Reviews in Fish Biology and Fisheries 11: 217–254, 2002. © 2002 Kluwer Academic Publishers. Printed in the Netherlands.
217
Feeding habits and trophic levels of Mediterranean fish Konstantinos I. Stergiou1 & Vasiliki S. Karpouzi1,2 1 Aristotle
University of Thessaloniki, School of Biology, Department of Zoology, Laboratory of Ichthyology, Box 134, 54124 Thessaloniki, Hellas (Greece) (E-mail:
[email protected]; Phone: 30310-998268; Fax: 30310998279); 2 Present address: University of British Columbia, Fisheries Centre, 2204 Main Mall, Vancouver B.C. V6T 1Z4, Canada
Accepted 7 May 2002
Contents Abstract Introduction Materials and methods Results Discussion Acknowledgements References
page 217 218 219 234 239 248 248
Key words: feeding habits, fish, fractional trophic levels, Mediterranean Sea
Abstract The estimation of fractional trophic levels (TROPHs) is essential for the management of fisheries resources as well as for quantifying the ecosystem effects of fishing. We gathered all available information concerning the feeding habits of 332 fish stocks, belonging to 146 species, 59 families and 21 orders, throughout the Mediterranean Sea, and estimated their TROPH values. The latter ranged from 2.0 to 4.5 and the following functional trophic groups were identified: (a) pure herbivores (TROPH = 2.0–2.1, mean = 2.02, SD = 0.03), which were very rare and represented by Siganus luridus, Siganus rivulatus and Sarpa salpa, all of which feed on red, brown, green and bluegreen algae; (b) omnivores with a preference for vegetable material (2.1 < TROPH < 2.9, mean = 2.5, SD = 0.12), but feeding on other prey, such as sponges, hydrozoans, anthozoans, polychaetes, ostracods, isopods, amphipods and copepods. This type of omnivore was very rare among the cases reviewed; (c) omnivores with a preference for animal material (2.9 < TROPH < 3.7, mean = 3.4, SD = 0.19) feeding on a wide variety of prey (e.g., algae, foraminifera, brachyurans, balanoids, ascidians, amphipods, appendicularians, annelids, isopods, gastropods, cnidarians, ophiurids, polychaetes, cladocerans, mysids, euphausids, fish larvae, cephalopods). They were the most numerous and were mainly represented by species of the families Blenniidae, Bothidae, Centracanthidae, Gobiidae, Labridae, Lotidae, Macrouridae, Mullidae, Ophidiidae, Soleidae, Triglidae and Engraulidae; and (d) carnivores with a preference for large decapods, cephalopods and fish (3.7 < TROPH < 4.5). They were the next most abundant group among the cases reviewed. They were mainly represented by species of the families Dalatiidae, Lophiidae, Scombridae, Scyliorhinidae, Synodontidae, Torpedinidae, Merlucciidae, Xiphiidae and Zeidae. This group was divided into two subgroups: one exhibiting a preference for decapods and fish (3.7 < TROPH < 4.0, mean = 3.85, SD = 0.09) and another one exhibiting a preference for fish and cephalopods (4.0 < TROPH < 4.5, mean = 4.38, SD = 0.12). Potential top carnivores in the Mediterranean Sea were also identified. Although such a grouping is provisional, and subject to revision when more datasets for other species, habitats and areas (especially from the Southern Mediterranean Sea, which was underrepresented in our compilation)
218 become available, it may serve as a basis for the maintenance of trophic level balance in the Mediterranean Sea. This will set the basis for an ecosystem approach to the management of the Mediterranean Sea. Across species, TROPH values increased asymptotically with maximum reported body length. The same was also true for 9 out of 11 stocks, for which diet composition data were available for more than three length classes. The within- and among-species asymptotic relationships between TROPH and body length are discussed within the framework of foraging behavior and prey selection theory. Finally, based on the sampling characteristics and methodology used in the studies reviewed, some recommendations for future stomach content studies are also provided.
Introduction The quality and quantity of food are among the most important exogenous factors directly affecting growth and, indirectly, maturation and mortality in fish, thus being ultimately related to fitness (Wootton, 1990). Traditionally, information on the quality and quantity of food consumed by fish, which can be derived from feeding studies, is made operational for fisheries research through incorporation into appropriate fisheries models (e.g., multispecies virtual population analysis) and, after scaling up to the total biomass of predators and prey, provides estimates of the total biomass consumed by predators (Jennings et al., 2001). This allows: (a) the assessment of the relative importance of predatory mortality when compared to fishing mortality for commercially exploited populations; (b) the exploration of any links between recruitment variability and predation (Link and Almeida, 2000); and (c) variability in feeding to be effectively used for the study of the dynamics of fish populations and thus to increase the accuracy of resulted predictions (Ulltang, 1996). In addition, diet composition data also play a key role for the research on the following ecological issues: (a) resource partitioning and withinand between-species competition (e.g., Macpherson, 1981; Harmelin-Vivien et al., 1989); (b) prey selection (e.g., Kohler and Ney, 1982; Stergiou and Fourtouni, 1991); (c) predator-prey size relationships (e.g., Pauly, 2000a; Scharf et al., 2000); (d) distribution of feeding types with latitude (e.g., herbivory versus latitude; Pauly, 2000b); (e) ontogenetic diet shifts (e.g., Stergiou and Fourtouni, 1991; Labropoulou et al., 1997); (f) habitat selection (e.g., Labropoulou and Machias, 1998; Labropoulou et al., 1999); (g) testing predictions from foraging behaviour and optimal foraging theory models (e.g., Wootton, 1990; Hughes, 1997); and (h) species invasions (e.g., Stergiou, 1988; Golani and Galil, 1991).
