FE-PEO

8 downloads 0 Views 7MB Size Report
Free water was removed by azeotropic distillation with 1 mL of acetonitrile. ... Reagents and conditions: i: BrCH2CH2F, NaH, DMF; ii: AcOH-H2O 3:1, 100 °C, ...
 

Synthesis of the Precursor (TE-TDPEO, 5) and the Reference Substance (FE-PEO, 3) FE-PEO (3) was synthesised from TDPEO (1), as shown in Supplemental Figure 1. It was obtained from thebaine in seven consecutive transformations as described previously (9). In brief, the 6,14 endo-etheno bridged key-motif of opioids referred to as the Bentley compounds was obtained from [4+2] cycloaddition of thebaine and methyl-vinyl ketone with the desired diastereomer thevinone being preferably formed. This 7α-acetyl derivative was alkylated with 2-phenylethylmagnesium bromide to obtain a complex product mixture: two diastereoisomeric tertiary alcohols (normal Grignard reaction), two diastereomeric secondary carbinols (Grignard reduction, beta hydrogen transfer) and an additional byproduct which contains a [5,6,7] cyclopropane ring and a phenolic function in the position-4 (as a result of base catalysed rearrangement).

As predicted from a Cram-chelate intermediate, the desired tertiary alcohol was obtained as the main product (62%). Selective 3-O-demethylation of (20R)-phenylethylthevinol afforded (20R)phenylethylorvinol (PEO) as the sole product. Subsequently this compound was 6-O-demethylated to 6-O-desmethyl-PEO (DPEO) and the phenolic hydroxyl function was protected via introduction of a trityl protective group (TDPEO, 1).

Compound 1 was readily alkylated by treatment with NaH and 2-fluoroethyl bromide in DMF to produce (20R)-4,5-α-epoxy-6-(2-fluoroethoxy)-α,17-dimethyl-α-(2-phenyleth-1-yl)-3triphenylmethoxy-6,14-ethenomorphinan-7-methanol (FE-TDPEO, 2). Subsequent cleavage of the 3O-trityl ether bond in 60% acetic acid then resulted in the non-radioactive analogue of the title compound (20R)-4,5-α-epoxy-6-(2-fluoroethoxy)-3-hydroxy-α,17-dimethyl-α-(2-phenyleth-1-yl)-6,14ethenomorphinan-7-methanol (FE-PEO, 3) with a good overall yield and high purity.

In order to obtain a labelling precursor for direct nucleophilic radiofluorination, 1 was deprotonated with NaH and reacted with 2-bromoethanol in DMF to produce (20R)-4,5-α-epoxy-6-(2-hydroxyethoxy)‐ 1 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

α,17-dimethyl-α-(2-phenyleth-1-yl)-3-triphenylmethoxy-6,14-ethenomorphinan-7-methanol (HETDPEO, 4). Conversion of this compound to its 4-methylphenylsulfonic acid ester was achieved under basic conditions with 4-toluenesulfonic anhydride, resulting in the labelling precursor 5 (TE-TDPEO).

