&§§&§§&§§&§§&§§&§§&§ M1 M1 M1 M1 §&§ M1 §&§§&§ M1 M1 M1 M1 §&§§&§ M1 M1 M1 §&§ M1 M1 M1 §&§ M1 §&§ M1 M1 §&§§&§ M1 M1 M1 M1 §&§§&§ M1 M1 M1 §&§ M1 §&§ M1 §&§§&§ M1 M1 §&§§&§ M1 §&§ M1 §&§ M1 §&§§&§§&§§&§

§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§ P4 §&§ P4 P4 §&§ P4 P4 §&§ P4 P4 P4 P4 P4 P4 P4 §&§ P4 P4 P4 P4 §&§ P4 §&§ P4 P4 §&§ P4 §&§ P4 §&§ P4 P4 §&§ P4 §&§§&§ P4 P4 P4 P4 §&§§&§§&§§&§ P4 P4 P4 §&§§&§ P4 §&§§&§

§&§§&§ P3 P3 §&§ P3 P3 P3 §&§ P3 §&§ P3 P3 P3 §&§ P3 P3 P3 §&§§&§ P3 §&§ P3 §&§ P3 P3 §&§§&§§&§§&§§&§ P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 §&§ P3 §&§ P3 P3 P3 §&§§&§ P3 §&§§&§§&§ P3 §&§§&§§&§§&§§&§§&§§&§§&§§&§

0.535 54

R

0.516 41

0.00

0.504 46

0.10

0.500 56

0.20

0.495 53

0.30

0.488 67

0.40

0.461 55

0.50

0.425 47

0.60

0.417 32

0.70

0.381 46

0.80

0.371 34

332

0.90

B 0.227 25

1.00

Kaiser T. M. & Solounias N.

Corresponding Probability (p)

GEODIVERSITAS • 2003 • 25 (2)