Finally, diet composition data are also used for the estimation of trophic levels (Pauly and Christensen, 2000a; Pauly and Sa-a, 2000), the latter being of paramount importance for the management of aquatic resources. Recent, paradigmatic failures in fisheries management clearly indicate that traditional assessment models, management strategies, and reference points derived from them are largely inadequate to satisfy the purpose of their existence (e.g., De La Mare, 1998; Beverton, 1998; Smith, 1998; Stokes et al., 1999; Stergiou, 2002). Such a failure is realized from the highly diversified and complex effects of overfishing on the life histories of individual species and on the ecosystems in which these species are embedded (e.g., Jennings and Kaiser, 1998; Hall, 1999; Jennings et al., 2001; Stergiou, 2002). For instance, the mean trophic level in fisheries landings (i.e., mean trophic level of all species making up the landings weighted by their catch) in the last 45 years has decreased steadily both at the global scale and at the regional, ocean-specific scale (e.g., Atlantic, Pacific, Mediterranean; the “fishing down the food web” effect: Pauly et al., 1998a, b, 2000a). The failure of traditional management approaches has led to a growing interest in “ecosystem-based management” as a promising alternative strategy (e.g., Jennings and Polunin, 1996; Walters et al., 1997; Pitcher et al., 1998; Mooney, 1998; Pauly, 1998a; Gislason et al., 2000; Cochrane, 2000; Pitcher, 2000; Stergiou, 2002). It is generally difficult to envisage the full implications of ecosystem management, mainly because the interactions involved at the ecosystem level are complex and poorly understood (Jennings et al., 2001). As a result, it is also difficult to develop a full array of clearly defined “ecosystem” objectives, indicators and reference points that will trigger management actions, without which ecosystem management cannot be realized. Yet, there is a growing understanding that trophic level balance might serve as an objective (Pauly et al., 1998a, b, 2000a; Briand, 2000; Gislason et al.,
219 2000), which can be coined to clearly defined indicators (e.g., “fishery is balanced”, FIB, index (Pauly et al., 2000b), aggregate annual removals from each trophic level) and reference points (e.g., maximum value of FIB index; maximum % annual removals, respectively) (see Table 1 in Gislason et al., 2000). Furthermore, the estimation of trophic levels is also very useful for quantifying the effects of fishing on marine ecosystems because it allows the development of new approaches to the analysis of marine food webs such as: (a) accurate estimation of the “Primary Production Required” to maintain fisheries (Pauly and Christensen, 1995; Tudela, 2000); (b) the construction of a series of mean trophic level values of fish and invertebrates landed by fisheries as a means of evaluating the impacts of fishing on marine ecosystems (Pauly et al., 1998a,b, 2000b, 2001; Christensen, 1998; Stergiou and Koulouris, 2000); and (c) comparative community analysis, in which available community studies can be re-expressed using trophic levels as a common currency (Pauly et al., 2000c). Despite the key role of trophic levels for fisheries and ecosystem research, it is only since the development of Ecopath in the early 1980s (Polovina, 1984; Christensen and Pauly, 1990, 1991, 1992a, b, 1993) and its evolution in the following years into a highly valuable ecological modeling tool (Ecopath/Ecosim/Ecospace: Walters et al., 1997, 1999, 2000; Jarre-Teichmann, 1998; Okey and Pauly, 1999; Christensen et al., 2000; Pauly et al., 2000c; Pauly and Christensen, 2000b; Watson et al., 2000) and the development of FishBase (Froese and Pauly, 1990, 1994, 1998, 2000; Pauly and Froese, 1992) that trophic levels gained high importance leading to global studies (e.g., Christensen and Pauly, 1995; Pauly and Christensen, 1995; Pauly, 1998b; Pauly et al., 1998a,b, 2000a) in which previously reported pieces of information were transformed into thorough scientific knowledge. Nowadays the compilation of existing stomach content data for various aquatic organisms seems to be one among many necessary steps for the development of ecosystem models through the use of various modeling tools, Ecopath/Ecosim/Ecospace included. Such models will mediate the development and evaluation of trophic and other reference points (see Table 1 in Gislason et al., 2000) as well as the evaluation of the effects of fishing on marine ecosystems, by testing “what if” scenarios of alternative management policies. Within this general framework, Pauly et al.
(1995, 1998c) compiled all available diet composition data and estimated fractional trophic levels (TROPHs) for 97 species of marine mammals. This inspired Cortés (1999) to do a similar compilation for 149 shark species. In this review, we gathered all the available studies concerning the feeding habits of Mediterranean fish and estimated their TROPHs. Overall, diet composition data were gathered for 332 datasets, corresponding to 146 species, 59 families and 21 orders. This information will be useful for an ecosystembased management of the Mediterranean Sea. The inadequacy of “traditional” single-species models is amplified by the lack of long-term routine fisheries data and the poor level of scientific information, in contrast to the considerable increase in fishing activity over time (Stergiou et al., 1997; Stergiou, 2000; Lleonart, 2000; Briand, 2000).