(5R,6R,7R,9R,13S,14R,20R)-(5α,7α)-4,5-epoxy-6-(2-fluoroethoxy)-α,17-dimethyl-α-(2phenyleth-1-yl)-3-triphenylmethoxy-6,14-ethenomorphinan-7-methanol (2, FE-TDPEO) 2 was prepared starting from TDPEO (1, 700 mg, 1 mmol). Yield: 480 mg (64 %) ⎯ Rf [chloroform-methanol 9:1] = 0.95; Rf [hexane-ethylacetate 7:3] = 0.35; Rf [hexane-ethylacetate 1:1] = 0.81. ⎯ 1H-NMR (CDCl3) (Supplemental Figure 2) δ = 7.32-7.36 (m, 6H, o-Tr); 7.20-7.27 (m, 9H, Tr(m,p)); 7.12-7.20 (m, 5H, PhCH2CH2); 6.28 (d, 2J2,1 = 8.1 Hz, 1H, 2-H); 6.12 (d, 2J1,2 = 8.1 Hz, 1H, 1-H); 5.74 (d, 2J18,19 = 8.9 Hz, 1H, 18-H); 5.29 (d, 2J19,18 = 8.9 Hz, 1H, 19-H); 4.81 (br s, 1H, 20-OH); 4.32-4.57 (m, 2H, 6-OCH2CH2F); 4.24 (d, 4J5β,18 = 1.0 Hz, 1H, 5α-H); 3.91-4.14 (m, 2H, 6-O-CH2CH2F); 3.05 (d, 2J10β,10α = 18.7 Hz, 1H, 10α-H); 2.98 (d, 3J9α,10α = 6.4 Hz, 1H, 9α-H); 2.78 (m, 1H, 8β-H); 2.70-2.76 (m, 2H, PhCH2CH2); 2.39 (dd, 2J16eq,16ax = 12.1 Hz, 3J16eq,15ax = 4.9 Hz, 1H, 16-Heq); 2.26 (s, 3H, NCH3); 2.23 (m, 1H, 16-Hax); 2.18 (m, 1H, 10α-H); 1.94 (t, 1H, 3J7β,8α = 8.4 Hz, 7α-H); 1.77 (td, 2J15ax,15eq = 13.9 Hz, 3

J15ax,16ax = 12.9 Hz, 3J15ax,16eq = 5.4 Hz, 1H, 15Hax); 1.65 (m, 1H, 15-Heq); 1.53-1.58 (m, 2H,

PhCH2CH2); 1.03 (s, 3H, 20-CH3); 0.74 (dd, 2J8α,8β = 13.0 Hz, 3J8α,7β = 8.4 Hz, 1H, 8α-H). ⎯ 13C-NMR (Supplemental Figure 3) δ = 152.54 (C4); 144.22 (TrC1); 143.24 (C3); 137.32 (Ph-C1); 135.47 (C12); 133.58 (C19); 130.26 (C18); 125.35 (C11); 129.43 (oCTr); 128.48 (Ph-C3,5); 128.28 (Ph-2,6); 127.32 (mCTr); 127.26 (pCTr); 125.52 (Ph-C4); 122.82 (C1); 118.39 (C2); 97.95 (C5); 91.55 (TrCO); 84.27 (C6); 83.14 (d, J = 169.6 Hz, 6-O-CH2CH2F); 74.59 (C20); 66.72 (d, J = 18.8 Hz, 6-O-CH2CH2F); 59.73 (C9); 47.44 (C7); 46.94 (C13); 45.28 (C16); 43.47 (NCH3); 42.80 (PhCH2CH2); 42.97 (C14); 33.51 (C15); 30.66 (C8); 29.11 (PhCH2CH2); 23.17 (20-CH3); 22.31 (C10). ⎯ 19F-NMR (Supplemental Figure 4) δ = - 224.56 ⎯ ESI-MS (Supplemental Figure 5) m/z: 748 [M+1]+ ⎯ C50H50FNO4 (747.93).

‐ 2 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

(5R,6R,7R,9R,13S,14R,20R)-(5α,7α)-4,5-epoxy-6-(2-fluoroethoxy)-3-hydroxy-α,17-dimethyl-α(2-phenyleth-1-yl)-6,14-ethenomorphinan-7-methanol (3, FE-PEO) 6-O-(2-fluoroethyl)-6-Odesmethyl-3-O-trityl-phenylethylorvinol (2, FE-TDPEO, 430 mg, 0.57 mmol) was dissolved in a mixture of acetic acid (30 mL) and water (10 mL). The solution was stirred at 100 °C for 5 min. Thin layer chromatography (TLC) control of the product mixture after 5 min reaction time showed the absence of the starting material 2. The solution was allowed to cool to room temperature and poured into icewater (50 mL). The pH of the mixture was adjusted to 9 with NH4OH. The suspension was extracted with chloroform (4 x 50 mL). The combined organic phase was dried (Na2SO4) and the solvent was evaporated. The residue was purified by column chromatography on silica gel (150 g, eluent system: hexane-ethyl acetate 1:1 (v/v)). The product was dried in vacuo (3 x 10-1 mbar, 16 h). ⎯ Yield: 226 mg (78 %) ⎯ mp. 139-141 °C. ⎯ Rf [A] = 0.82; Rf [B] 0.11; Rf [A] = 0.34. ⎯ 1H-NMR (CDCl3) (Supplemental Figure 6) δ = 7.13-7.27 (m, 5H, PhCH2CH2); 6.57 (d, 2J2,1 = 8.1 Hz, 1H, 2-H); 6.46 (d, 2