#

2

#

3

#

4

#

5

#

6

#

7

#

8

#

# P2 #

#

# P2 P2 #

#

#

# P2 # P2 # P2 P2 # P2 P2 P2 P2 P2 #

#

#

# P2 P2 P2 # P2 P2 P2 P2 # P2 P2 P2 P2 P2 #

# P2 P2 P2 P2 # P2 P2 P2 P2 #

#

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0

0

10

0

13

0

55

0

0

7

0

10

0

61

0

0

17

1

23

0

39

0

0

14

1

20

0

52

0

0

10

1

13

0

53

0

0

7

1

10

0

60

0

22

0

0

24

5

35

13

2

31

1

35

5

18

0

0

17

4

25

0

42

7.3

3

30

2

38

3

14

0

0

7

9 13 17

3 19

6

5

36

17

2

24

0

25

3 19

0

86 100 83

0

0

21

5

32

0

40 3

27

3

23

1

28

3

30 5

7

2

38

5

47

6

92

0

41

0

0

14

4

22

0

56

19

2

21

0

22

5

49 3

6

94

5.7

3

37

6

50

0 13

90 100 100 81

0

0

17

5

25

4 11 23 22

90

7.9 9.7 9.6

3

27

2

35

4

83

17

2

24

1

25

5

34 8

2

90

10

2

35

5

44

5

19

4 12

86

14

5

44

2

50

7

90

9.7

3

23

2

28

3

28

88

12

2

31

4

37

5

21

4 11

89

11

3

20

1

25

3

45 8

8

94

6

3

34

6

47

3

15

93

7

3

30

5

40

3

17 8

1

89

11

5

51

6

62

4 14 13 10

85

15

5

41

2

47

88

12

2

31

5

37

5

20

2 13

83

17

5

37

1

40

8

11

0

0

14

5

22

0

54

13

2

28

4

34

5

37

4 26 12

81 100 87

19

2

21

1

22

5

48 8

3

88

12

5

48

6

59

0

0

10

4

15

0

57 8

5

13

5

44

5

52

9

93 100 87

7

3

30

6

40

3

16

8 10 15 29

89

11

3

20

2

25

3

44

8

9

93

7.5

3

27

5

37

3

31

5 14

83

17

5

37

2

40

87

13

2

28

5

34

5

35

8

4

87

13

5

44

6

52

3 14 11

82

18

5

34

1

37

8

24

86

14

5

41

5

49

8

12

5 10

86

14

3

16

1

18

3

46

93

7.5

3

27

6

37

3

29

84

16

2

24

4

27

5

38

5 17 13

82

18

5

34

2

37

8

23

86

14

5

41

6

49

8

10

91

9.1

3

23

5

30

3

32

0 12 16

75

25

2

17

0

15

5

50

84

16

5

37

5

42

8

13

83

17

2

21

4

24

5

51

3 11 15

79

21

5

30

1

30

8

25

83

17

5

34

5

39

8

26

90

10

3

20

5

27

3

47

6 11 18

83

17

3

13

1

15

3

58

0

0

7

4

12

0

63

29

2

14

0

12

5

59

3 36

0

77 100 71

23

5

27

1

27

8

43

0 13

7 18 11 11 15

7 11 10 10 14 11

8

9 15 10 12

0.868 45

6

0.877 39

9 13

0.881 45

9 11

0.884 48

0

0.886 15

8

0.887 43

8

0.890 67

6 12

0.891 28

0

0.893 22

8

0.895 27

5

0.895 42

8 12

0.896 48

8

0.900 43

7

0.903 50

5 10

0.903 55

5 11 13

0.911 28

7 10

0.913 58

7

0.915 53

9

0.915 27

0

0.919 22

0

0.922 25

4

0.923 52

9 11

0.929 31

8

0.932 30

0

0.936 32

6

0.936 37

9

0.940 41

0

0.942 25

6

0.946 40

0

0.950 35

0

0.974 10

0

0.987 13

0

0.987 20

0

0.992 23

0

0.998 10

0

0.999 13

1.000 3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p

hi

0

20

40

60

80

100

n

0.867 40

94 93 91 88 83 91 81 86 90 81 92 84 85 84 77 78 91 80 89 86 83 82 83 84 85 79 79 82 86 82 88 74 82 80 81 77 71 81 84 77 85 80 80 80 80 83 75 80 89 79 74 83 79 78 76 77 71 82 64 88

6

14

2

28

1

32

5

33

0.848 50

100 100 100

0

100 100 100 100 100 100 100 100 88 100 93

0

0

3

0

3

0

62

§&§§&§§&§§&§§&§§&§§&§ M3 §&§ M3 §&§§&§ M3 §&§§&§§&§ M3 M3 M3 §&§ M3 §&§§&§ M3 §&§§&§ M3 §&§ M3 M3 M3 §&§ M3 §&§ M3 M3 §&§ M3 M3 M3 M3 §&§ M3 §&§ M3 M3 §&§ M3 §&§ M3 M3 §&§ M3 M3 §&§ M3 M3 §&§ M3 M3 §&§ M3 §&§

M2 M2 §&§ M2 §&§ M2 §&§ M2 M2 M2 M2 §&§§&§ M2 §&§ M2 M2 M2 §&§§&§ M2 M2 M2 §&§ M2 §&§ M2 §&§§&§ M2 M2 M2 M2 §&§§&§§&§§&§§&§ M2 M2 M2 M2 §&§§&§§&§ M2 M2 §&§§&§§&§ M2 M2 §&§ M2 M2 M2 §&§§&§§&§§&§§&§§&§§&§

§&§ M1 M1 M1 M1 §&§§&§ M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 §&§ M1 M1 M1 §&§ M1 M1 §&§ M1 M1 M1 M1 M1 M1 M1 §&§§&§§&§ M1 §&§ M1 §&§§&§ M1 §&§ M1 M1 §&§§&§§&§ M1 §&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§

§&§§&§§&§ P4 P4 P4 P4 P4 P4 §&§ P4 P4 P4 §&§ P4 §&§ P4 P4 §&§§&§ P4 P4 P4 P4 P4 §&§§&§ P4 P4 §&§ P4 §&§ P4 P4 P4 §&§ P4 P4 P4 §&§§&§ P4 §&§§&§ P4 P4 §&§§&§ P4 P4 §&§§&§ P4 §&§§&§§&§§&§§&§§&§§&§§&§§&§§&§