Materials and methods We gathered all available information pertinent to feeding habits of Mediterranean fish, derived from stomach content studies conducted since 1961, using: (a) Aquatic Sciences and Fisheries Abstracts (ASFA); and (b) the bibliographic database of the Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée (CIESM). Both sources cover peerreviewed as well as grey literature articles. We also used some unpublished theses and technical reports that were available to us. All available quantitative and qualitative information provided in the original studies was tabulated by species, study area and year, henceforth called “dataset” (Table 1A). In addition, the following information was compiled: sampling gear, sampling frequency, number of stomachs analyzed, method used for diet expression (Table 1A), range in length or mean length of specimens studied, main prey species or group of species by predator’s length when available, and prey’s quantitative contribution to the diet (Table 1B). Finally, the maximum reported body length (Lmax ) and the habitat type of all species reviewed here were extracted from FishBase online (www.fishbase.org) (Table 1B). TROPHs were calculated for each dataset based on the full array of prey items in the diet as presented in the original studies. TROPH expresses the position of organisms within the food webs that largely define aquatic ecosystems (Pauly and Christensen,
220 Table 1A. Feeding habits of Mediterranean marine fish. SM: sampling method (T = trawl, H = hooks, N = nets, GN = gill nets, TN = trammel nets, PS = purse seiners, SC = SCUBA, Sp. = Speared, CL = commercial landings); SF: sampling frequency (S = seasonal, M = monthly, 1 = once, 2 = twice); N: number of stomachs examined; and Method: parameters estimated (F = frequency of occurrence, N = numerical percentage, W = percentage by weight, ES = percentage of empty stomachs, RA = relative abundance). † Valid names of species (from “FishBase online”; www.fishbase.org) Species Anguilliformes 1. Conger conger 2. Conger conger 3. Conger conger 4. Gnathophis mystax 5. Gnathophis mystax 6. Ophichthus rufus Atheriniformes 7. Atherina boyeri Aulopiformes 8. Bathypterois mediterraneus 9. Saurida undosquamis 10. Saurida undosquamis 11. Synodus saurus Beryciformes 12. Sargocentron rubrum 13. Hoplostethus mediterraneus Carcharhiniformes 14. Galeus melastomus 15. Galeus melastomus 16. Galeus melastomus 17. Scyliorhinus canicula Chimaeriformes 18. Chimaera monstrosa Clupeiformes 19. Sardina pilchardus 20. Sardina pilchardus 21. Engraulis encrasicolus 22. Engraulis encrasicolus 23. Engraulis encrasicolus Gadiformes 24. Gadiculus argenteus argenteus 25. Gadiculus argenteus argenteus 26. Micromesistius poutassou 27. Micromesistius poutassou 28. Micromesistius poutassou 29. Micromesistius poutassou 30. Micromesistius poutassou 31. Trisopterus minutus† 32. Trisopterus minutus† 33. Trisopterus minutus† 34. Trisopterus minutus† 35. Trisopterus minutus† 36. Gaidropsarus biscayensis† 37. Gaidropsarus biscayensis† 38. Gaidropsarus mediterraneus 39. Gaidropsarus mediterraneus 40. Gaidropsarus vulgaris 41. Gaidropsarus vulgaris 42. Molva macrophthalma† 43. Caelorinchus caelorhincus†
Family
Area
Year
SM
SF
N
Method
Reference
Congridae Congridae Congridae Congridae Congridae Ophichthidae
Balearic Sea G. Lions G. Marseille Balearic Sea Balearic Sea Catalan Sea
1976–1978 June 1981 1980 1976-78 1985–1988 1985–1987
T T T T – T
M 1 M M M M
F, W F, N, W, ES F, N, W, ES F, W F, N, W, ES F, N, W, ES
Macpherson (1979a, 1981) Khoury (1984) Bell and Harmelin-Vivien (1983) Macpherson (1979a, c, 1981) Casadevall and Matallanas (1990) Casadevall et al. (1994)
Atherinidae
W Sicily
1991
T
1
F
Mirto et al. (1994)
Ipnopidae Synodontidae Synodontidae Synodontidae
Balearic Sea SE Mediterranean SE Mediterranean SE Mediterranean
July 1987 1980–1981 – –
– – T T
1 M M M
50 5223 333 57
F, N, ES N N, ES N, ES
Carrass´on and Matallanas (1990) Bingel and Avsar (1988) Golani (1993) Golani (1993)
Holocentridae Trachichthyidae
SE Mediterranean Ionian Sea
1979–1980 1996–1997
TN T
M M
282 482
F, N, W, ES F, N, ES
Golani et al. (1983) Madurell and Labropoulou (2000)
Scyliorhinidae Scyliorhinidae Scyliorhinidae Scyliorhinidae
Balearic Sea Balearic Sea Catalan Sea Balearic Sea
1976–1977 1976–1978 1988–1990 1976–1978
T T T T
M M – M
1559 1559 99 1009