J1,2 = 8.1 Hz, 1H, 1-H); 5.89 (d, 2J18,19 = 8.9 Hz, 1H, 18-H); 5.43 (d, 2J19,18 = 8.9 Hz, 1H, 19-H); 4.81 (br

s, 1H, 20-OH); 4.55 (br s, 1H, 3-OH); 4.50-4.68 (m, 2H, CH2CH2F); 4.57 (d, 4J5β,18 = 0.8 Hz, 1H, 5α-H); 4.14-4.38 (m, 2H, CH2CH2F); 3.17 (d, 2J10β,10α = 18.5 Hz, 1H, 10α-H); 3.08 (d, 3J9α,10α = 6.4 Hz, 1H, 9αH); 2.86 (dd, 1H, 2J8β,8α = 12.7 Hz, 3J8β,7β = 9.1 Hz, 8α-H); 2.71-2.81 (m, 2H, PhCH2CH2); 2.47 (dd, 2

J16eq,16ax = 11.9 Hz, 3J16eq,15ax = 4.8 Hz, 1H, 16-Heq); 2.36 (m, 1H, 16-Hax); 2.32 (s, 3H, NCH3); 2.31

(m, 1H, 10α-H); 2.05 (app t, 1H, 3J7β,8α = 8.6 Hz, 7α-H); 1.91 (dt, 2J15ax,15eq = 13.6 Hz, 3J15ax,16ax = 12.7 Hz, 3J15ax,16eq = 5.4 Hz, 1H, 15Hax); 1.80 (dd, 1H, 2J15eq,15ax = 13.6 Hz, 3J15eq,16ax = 2.4 Hz, 15-Heq); 1.551.73 (m, 2H, PhCH2CH2); 1.06 (s, 3H, 20-CH3); 0.82 (dd, 2J8α,8β = 12.7 Hz, 3J8α,7β = 8.3 Hz, 1H, 8α-H). ⎯ 13C-NMR (Supplemental Figure 7) δ = 146.6 (C-4); 143.1 (C-3); 137.3 (Ph -C1); 135.8 (C-19); 133.9 (C-12); 128.2 and 128.5 (Ph-C-2,6 and Ph-C-3,5); 127.8 (C-11); 125.5 (Ph-C4); 125.0 (C-18); 119.9 (C-1); 116.3 (C-2); 98.9 (C-5); 84.4 (C-6); 83.0 (d, J = 169.9 Hz, CH2CH2F); 74.9 (C-20); 66.7 (d, J = 18.8 Hz, CH2CH2F); 59.8 (C-9); 47.5 (C-13); 47.4 (C-7); 45.4 (C-16); 43.5 (NCH3); 43.0 (C-14); 42.9 (PhCH2CH2); 33.5 (C-15); 30.6 (C-8); 29.1 (PhCH2CH2); 23.2 (20-CH3); 22.3 (C-10). ⎯ 19F-NMR

‐ 3 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

(Supplemental Figure 8) δ = - 224.5 ⎯ ESI-MS (Supplemental Figure 9) m/z: 506 [M+1]+ ⎯ C31H36FNO4 (505.62).