§&§§&§§&§§&§§&§§&§§&§§&§ P3 §&§§&§ P3 §&§ P3 §&§§&§ P3 §&§§&§ P3 §&§ P3 P3 P3 §&§§&§ P3 P3 §&§§&§ P3 P3 P3 P3 §&§ P3 §&§ P3 §&§§&§ P3 P3 §&§ P3 P3 P3 §&§ P3 P3 §&§ P3 P3 P3 §&§ P3 P3 P3 §&§ P3 §&§ P3 §&§ P3

#

1

0.822 35

0

P l h s r b %l %h %s %r %b

R

0.00

0.10

0.20

0.30

C 0.811 17

0.813 12

0.824 30

0.829 47

0.831 18

0.834 29

0.848 38

0.855 33

0.860 57

0.862 20

0.863 32

0.871 57

0.874 21

0.874 60

0.882 40

0.885 60

0.893 39

0.900 70

0.908 42

0.912 31

0.912 49

0.915 30

0.929 38

GEODIVERSITAS • 2003 • 25 (2)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Extending the tooth mesowear method

Corresponding Probability (p)

333

0

20

40

60

80

100

hi

p

n

P l h s r b %l %h %s %r %b

#

1

#

2

#

3

#

4

#

5

#

6

#

7

#

8

#

#

#

#

#

#

#

#

#

#

#

#

#

#

# P2 P2 P2 # P2 P2 P2 P2 P2 P2 P2 # P2 P2 P2 # P2 P2 P2 P2 P2 P2 P2 P2 # P2 P2 P2 # P2 P2 P2 P2 P2 P2 # P2 P2 #

#

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0

0

11

3

14

0

57

0

0

7

2

9

0

63

0

0

18

4

24

0

42

0

0

14

3

19

0

56

0

0

11

2

15

0

55

0

0

7

1

10

0

61

2.2

0

36

5

44

1

21

0

0

25

3

31

0

41

0

0

32

4

41

0

22

0

32

4

39

1

37

0

25

3

29

1

51

0

0

21

2

26

0

54

0

22

2

25

1

50

0

43

4

51

1

20

9

9

98

8

96

9

7

0

25

2

30

1

49

0

39

3

46

1

35

8

7

97

89

11

4

62

9

72

9

5

90

10

4

58

8

69

8

6

0

0

18

1

22

0

53

13

4

44

8

52

8

17

88

12

4

58

8

67

9

12

87

13

4

55

8

62

9

13

88

12

4

51

7

59

8

16

89

11

4

54

7

64

8

15

90

10

4

69

8

79

9

4

0

43

3

52

1

18

90

85

15

4

40

7

47

8

31

88

13

4

55

7

63

9

11

86

14

4

51

7

57

9

26

7 14 11 11

98

9.7 1.9

4

72

8

84

9

3

5 14 11 12 11 11 10 10

91 100 87

9.2

4

76

9

89

9

1

7 12 11 10

98

1.8 3.2 2.1

0

46

4

56

1

19

98 100 98

0

0

25

2

32

0

39

84

16

4

37

7

42

8

32

5 15

95

4.8

0

18

1

20

1

59

87

13

4

47

6

54

8

29

88

12

4

51

6

60

8

14

9 11 10

89

11

4

65

7

74

9

10

84

16

4

37

6

43

8

30

87

13

4

51

6

58

9

24

0

0

21

1

27

0

52

18

4

33

6

37

8

47

5 14

85 100 82

15

4

48

6

53

9

25

9 13 10 10

90

10

4

69

7

80

9

2

8

89

11

4

62

6

70

9

9

9

86

14

4