F, W F, W F, N, W, ES F, W
Macpherson (1979a, 1980a) Macpherson (1981) Carrass´on et al. (1992) Macpherson (1979a, 1981)
Chimaeridae
Balearic Sea
1976–1978
T, H
M
206
F, W
Macpherson (1979a, 1980b, 1981)
Clupeidae Clupeidae Engraulidae Engraulidae Engraulidae
G. S Evvoikos Dardanelles Catalan Sea G. Lions G. Lions
1992–1993 1959–60 1994–1995 1995 1996
GN, TN PS T T T
S S 2 M M
35 131 311 279 247
F, ES N, ES RA F, W, ES F, W, ES
Petrakis et al. (1993) Demirhindi (1961) Tudela and Palomera (1995, 1997) Plounevez and Champalbert (2000) Plounevez and Champalbert (2000)
Gadidae Gadidae Gadidae Gadidae Gadidae Gadidae Gadidae Gadidae
Balearic Sea Balearic Sea Balearic Sea Balearic Sea G. Patraikos G. Korinthiakos G. Evvoikos N Tyrrhenian Sea
1976–1977 1976–1978 1976–1977 1976–1978 1984–1985 1984–1985 1986–1987 1985–1987
T T T T T T T T
M M M M S S S S
1434 1434 1761 1761 310 310 641 200
F, W F, W F, W F, W F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES
Macpherson (1978a, c) Macpherson (1981) Macpherson (1978a, c) Macpherson (1981) Petrakis and Stergiou (1987) Petrakis and Stergiou (1987) Papaconstantinou et al. (1989) Biagi et al. (1992)
Gadidae
C Adriatic Sea
1985–86
Gadidae
G. Evvoikos
1986–1987
T
S
1186
F, N, W, ES
Gramitto (1999)
T
S
590
F, N, W, ES
Politou and Papaconstantinou (1994)
Gadidae Gadidae
G. Pagassitikos N Aegean Sea
1986–1987 1990–1992
T T
S S
482 296
N, W, ES F, N
Politou et al. (1988) Papaconstantinou et al. (1993)
242 12 6 218 707 689 –
Lotidae
Balearic Sea
1976–1978
T
M
395
F, W, ES
Macpherson (1978b, c, 1981)
Lotidae Lotidae Lotidae Lotidae Lotidae Lotidae
C Adriatic Sea G. Lions G. Marseille G. Lions G. Marseille Balearic Sea
1982–1983 June 1981 1980 June 1981 1980 1976–1978
T T T T T T
S 1 M 1 M M
582 15 16 23 7 355
F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, W
Gramitto (1985) Khoury (1984) Bell and Harmelin-Vivien (1983) Khoury (1984) Bell and Harmelin-Vivien (1983) Macpherson (1979a, d, 1981)
Macrouridae
Balearic Sea
1976–1978
T
M
160
W
Macpherson (1979a, b)
44. Caelorinchus caelorhincus† 45. Hymenocephalus italicus 46. Hymenocephalus italicus 47. Nezumia aequalis 48. Nezumia aequalis 49. Trachyrincus scabrus† 50. Trachyrincus scabrus†
Macrouridae Macrouridae Macrouridae Macrouridae Macrouridae Macrouridae
Balearic Sea Balearic Sea Balearic Sea Balearic Sea Balearic Sea Balearic Sea
1976–1978 1976–1978 1976–1978 1976–1978 1976–1978 1976–1978
T T T T T T
M M M M M M
160 323 323 168 168 1670
F, W W F, W W F, W W
Macpherson (1981) Macpherson (1979a, b) Macpherson (1981) Macpherson (1979a, b) Macpherson (1981) Macpherson (1979a, b)
Macrouridae
Balearic Sea
1976–1978
T
M
1670
F, W
Macpherson (1981)
51. Trachyrincus scabrus† 52. Merluccius merluccius 53. Merluccius merluccius 54. Merluccius merluccius 55. Merluccius merluccius
Macrouridae Merlucciidae Merlucciidae Merlucciidae Merlucciidae
G. Genoa Balearic Sea G. Lions C Mediterranean C Adriatic Sea
1977–1978 1976–1978 1993 1982–1983 1963–1964
T T T T T
S – M 2 M
100 664 1526 660 363
N, ES F, W F, N, W, ES F, N, W, ES N, ES
Relini Orsi and Wurtz (1979) Macpherson (1979a, 1981) Bozzano et al. (1997) Andaloro et al. (1985) Juki´c (1972)
221 Table 1A. Continued Species
Family
Area
Year
SM
SF
N
Method
Reference
56. Merluccius merluccius 57. Merluccius merluccius 58. Merluccius merluccius 59. Merluccius merluccius 60. Merluccius merluccius 61. Merluccius merluccius 62. Merluccius merluccius 63. Merluccius merluccius 64. Merluccius merluccius 65. Lepidion lepidion 66. Lepidion lepidion 67. Phycis blennoides 68. Phycis phycis Gobiesociformes 69. Apletodon dentatus Lophiiformes 70. Lophius budegassa 71. Lophius budegassa 72. Lophius piscatorius Notacanthiformes
Merlucciidae Merlucciidae Merlucciidae Merlucciidae Merlucciidae Merlucciidae Merlucciidae Merlucciidae Merlucciidae Moridae Moridae Phycidae Phycidae
C Adriatic Sea C Adriatic Sea G. Saronikos G. Korinthiakos Ionian Sea G. Patraikos Cyclades Islands W Aegean Sea Cretan waters Balearic Sea Catalan Sea Balearic Sea Dodecanese
1971–1973 – 1975–1976 1983–1984 1983–1984 1983–1984 – 1990–1991 1990–1992 July 1987 1988–1990 1976–1978 1985–1986
– – T T T T – T T – T T TN
S – S S S S – S M 1 2 M S
1217 295 451 216 342 731 – 316 – 36 617 2251 196
N F F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES RA F, N, W, ES W F, N, ES F, N, W, ES F, W, ES F, N, W, ES