(5R,6R,7R,9R,13S,14R,20R)-(5α,7α)-4,5-epoxy-6-(2-hydroxyethoxy)-α,17-dimethyl-α-(2phenyleth-1-yl)-3-triphenylmethoxy-6,14-ethenomorphinan-7-methanol [4, HE-TDPEO] 4 was prepared from TDPEO (1, 700 mg, 1 mmol) ⎯ Yield: 143 mg (19 %); white crystalline product; mp.: 196-197 °C ⎯ Rf[A] = 0.76; Rf[B] = 0.80; Rf[C] = 0.11; Rf[D] = 0.28. ⎯ 1H-NMR (CDCl3) (Supplemental Figure 10) δ = 7.33-7.37 (m, 6H, Tr(o)); 7.21-7.27 (m, 9H, Tr(m,p)); 7.13-7.21 (m, 5H, 20-CH2CH2Ph); 6.29 (d, 2J2,1 = 8.4 Hz, 1H, 2-H); 6.12 (d, 2J1,2 = 8.4 Hz, 1H, 1-H); 5.78 (d, 2J18,19 = 8.9 Hz, 1H, 18-H); 5.28 (d, 2J19,18 = 8.9 Hz, 1H, 19-H); 5.01 (br s, 1H, 20-OH); 4.23 (d, 4J5β,18 = 1.0 Hz, 1H, 5α-H); 3.814.08 (m, 2H, 6-O-CH2CH2OH); 3.64-3.77 (m, 2H, 6-O-CH2CH2OH); 3.04 (d, 2J10β,10α = 18.7 Hz, 1H, 10α-H); 2.98 (d, 3J9α,10α = 6.1 Hz, 1H, 9α-H); 2.77 (m, 1H, 8α-H); 2.71-2.76 (m, 2H, 20-CH2CH2Ph); 2.39 (dd, 2J16eq,16ax = 12.1 Hz, 3J16eq,15ax = 5.0 Hz, 1H, 16-Heq); 2.26 (s, 3H, NCH3); 2.21 (m, 1H, 16Hax); 2.18 (m, 1H, 10α-H); 1.94 (t, 3J7β,8α = 8.1 Hz, 1H, 7α-H); 1.77 (td, 2J15ax,15eq = 13.8 Hz, 3J15ax,16ax = 12.8 Hz, 3J15ax,16eq = 5.5 Hz, 1H, 15-Hax); 1.71 (br s, 1H, 6-O-CH2CH2OH); 1.65 (m, 1H, 15-Heq); 1.511.58 (m, 2H, 20-CH2CH2Ph); 1.03 (s, 3H, 20-CH3); 0.74 (dd, 2J8α,8β = 13.1 Hz, 3J8α,7β = 8.1 Hz, 1H, 8αH). ⎯ 13C-NMR (Supplemental Figure 11) δ = 152.49 (C4); 144.19 (TrC1); 143.21 (C3); 137.36 (PhC1); 135.29 (C12); 133.62 (C19); 130.25 (C18); 129.43 (oCTr); 128.49 (Ph-C3,5); 128.30 (Ph-C2,6); 127.35 (mCTr); 127.26 (pCTr); 125.56 (C11); 125.51 (Ph-C4); 122.74 (C1); 118.40 (C2); 98.06 (C5); 91.55 (TrCO); 81.18 (C6); 74.70 (C20); 68.67 (6-O-CH2CH2OH); 62.69 (6-O-CH2CH2OH); 59.77 (C9); 47.30 (C7); 46.86 (C13); 45.31 (C16); 43.50 (NCH3); 43.03 (20-CH2CH2Ph); 42.79 (C14); 33.49 (C15); 30.65 (C8); 29.13 (20-CH2CH2Ph); 23.51 (20-CH3); 22.32 (C10). ⎯ ESI-MS (Supplemental Figure 12) m/z: 746 [M+1]+ ⎯ C50H51NO5 (745.94).