44

5

50

8

28

5

98

2.3

0

36

2

42

1

34

9

87

13

4

47

5

55

8

27

83

17

4

33

5

38

8

45

8 12

89

11

4

65

6

75

9

8

80

20

4

30

5

33

8

46

9 13

84

16

4

44

5

48

9

43

7

88

12

4

58

5

65

9

23

5

98

2.1

0

39

2

47

1

33

78

22

4

26

4

28

8

58

8 12

85

15

4

40

4

45

8

44

0

0

14

0

17

0

60

3

0

0

8 12

0

6

8 10

5 10

7

0

8

6

9

0

7

0.812 62

7

0.813 67

9

0.822 51

5

0.825 89

7

0.830 68

7

0.832 62

5

0.833 83

8

0.837 50

0

0.841 21

6

0.843 66

6

0.844 72

8

0.851 55

0

0.855 53

5

0.855 93

5

0.859 88

6

0.860 72

6

0.861 67

6

0.867 71

6

0.869 76

7

0.874 60

0

0.875 22

4

0.876 98

6

0.882 77

5

0.887 81

0

0.890 47

0

0.906 31

0

0.916 57

0

0.925 32

0

0.934 52

0

0.934 26

0

0.945 62

0

0.952 36

0

0.963 26

0

0.969 36

0

0.971 30

0

0.975 40

0

0.983 35

0

0.984 41

0

0.984 31

0

0.984 45

0

0.995 10

0

0.999 15

0

1.000 19

0

1.000 24

0

1.000 9

0

1.000 14

0

1.000 5

100

0

97 100

2.6

0

32

1

37

1

48

0.807 27

80 79 78 82 82 85 88 88 89 89 88 89 89 90 91 91 91 92 91 93 92 93 93 83 83 85 95 79 83 82 82 83 85 86 93 78 83 82 95 77 86 82 84 86 79 84 83 95 77 86 83 95 84 87 79 83 77 87 95 83 76 97

9

0

50

5

61

1

7

2.8 1.6 3.8 1.9

0

29

3

35

1

36

97 100 100 97

0

0

28

3

36

0

40

20 21 22 18 18 15 13 12 11 11 12 11 11 10

98

2.9 2.5 3.3

0

29

4

34

1

38

100 100 100 100 100 100 100 98 100 100 97

0

0

4

1

5

0

62

§&§ M3 M3 M3 M3 §&§§&§ M3 M3 M3 M3 M3 M3 M3 M3 §&§ M3 §&§ M3 §&§ M3 §&§ M3 M3 M3 M3 §&§ M3 M3 M3 M3 M3 M3 M3 §&§ M3 §&§ M3 §&§ M3 M3 M3 §&§§&§§&§§&§§&§§&§ M3 §&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§

M2 M2 §&§ M2 §&§ M2 §&§ M2 M2 M2 M2 §&§§&§§&§§&§ M2 M2 M2 M2 M2 §&§§&§§&§ M2 M2 M2 M2 M2 §&§ M2 M2 §&§ M2 §&§ M2 §&§ M2 §&§§&§ M2 §&§§&§ M2 M2 M2 §&§ M2 §&§§&§ M2 M2 M2 §&§§&§§&§§&§ M2 §&§§&§§&§§&§§&§§&§

§&§§&§§&§ M1 M1 M1 M1 M1 §&§ M1 §&§ M1 §&§ M1 §&§ M1 M1 §&§§&§ M1 M1 M1 §&§ M1 M1 M1 §&§ M1 M1 §&§§&§ M1 §&§ M1 M1 M1 M1 §&§§&§§&§§&§§&§ M1 M1 M1 M1 §&§ M1 §&§§&§§&§§&§ M1 M1 M1 §&§§&§§&§ M1 §&§§&§§&§§&§

§&§§&§§&§§&§§&§§&§§&§§&§ P4 P4 §&§§&§§&§ P4 P4 §&§ P4 §&§ P4 P4 P4 §&§ P4 §&§ P4 P4 P4 §&§§&§§&§ P4 P4 P4 P4 P4 §&§§&§§&§§&§§&§ P4 P4 P4 P4 §&§§&§§&§ P4 §&§ P4 P4 P4 P4 P4 §&§§&§§&§ P4 P4 P4 §&§ P4 P4