Froglia (1973) Jardas (1976) Caragitsou and Tsimenides (1977) Papaconstantinou and Caragitsou (1987a) Papaconstantinou and Caragitsou (1987a) Papaconstantinou and Caragitsou (1987a) Kyrtatos (1982) Papaconstantinou et al. (1993) Labropoulou and Markakis (1998) Carrass´on and Matallanas (1990) Carrass´on et al. (1997) Macpherson (1978b, c, 1981) Papaconstantinou and Caragitsou (1989)
Gobiesocidae
G. Marseille
1980
T
M
1
F, N, W, ES
Bell and Harmelin–Vivien (1983)
Lophiidae Lophiidae Lophiidae
Balearic Sea G. Saronikos Thracian Sea
1976–1978 1975–1976 1975–76
T T T
M S S
337 600 218
F, W F, N, W, ES F, N, W, ES
Macpherson (1979a, 1981) Tsimenides (1980) Tsimenides (1980)
73. Notacanthus bonaparte† Ophidiiformes 74. Cataetyx alleni 75. Ophidion barbatum 76. Ophidion barbatum 77. Parophidion vassali Osmeriformes 78. Alepocephalus rostratus 79. Alepocephalus rostratus Perciformes 80. Apogon imberbis 81. Parablennius gattorugine 82. Parablennius rouxi 83. Parablennius tentacularis† 84. Callionymus risso 85. Seriola dumerili 86. Seriola dumerili 87. Seriola dumerili 88. Seriola dumerili 89. Seriola dumerili 90. Trachurus mediterraneus 91. Trachurus mediterraneus 92. Trachurus mediterraneus 93. Trachurus mediterraneus 94. Trachurus trachurus 95. Trachurus trachurus 96. Trachurus trachurus 97. Trachurus trachurus 98. Spicara maena 99. Spicara maena 100. Spicara maena†
Notacanthidae
Balearic Sea
1976–1978
T
M
181
F, W
Macpherson (1979a, 1981)
Bythitidae Ophidiidae Ophidiidae Ophidiidae
Balearic Sea Catalan Sea G. Marseille G. Lions
July 1987 – 1980 June 1981
– – T T
1 M M 1
16 422 1 14
F, N, ES F, N, W, ES F, N, W, ES F, N, W, ES
Carrass´on and Matallanas (1990) Matallanas (1980) Bell and Harmelin-Vivien (1983) Khoury (1984)
Alepocephalidae Alepocephalidae
Balearic Sea Balearic Sea
July 1987 1987–1991
– T
1 S
128 430
F, N, ES F, N, W, ES
Carrass´on and Matallanas (1990) Carrass´on and Matallanas (1998)
Apogonidae Blenniidae Blenniidae Blenniidae Callionymidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Carangidae Centracanthidae Centracanthidae
Corsica G. Lions G. Lions G. Marseille G. Marseille Catalan Sea Tyrrhenian Sea C Mediterranean G. Castellammare G. Castellammare G. Lions Tunisia Aegean Sea C Aegean Sea G. Lions Tunisia Aegean Sea Cyclades Islands G. Lions Corsica
– June 1979 June 1979 1980 1980 1989–1991 1992 1989–1992 1990 1992 1977 1978 1978 1979–1980 1978 1978 1978 – June 1981 –
– SC SC T T T H, GN PS TN, PS PS – – – – – – – – T –
– 1 1 M M S M 1 M M – – – – 1 1 1 – 1 –
– 4 11 4 1 385 168 308 60 166 55 86 37 985 52 78 35 – 46 –
W F, N F, N F, N, W, ES F, N, W, ES F, N, W, ES F, ES F, N, W, ES F, N, W, ES F, N, W, ES F F F N, W F F F RA F, N, W, ES W
Pinnegar and Polunin (2000) Zander and Berg (1984) Zander and Berg (1984) Bell and Harmelin-Vivien (1983) Bell and Harmelin-Vivien (1983) Matallanas et al. (1995) Pipitone and Andaloro (1995) Andaloro and Pipitone (1997) Badalamenti et al. (1995) Mazzola et al. (1993) Ben Salem (1988) Ben Salem (1988) Ben Salem (1988) Kyrtatos (1998a, b) Ben Salem (1988) Ben Salem (1988) Ben Salem (1988) Kyrtatos (1982) Khoury (1984) Pinnegar and Polunin (2000)
Centracanthidae Centracanthidae Centracanthidae Cepolidae Epigonidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae Gobiidae
G. Patraikos G. Marseille G. S Evvoikos G. Evvoikos Balearic Sea G. Lions G. Lions G. Marseille Cretan waters G. Lions G. Lions N Adriatic Sea G. Marseille G. Marseille G. Lions G. Marseille C Adriatic Sea Cretan waters
1984–1985 1980 1992–1993 1986–1988 1976–1978 June 1979 June 1979 1980 1990–1992 June 1979 1987 – 1980 1980 1987 1980 1979–1980 1990–1992
T T GN, TN T T SC SC T T SC SC – T T SC T T T
S M S S M 1 1 M M 1 2 – M M 2 M M M
355 6 14 493 311 8 32 21 – 14 25 157 29 6 125 15 427 328
F, N, W, ES F, N, W, ES F, ES N, ES F, W F, N F, N F, N, W, ES W F, N F, N W F, N, W, ES F, N, W, ES F, N F, N, W, ES F, N, ES F, N, W, ES
Mytilineou (1987) Bell and Harmelin-Vivien (1983) Petrakis et al. (1993) Stergiou (1993) Macpherson (1981) Zander and Berg (1984) Zander and Berg (1984) Bell and Harmelin-Vivien (1983) Labropoulou and Markakis (1998) Zander and Heymer (1992) Zander and Berg (1984) Pölzer and Patzner (1998) Bell and Harmelin-Vivien (1983) Bell and Harmelin-Vivien (1983) Zander and Heymer (1992) Bell and Harmelin-Vivien (1983) Fabi and Froglia (1983a, b) Labropoulou and Markakis (1998); Labropoulou and Papadopoulou-Smith (1999)