‐ 4 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

(5R,6R,7R,9R,13S,14R,20R)-(5α,7α)-4,5-epoxy-α,17-dimethyl-α-(2-phenyleth-1-yl)-6-(2-(4toluenesulfonyloxy) ethoxy)-3-triphenylmethoxy-6,14-ethenomorphinan-7-methanol [5, TETDPEO] 6-O-(2-hydroxyethyl)-TDPEO (4, 364 mg, 0.487mmol) was dissolved in dry dichloromethane (12 mL). The solution was cooled to 0 °C in an ice water bath and pyridine (160 µL) was added. The solution was stirred for 15 min and toluenesulfonic anhydride (540 mg, 1.65 mmol) was added in small portions. The reaction mixture was stirred for 4 h at room temperature. The product mixture was poured into water (70 mL) and the suspension was extracted with dichloromethane (6 x 70 mL). The combined organic phase was dried (Na2SO4) and the solvent was removed in vacuo. The product was purified by flash chromatography (silica gel: 175 g, eluent: hexane-ethylacetate 7:3 (v/v)). Yield: 240 mg (54 %) yellowish oil. ⎯ Rf[A] = 0.76; Rf[hexane-ethylacetate-NH4OH 7:3:0.1] = 0.13; Rf[hexaneethylacetate-NH4OH 1:1:0.1] = 0.59; Rf[chloroform-methanol 100:2] = 0.54. ⎯ 1H-NMR (CDCl3) (Supplemental Figure 13) δ = 7.80 (d, J = 8.2 Hz, 2H, Tos-2,6); 7.32 (d, J = 8.2 Hz, 2H, Tos-3,5); 7.297.34 (m, 6H, Tr(o)); 7.12-7.27 (m, 5H, 20-CH2CH2Ph); 7.13-7.21 (m, 9H, Tr(m,p)); 6.27 (d, 2J2,1 = 8.2 Hz, 1H, 2-H); 6.11 (d, 2J1,2 = 8.2 Hz, 1H, 1-H); 5.66 (d, 2J18,19 = 8.9 Hz, 1H, 18-H); 5.27 (d, 2J19,18 = 8.9 Hz, 1H, 19-H); 4.38 (br s, 1H, 20-OH); 4.05 (d, 4J5β,18 = 1.0 Hz, 1H, 5α-H); 4.01-4.11 (m, 2H, 6-OCH2CH2OTos); 3.86-4.00 (m, 2H, 6-O-CH2CH2OTos); 3.03 (d, 2J10β,10α = 18.7 Hz, 1H, 10α-H); 2.96 (d, 3

J9α,10α = 6.4 Hz, 1H, 9α-H); 2.75 (m, 1H, 8α-H); 2.69-2.75 (m, 2H, 20-CH2CH2Ph); 2.42 (s, 3H,

TosCH3); 2.37 (dd, 2J16eq,16ax = 12.0 Hz, 3J16eq,15ax = 4.8 Hz, 1H, 16-Heq); 2.25 (s, 3H, NCH3); 2.20 (m, 1H, 16-Hax); 2.17 (m, 1H, 10α-H); 1.83 (t, 3J7β,8α = 8.4 Hz, 1H, 7α-H); 1.71 (td, 2J15ax,15eq = 13.8 Hz, 3

J15ax,16ax = 12.9 Hz, 3J15ax,16eq = 5.4 Hz, 1H, 15-Hax); 1.61 (m, 1H, 15-Heq); 1.49-1.55 (m, 2H, 20-

CH2CH2Ph); 0.96 (s, 3H, 20-CH3); 0.70 (dd, 2J8α,8β = 12.9 Hz, 3J8α,7β = 8.4 Hz, 1H, 8α-H). ⎯ 13C-NMR (Supplemental Figure 14) δ = 152.48 (C4); 144.77 (Tos-C4); 144.19 (TrC1); 143.27 (C3); 137.29 (PhC1); 135.60 (C12); 133.49 (C19); 132.93 (Tos-C1); 130.28 (C18); 129.91 (Tos-C3,5); 129.43 (oCTr); 128.49 (Ph-C3,5); 128.30 (Ph-C2,6); 128.15 (Tos-C2,6); 127.37 (mCTr); 127.31 (pCTr); 125.55 (C11); 125.25 (Ph-C4); 122.88 (C1); 118.47 (C2); 97.76 (C5); 91.57 (TrCO); 83.46 (C6); 74.39 (C20); 69.74 (6-O-CH2CH2OTos); 65.28 (6-O-CH2CH2OTos); 59.69 (C9); 47.47 (C7); 46.89 (C13); 45.26 (C16); ‐ 5 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