§&§§&§§&§§&§§&§§&§§&§ P3 §&§§&§ P3 P3 P3 §&§§&§ P3 P3 P3 P3 §&§ P3 P3 P3 P3 §&§ P3 §&§§&§ P3 P3 §&§§&§ P3 P3 P3 §&§ P3 P3 P3 §&§ P3 §&§§&§ P3 §&§ P3 P3 §&§§&§ P3 §&§ P3 §&§ P3 §&§ P3 §&§ P3 P3 §&§§&§ P3 §&§

0.802 45

R

0.795 79

0.00

0.793 58

0.10

0.791 43

0.20

0.790 63

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.788 84

0.30

0.782 46

0.770 57

0.40

0.761 41

0.50

0.748 74

0.60

0.747 48

0.738 53

0.70

0.699 36

0.80

0.588 38

334

0.90

D 0.528 17

1.00

Kaiser T. M. & Solounias N.

Corresponding Probability (p)

GEODIVERSITAS • 2003 • 25 (2)

#

2

#

3

#

4

#

5

#

6

#

7

#

8

#

#

#

#

#

#

#

#

#

# P2 #

#

# P2 P2 P2 P2 #

#

# P2 P2 P2 #

# P2 P2 # P2 P2 P2 P2 # P2 P2 P2 # P2 P2 P2 P2 # P2 P2 P2 P2 P2 P2 # P2 P2 P2 P2 P2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

30

70

20

28

17

20

46

55

28

72

30

38

23

26

66

41

31

69

19

32

12

20

44

53

29

71

30

46

20

28

69

39

27

73

41

52

31

34

91

22

24

76

11

14

8

8

25

61

30

70

20

20

20

18

43

57

28

72

31

34

28

26

68

42

24

76

21

24

14

14

45

54

24

76

32

38

22

22

70

40

25

75

21

32

11

16

48

52

23

77

22

20

19

14

47

56

7

63

26

74

10

18

3

8

23

77

64

56

34

35

21

79

11

6

11

6

23 120 22

60

23

77

53

50

23

29

98

18

20

6

36

22

78

53

42

26

27

22

78

66

54

31

34

22

78

43

32

20

21

95 118 75

21

22

78

54

38

31

27

97

34

22

78

42

36

15

21

73

14

23

77

55

48

20

28

96

16

22

78

55

40

23

26

93

17

21

79

56

36

28

26

95

30

22

78

45

30

17

20

73

38

21

79

43

24

23

19

72

50

21

79

32

18

12

13

50

19

81

55

42

25

23

99

19

28

22

78

44

34

12

20

71

18

82

57

40

22

22

97

15

20

80

45

22

20

18

70

32

18

82

44

36

14

17

77

33

1

46

17

83

44

28

17

15

19

81

89

58

34

35

20

80

34

16

9

12

74 147 48

35

2

27

4

29

16

84

45

24

22

15

19

81

78

52

23

29

18

82

46

34

11

16

18

82

78

44

26

27

16

84

46

26

14

14

76 125 75 122 72

37

5

31

11

48

9

3

45

14

86

34

18

11

9

18

82

79

40

31

27

16

84

47

22

19

14

17

83

68

34

20

21

15

85

33

22

6

9

17

83

67

38

15

21

15

85

80

44

25

23

13

87

36

16

8

8

54 124 74 102 52 100 126 52

49

16

84

68

26

23

19

99

13

8

44

12

88

34

10

14

7

14

86

69

38

14

17

10

12

47

14

86

57

20

12

13

13

87

69

30

17

15

13

87

70

26

22

15

11

89

36

8

11

6

77 101 103 49

25

59

3

97

23

4

3

1

29

10

90

59

20

11

9

81

24

25

2

0

0

27

58

48

6

3

1

56

43

8

2

5

0.009 61

0.009 123 0.015 88

0.017 151 0.018 63

0.019 86

0.019 149 0.021 91

0.025 154 0.032 91 0.036 60

0.046 182 0.046 89

0.059 94

0.061 88

0.064 119 0.086 91

0.107 122

0.111 63

0.111 91

0.132 93

0.146 121

0.166 119

0.174 124

0.190 94

0.209 124

0.229 96

0.234 152

0.250 122

0.276 127

0.289 28

0.309 155

0.358 31

0.543 61

0.570 64

0.655 92

0.692 59

0.837 94

0.838 61

0.844 33

0.847 125

0

20

40

60

80

100

p

1.000 33

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ++++++++++++++++++++++++++++++