101. Spicara smaris 102. Spicara smaris 103. Cepola macrophthalma 104. Epigonus telescopus 105. Buenia jeffreysii† 106. Deltentosteus quadrimaculatus 107. Deltentosteus quadrimaculatus 108. Deltentosteus quadrimaculatus 109. Gobius auratus 110. Gobius auratus 111. Gobius bucchichi 112. Gobius cruentatus 113. Gobius fallax 114. Gobius geniporus 115. Gobius niger 116. Gobius niger 117. Gobius niger
222 Table 1A. Continued Species
Family
Area
Year
SM
SF
118. Pomatoschistus bathi 119. Pomatoschistus bathi 120. Pomatoschistus quagga 121. Zosterisessor ophiocephalus 122. Coris julis 123. Coris julis 124. Coris julis 125. Coris julis 126. Ctenolabrus rupestris 127. Labrus merula 128. Labrus viridis 129. Symphodus cinereus 130. Symphodus cinereus 131. Symphodus cinereus 132. Symphodus mediterraneus 133. Symphodus mediterraneus 134. Symphodus melanocercus 135. Symphodus ocellatus 136. Symphodus ocellatus 137. Symphodus ocellatus 138. Symphodus ocellatus 139. Symphodus rostratus 140. Symphodus rostratus 141. Symphodus rostratus 142. Symphodus tinca 143. Symphodus tinca 144. Symphodus tinca 145. Mullus barbatus 146. Mullus barbatus 147. Mullus barbatus 148. Mullus barbatus 149. Mullus barbatus 150. Mullus barbatus 151. Mullus barbatus 152. Mullus barbatus 153. Mullus barbatus 154. Mullus barbatus 155. Mullus barbatus 156. Mullus barbatus 157. Mullus barbatus 158. Mullus barbatus
Gobiidae Gobiidae Gobiidae Gobiidae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae
G. Lions G. Lions G. Marseille G. Marseille G. Lions G. Marseille Corsica G. S Evvoikos G. Marseille G. Marseille G. Marseille G. Lions G. Marseille G. S Evvoikos G. Marseille G. S Evvoikos G. Marseille G. Lions G. Marseille Corsica G. S Evvoikos G. Lions G. Marseille G. S Evvoikos G. Marseille Corsica G. S Evvoikos Tyrrhenian Sea G. Castellammare G. Castellammare W Adriatic Sea C Adriatic Sea G. Saronikos G. Thermaikos Thracian Sea G. Patraikos G. Korinthiakos Ionian Sea G. Amvrakikos C Aegean Sea Cretan waters
June 1979 1987 1980 1980 June 1981 1980 – 1992–1993 1980 1980 1980 June 1981 1980 1992–1993 1980 1992–1993 1980 June 1981 1980 – 1992–1993 June 1981 1980 1992–1993 1980 – 1992–1993 1977–1978 1990–1991 1994–1995 1975 1963–1964 1975–1976 1976–1977 1976–1977 1983–1984 1983–1984 1983–1984 1986–1987 1990–1992 1990–1992
SC SC T T T T – GN, TN T T T T T GN, TN T GN, TN T T T – GN, TN T T GN, TN T – GN, TN – TN TN T T T T T T T T TN T T
1 2 M M 1 M – S M M M 1 M S M S M 1 M – S 1 M S M – S M M M – M S S S S S S M S M
159. Mullus barbatus 160. Mullus barbatus 161. Mullus surmuletus 162. Mullus surmuletus 163. Mullus surmuletus 164. Mullus surmuletus 165. Mullus surmuletus 166. Mullus surmuletus 167. Mullus surmuletus 168. Mullus surmuletus 169. Mullus surmuletus 170. Mullus surmuletus 171. Mullus surmuletus 172. Upeneus asymmetricus 173. Upeneus moluccensis 174. Upeneus moluccensis 175. Upeneus pori 176. Chromis chromis 177. Chromis chromis 178. Sciaena umbra 179. Umbrina cirrosa 180. Euthynnus alletteratus 181. Sarda sarda 182. Scomber scombrus 183. Thunnus thynnus 184. Thunnus thynnus 185. Thunnus thynnus
Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Mullidae Pomacentridae Pomacentridae Sciaenidae Sciaenidae Scombridae Scombridae Scombridae Scombridae Scombridae Scombridae
G. S Evvoikos SE Mediterranean G. Marseille Corsica G. Palermo G. Palermo G. Castellammare Cyclades Islands Cretan waters Cretan waters Cretan waters N Aegean Sea SE Mediterranean SE Mediterranean SE Mediterranean SE Mediterranean SE Mediterranean G. Lions G. Marseille N Adriatic Sea N Adriatic Sea Cyclades Islands Cyclades Islands Cyclades Islands G. Valencia Ligurian Sea Adriatic Sea
1992–1993 1983–1986 1980 – 1981–1982 1981–1983 1990–1991 – 1988–1989 1990–1992 1990–1992 1992–1993 1983–1986 1983–1986 1983–1986 1991–1992 1983–1986 June 1981 1980 1987–1991 1987–1991 – – – 1989 – 1957–1960
GN, TN T T – TN TN TN – T T T T T T T T T T T N N – – – H T PS
S – M – M M M – S M M S – – – M – 1 M – – – – – M – S
N
Method
Reference
25 25 1 9 16 21 – 81 10 4 14 34 75 48 18 19 19 122 31 – 30 61 68 25 23 – 21 442 84 162 474 282 346 564 758 375 294 375 403 587 630