43.46 (NCH3); 42.92 (20-CH2CH2Ph); 42.77 (C14); 33.52 (C15); 30.70 (C8); 29.12 (20-CH2CH2Ph); 23.14 (20-CH3); 22.30 (C10); 21.70 (Tos-CH3). ⎯ ESI-MS (Supplemental Figure 15) m/z: 901 [M+1]+ ⎯ C57H57NO7S (900.13).   Radiosynthesis A viable route for radiosynthesis of (20R)-4,5-α-epoxy-6-(2-[18F]fluoroethoxy)-3-hydroxy-α,17dimethyl-α-(2-phenyleth-1-yl)-6,14-ethenomorphinan-7-methanol (18F-FE-PEO, 18F-1) is presented in Supplemental Figure 16. The procedure was automated on cGMP compliant equipment (GE TRACERlab FX F-N synthesis module).

Radiosynthesis of 18F-FE-PEO was routinely achieved via nucleophilic substitution of a 4-methylphen1-yl sulfonate leaving group on the trityl protected labelling precursor (5, TE-TDPEO) in refluxing MeCN for 10 minutes and subsequent cleavage of the O-trityl bond using ethanolic HCl at 40°C for 5 minutes (1 M, 1 mL). The reaction mixture was neutralised using dilute aqueous ammonia (1.05 M, 1 mL) and the product was purified using a rapid HPLC method.

18

F-Fluoride was produced on a GE PETtrace cyclotron (GE Healthcare, Waukesha, WI, USA) via the

18

O(p,n)18F nuclear reaction. The radioactivity produced was trapped on a Waters Accell plus light

QMA cartridge (Waters Ltd, Elstree, UK), preconditioned with 5 mL of 1 M K2CO3 solution followed by 10 mL of water. The radioactivity was eluted directly into the reactor in the form of [K⊂222]-18F-Fusing a mixture of 7.5 mg K2CO3 in 0.3 mL of water and 22 mg of Kryptofix 222 in 0.3 mL of acetonitrile. The mixture was concentrated to dryness at 90°C under reduced pressure in a stream of helium. Free water was removed by azeotropic distillation with 1 mL of acetonitrile.

Analytical HPLC was performed on an Agilent 1100 series HPLC system (Agilent Technologies UK Ltd, Wokingham, UK), consisting of a G1312 A binary pump and a G1314 variable wavelength UV‐ 6 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

detector. A Bioscan dual BGO metabolite detector system (Bioscan Inc., Washington DC, USA) with Flow-Count B-FC-4000 analogue/digital interface was used for radioactivity detection. Lablogic Laura 4 (Lablogic Systems Ltd, Sheffield, UK) was used for data acquisition and evaluation. For metabolite determination in plasma, a Chromolith RP-18e (5 μm) 0.4 mm x 100 mm column (Merck KGaA, Darmstadt, Germany) was used as stationary phase at a flow rate of 2 mL/min. Quality control was conducted using a VWR Chromolith RP-18e (5 μm) 0.4 x 100 mm column at a flow rate of 1 mL/min. The mobile phase was a mixture of 40% MeCN in 0.05M ammonium formate buffer at pH 6.8±0.05. All solvents and reagents, including Kryptofix 222, were obtained from Sigma-Aldrich (Sigma-Aldrich Co. Ltd, Poole, UK). Solid phase extraction cartridges were obtained from Waters (Waters Ltd, Elstree, UK).

Melting points were measured with a Büchi-535 instrument (Büchi UK Ltd, Oldham, UK) and the data are uncorrected. The 1H-NMR and 13C-NMR spectra were obtained with a Bruker 500 spectrometer (Bruker UK Ltd, Coventry, UK) at 20°C in CDCl3. Column chromatography was performed on Kieselgel 60 Merck 1.09385 (0.040-0.063 mm) (Merck KGaA, Darmstadt, Germany). TLC was accomplished on Macherey-Nagel Alugram® Sil G/UV254 40x80 mm aluminum sheets [0.25 mm silica gel with fluorescent indicator] (Macherey-Nagel, Düren, Germany) with the following eluent systems (each v/v): [A]: chloroform-methanol 95:5; [B]: ethyl acetate-methanol 8:2; [C]: hexane-ethyl acetate 7:3; [D]: hexane-ethyl acetate 1:1. The spots were visualized with a 254 nm UV lamp or with 5 % phosphomolybdic acid in ethanol.