0.006 121

hi

0.006 149

n

0.004 60

0.847 97

0.862 64

0.905 92

0.978 66

28 31 33 30 31 33 33 33 33 36 35 33 36 32 42 39 42 44 44 45 44 45 45 47 47 49 48 52 45 49 48 52 47 49 49 58 49 51 51 53 53 54 53 53 56 54 56 54 60 58 59 57 60 64 59 59 65 77 66 66 69 93 84

7 11

0

0

92 100 98

59

12

14

7

78

26

7 16

10

90

58

24

6

9

79

23

44 43 42 51 48 42 42 33 37 41 41 50 33 58 36 21 40 35 36 34 31 39 39 34 30 33 27 29 34 38 34 25 38 31 32 27 26 34 37 30 30 29 27 25 28 36 32 30 27 22 17 31 34 22 26 22 15 13 22 27 14

5 13 15 19 20 10 12

14

86

35

20

3

8

51 104 50

51

28 26 25 19 21 25 24 33 30 24 24 17 31 10 22 39 18 21 21 21 25 16 16 19 23 18 26 19 20 13 18 23 15 19 19 15 24 15 12 18 16 17 21 22 16 10 13 17 13 20 24 12

36

64

9

14

9

12

21

62

§&§§&§ M3 §&§§&§ M3 §&§ M3 M3 M3 M3 §&§ M3 §&§ M3 M3 §&§ M3 M3 §&§ M3 §&§§&§ M3 M3 §&§ M3 §&§ M3 §&§ M3 M3 §&§ M3 M3 §&§ M3 §&§§&§ M3 M3 §&§ M3 M3 §&§§&§§&§ M3 §&§ M3 M3 §&§§&§§&§ M3 M3 M3 §&§§&§§&§ M3 §&§§&§

M2 M2 M2 M2 M2 M2 §&§ M2 M2 §&§§&§§&§§&§§&§ M2 §&§ M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 §&§ M2 §&§ M2 §&§§&§ M2 M2 §&§ M2 §&§ M2 §&§§&§ M2 §&§ M2 §&§ M2 §&§§&§ M2 §&§§&§§&§ M2 §&§§&§§&§§&§§&§§&§§&§§&§§&§

§&§ M1 §&§§&§ M1 M1 M1 §&§ M1 §&§ M1 M1 M1 §&§ M1 §&§ M1 §&§ M1 M1 M1 §&§ M1 §&§ M1 M1 §&§§&§ M1 §&§ M1 §&§ M1 §&§ M1 §&§ M1 M1 M1 §&§§&§ M1 M1 M1 M1 §&§§&§ M1 M1 §&§§&§ M1 §&§§&§§&§ M1 §&§§&§ M1 §&§§&§§&§§&§

§&§§&§ P4 P4 P4 P4 §&§§&§§&§ P4 P4 P4 §&§ P4 P4 §&§ P4 P4 P4 §&§§&§ P4 P4 P4 §&§§&§§&§§&§ P4 P4 P4 §&§ P4 P4 P4 §&§§&§ P4 P4 P4 P4 §&§§&§§&§§&§ P4 P4 P4 §&§§&§§&§ P4 P4 §&§ P4 §&§§&§§&§§&§ P4 §&§§&§§&§

0.003 118

P l h s r b %l %h %s %r %b

#

1

§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§§&§ P3 §&§ P3 P3 §&§ P3 P3 P3 §&§§&§§&§§&§ P3 P3 P3 §&§§&§§&§ P3 P3 P3 §&§ P3 P3 §&§ P3 §&§ P3 P3 §&§ P3 P3 P3 P3 §&§ P3 P3 P3 §&§ P3 P3 P3 §&§ P3 P3 P3 P3 §&§ P3

0.002 58

R

0.001 121

0.00

0.001 58

0.10

0.001 90

0.20

0.001 116

0.30

Suggest Documents