‐ 7 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 1. Synthesis of 6-O-(2-[18F]fluoroethyl)-6-O-desmethyl-phenylethylorvinol (18F-FE-PEO). Reagents and conditions: i: BrCH2CH2F, NaH, DMF; ii: AcOH-H2O 3:1, 100 °C, 5 min; iii: BrCH2CH2OH, NaH, DMF; iv: Tos2O, Pyridine, CH2Cl2; v: [K+K222]18F-, MeCN, 90°C 15 min; vi: 1M HCl in EtOH, 40°C 5 min, 1.05 M NH3.

SUPPLEMENTAL FIGURE 2. Proton nuclear magnetic resonance (1H-NMR) spectrum of FE-TDPEO (2) in deuterated chloroform. ‐ 8 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 3. Carbon-13 nuclear magnetic resonance (13C-NMR) spectrum of FETDPEO (2) in deuterated chloroform.

‐ 9 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 4. Fluorine-19 nuclear magnetic resonance (19F-NMR) spectrum of FETDPEO (2) in deuterated chloroform.

‐ 10 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 5. Electrospray ionization mass spectrometry (ESI-MS) of FE-TDPEO (2).

‐ 11 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 6. Proton nuclear magnetic resonance (1H-NMR) spectrum of FE-PEO (3) in deuterated chloroform.

‐ 12 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 7. Carbon-13 nuclear magnetic resonance (13C-NMR) spectrum of FEPEO (3) in deuterated chloroform.

‐ 13 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 8. Fluorine-19 nuclear magnetic resonance (19F-NMR) spectrum of FEPEO (3) in deuterated chloroform.

‐ 14 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 9. Electrospray ionization mass spectrometry (ESI-MS) of FE-PEO (3).

SUPPLEMENTAL FIGURE 10. Proton nuclear magnetic resonance (1H-NMR) spectrum of HETDPEO (4) in deuterated chloroform.

‐ 15 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 11. Carbon-13 nuclear magnetic resonance (13C-NMR) spectrum of HETDPEO (4) in deuterated chloroform.

‐ 16 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 12. Electrospray ionization mass spectrometry (ESI-MS) of HE-TDPEO (4).

SUPPLEMENTAL FIGURE 13. Proton nuclear magnetic resonance (1H-NMR) spectrum of TETDPEO (5) in deuterated chloroform. ‐ 17 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 14. Carbon-13 nuclear magnetic resonance (13C-NMR) spectrum of TETDPEO (5) in deuterated chloroform.

‐ 18 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 15. Electrospray ionization mass spectrometry (ESI-MS) of TE-TDPEO (5).

SUPPLEMENTAL FIGURE 16. Direct nucleophilic radiofluorination of TE-TDPEO and subsequent deprotection of intermediate 18F-FE-TDPEO to yield 18F-FE-PEO.

‐ 19 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 17. Calibration curve for the determination of 18F-FE-PEO specific activity. AUC: area under the UV signal curve; Concentration denotes that of the reference standard (FE-PEO).

‐ 20 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 18. Decay corrected radiochemical yield of 18F-FE-PEO as a function of precursor mass.

‐ 21 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 19. Parent fraction in plasma measured for n=3 scans and Hill function fit to the mean data (A), together with the plasma and metabolite-corrected plasma input functions for one scan (B). Error bars on the parent fraction plot denote standard deviation.

‐ 22 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al. 

 

SUPPLEMENTAL FIGURE 20. Regional time-activity curves for the striatum (A) and thalamus (B) of one scan together with fits to the data using the reference tissue model (RTM) and the simplified reference tissue model (SRTM). Both models used the same reference tissue time-activity curve from the cerebellum. The thalamus time-activity curve is the same as that in Figure 5.

‐ 23 ‐ THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 2 • February 2013                                                                                     Riss et al.