F, N F, N F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES W F, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, ES F, N, W, ES F, ES F, N, W, ES F, N, W, ES F, N, W, ES W F, ES F, N, W, ES F, N, W, ES F, ES F, N, W, ES W F, ES F, N, ES F, W, ES F, N, W F, W, ES N, ES F, N, W, ES F, N, W, ES F, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, ES F, N, W, ES
70 203 19 – 232 232 84 – 429 322 383 100 – 148 276 711 148 337 22 349 536 – – – 82 67 1176
F, ES F, N, W, ES F, N, W, ES W F, N, W, ES F, N, W, ES F, W, ES RA N, W F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES RA RA RA F, N, ES F, N, W, ES N, ES
Zander and Berg (1984) Zander and Heymer (1992) Bell and Harmelin-Vivien (1983) Bell and Harmelin-Vivien (1983) Khoury (1984) Bell and Harmelin-Vivien (1983) Pinnegar and Polunin (2000) Petrakis et al. (1993) Bell and Harmelin-Vivien (1983) Bell and Harmelin-Vivien (1983) Bell and Harmelin-Vivien (1983) Khoury (1984) Bell and Harmelin-Vivien (1983) Petrakis et al. (1993) Bell and Harmelin-Vivien (1983) Petrakis et al. (1993) Bell and Harmelin-Vivien (1983) Khoury (1984) Bell and Harmelin-Vivien (1983) Pinnegar and Polunin (2000) Petrakis et al. (1993) Khoury (1984) Bell and Harmelin-Vivien (1983) Petrakis et al. (1993) Bell and Harmelin-Vivien (1983) Pinnegar and Polunin (2000) Petrakis et al. (1993) Focardi et al. (1979, 1980) Badalamenti et al. (1993) Lipari et al. (1998) Froglia (1988) Juki´c (1972) Caragitsou and Tsimenides (1982a) Caragitsou and Tsimenides (1982a) Caragitsou and Tsimenides (1982b) Papaconstantinou and Caragitsou (1987b) Papaconstantinou and Caragitsou (1987b) Papaconstantinou and Caragitsou (1987b) Vassilopoulou and Papaconstantinou (1993a) Vassilopoulou and Papaconstantinou (1993b) Labropoulou and Papadopoulou-Smith (1999) Labropoulou and Eleftheriou (1997) Petrakis et al. (1993) Golani (1994); Golani and Galil (1991) Bell and Harmelin-Vivien (1983) Pinnegar and Polunin (2000) Arculeo et al. (1989a) Arculeo et al. (1989b) Badalamenti et al. (1993) Kyrtatos (1982) Labropoulou and Eleftheriou (1997) Labropoulou et al. (1997) Labropoulou and Papadopoulou-Smith (1999) Papaconstantinou et al. (1994) Golani (1994); Golani and Galil (1991) Golani and Galil (1991) Golani (1994); Golani and Galil (1991) Kaya et al. (1999) Golani (1994) Khoury (1984) Bell and Harmelin-Vivien (1983) Froglia and Gramitto (1998) Froglia and Gramitto (1998) Kyrtatos (1982) Kyrtatos (1982) Kyrtatos (1982) Sanz Brau (1990) Relini Orsi et al. (1995) Morovi´c (1961)
223 Table 1A. Continued Species
Family
Area
Year
SM
SF
186. Thunnus thynnus 187. Epinephelus aeneus 188. Epinephelus caninus
Scombridae Serranidae Serranidae
Cyclades Islands Cyclades Islands Cyclades Islands
– – –
– – –
– – –
189. Epinephelus fasciatus† 190. Epinephelus marginatus 191. Serranus cabrilla 192. Serranus cabrilla 193. Serranus cabrilla 194. Serranus cabrilla 195. Serranus hepatus 196. Serranus hepatus 197. Serranus hepatus 198. Serranus hepatus 199. Serranus scriba 200. Serranus scriba 201. Siganus luridus 202. Siganus luridus 203. Siganus rivulatus 204. Boops boops 205. Boops boops 206. Dentex dentex 207. Dentex dentex 208. Diplodus annularis 209. Diplodus annularis 210. Diplodus annularis 211. Diplodus annularis 212. Diplodus puntazzo 213. Diplodus puntazzo 214. Diplodus sargus sargus†
Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Serranidae Siganidae Siganidae Siganidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae
Cyclades Islands G. Annaba G. Marseille Cretan waters G. S Evvoikos Cyclades Islands G. Marseille Cretan waters Cretan waters G. Thermaikos S Tyrrhenian Sea G. S Evvoikos Dodecanese SE Mediterranean SE Mediterranean G. Marseille C Adriatic Sea Balearic Islands Cyclades Islands G. Marseille G. Castellammare Cyclades Islands G. Lions Balearic Sea W Sicily
– 1993–1994 1980 1990–1992 1992–1993 – 1980 1990–1992 1990–1992 1993 1981–1983 1992–1993 1985–1986 – – 1980 1963–1964 1993–1995 – 1980 1990–1991 – – 1992–1993 1991
– N T T GN, TN – T T T T TN GN, TN TN TN, H TN, H T T TN, H – T TN – N Sp. T
– M M M S – M M M S M S S – – M M M – M M – – – 1
– 68 11 601 23 – 4 583 1045 124 244 34 209 110 418 22 79 210 – 7 172 – 512 16 –
Sparidae Sparidae
Balearic Sea G. Lions
1992–1993 –
Sp. N
– –
Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae
G. Castellammare Balearic Sea G. Marseille G. Lions G. Castellammare Adriatic Sea G. Castellammare Cyclades Islands G. Lions G. Evvoikos N Aegean Sea Balearic Sea G. Lions G. Lions C Tyrrhenian Sea C Mediterranean C Adriatic Sea C Adriatic Sea G. Saronikos G. Korinthiakos G. Patraikos Ionian Sea Cyclades Islands Tunisia Tunisia Tunisia Dodecanese Cretan waters Cretan waters
– 1992–1993 1980 – – 1981–1982 1990–1991 – 1996 1987 1992–1993 – 1979–1980 – 1981–1982 1982–1983 – 1963–1964 1978–1979 1983–1984 1983–1984 1983–1984 – 1982–1983 1982–1983 1982–1983 1985–1986 1988–1991 1990–1992
N Sp. T N H – TN – – T T – N N T T – T T T T T – – – – H T T
Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae Sparidae
Cyclades Islands G. Lions G. Marseille Corsica W Sicily S Adriatic Sea G. Lions G. Marseille
– – – – 1991 1989 – 1980
– N, Sp. N, Sp. N, Sp. T – N T
215. Diplodus sargus sargus† 216. Diplodus sargus sargus† 217. Diplodus vulgaris 218. Diplodus vulgaris 219. Diplodus vulgaris 220. Diplodus vulgaris 221. Diplodus vulgaris 222. Lithognathus mormyrus 223. Lithognathus mormyrus 224. Oblada melanura 225. Pagellus acarne 226. Pagellus bogaraveo 227. Pagellus erythrinus 228. Pagellus erythrinus 229. Pagellus erythrinus 230. Pagellus erythrinus 231. Pagellus erythrinus 232. Pagellus erythrinus 233. Pagellus erythrinus 234. Pagellus erythrinus 235. Pagellus erythrinus 236. Pagellus erythrinus 237. Pagellus erythrinus 238. Pagellus erythrinus 239. Pagrus auriga 240. Pagrus caeruleostictus 241. Pagrus pagrus 242. Pagrus pagrus 243. Pagrus pagrus 244. Pagrus pagrus 245. Pagrus pagrus 246. Sarpa salpa 247. Sarpa salpa 248. Sarpa salpa 249. Sarpa salpa 250. Sarpa salpa 251. Sparus auratus† 252. Spondyliosoma cantharus
N
Method
Reference
RA RA RA
Kyrtatos (1982) Kyrtatos (1982) Kyrtatos (1982)
RA F, N, W, ES F, N, W, ES N, W F, ES RA F, N, W, ES N, W F, N, W, ES F, N, ES F, N, W, ES F, ES F, W, ES W W F, N, W, ES N, ES RA RA F, N, W, ES F, W, ES RA F, N, W F, W, ES F
Kyrtatos (1982) Derbal and Kara (1996) Bell and Harmelin-Vivien (1983) Labropoulou and Eleftheriou (1997) Petrakis et al. (1993) Kyrtatos (1982) Bell and Harmelin-Vivien (1983) Labropoulou and Eleftheriou (1997) Labropoulou et al. (1998) Wagu´e (1997) Arculeo et al. (1989a, 1993) Petrakis et al. (1993) Stergiou (1988) Lundberg and Golani (1995) Lundberg and Golani (1995) Bell and Harmelin-Vivien (1983) Juki´c (1972) Morales-Nin and Moranta (1997) Kyrtatos (1982) Bell and Harmelin-Vivien (1983) Badalamenti et al. (1993) Kyrtatos (1982) Rosecchi (1987); Rosecchi and Nouaze (1987) Sala and Ballesteros (1997) Mirto et al. (1994)
78 471
F, W, ES F, N, W
Sala and Ballesteros (1997) Rosecchi (1987); Rosecchi and Nouaze (1987)
M – M – M – M – 1 S S – M – M 2 – M S S S S – – – – S S M
97 46 25 101 128 103 66 – 39 400 146 70 230 204 596 310 93 259 194 76 140 209 – 70 359 150 122 634 634
F, N, W F, W, ES F, N, W, ES F, N, W F, N, W RA F, W, ES RA F, N F, N, W, ES F, N, W, ES RA F, N, W F, N, W F, W, ES N, ES RA N, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES RA F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES N, W, ES F, N, W, ES
– – – – 1 M – M
– 32 25 75 – – 183 1
RA RA RA RA F RA F, N, W F, N, W, ES
Pepe et al. (1998) Sala and Ballesteros (1997) Bell and Harmelin-Vivien (1983) Rosecchi (1987); Rosecchi and Nouaze (1987) Pepe et al. (1996) Jardas and Pallaoro (1990) Badalamenti et al. (1993) Kyrtatos (1982) Lenfant and Olive (1998) Papaconstantinou et al. (1989) Papaconstantinou et al. (1994) Larraneta (1964) Rosecchi (1983) Rosecchi and Nouaze (1987) Ardizzone and Messina (1983) Andaloro and Giarritta (1985) Rijavec and Županovi´c (1965) Juki´c (1972) Caragitsou and Papaconstantinou (1985) Caragitsou and Papaconstantinou (1988) Caragitsou and Papaconstantinou (1988) Caragitsou and Papaconstantinou (1988) Kyrtatos (1982) Chakroun–Marzouk and Kartas (1987) Chakroun–Marzouk and Kartas (1987) Chakroun-Marzouk and Kartas (1987) Papaconstantinou and Caragitsou (1989) Labropoulou et al. (1999) Labropoulou and Markakis (1998); Labropoulou and Papadopoulou-Smith (1999) Kyrtatos (1982) Verlaque (1985, 1990) Verlaque (1985, 1990) Verlaque (1985, 1990) Mirto et al. (1994) Antoli´c et al. (1984) Rosecchi (1987); Rosecchi and Nouaze (1985) Bell and Harmelin-Vivien (1983)
– – –
224 Table 1A. Continued Species
Family
Area
Year
SM
SF
253. Lepidopus caudatus 254. Tripterygion delaisi† 255. Tripterygion delaisi†
Trichiuridae
Balearic Sea
1976–1978
T
M
Tripterygiidae Tripterygiidae Uranoscopidae Uranoscopidae Xiphiidae Xiphiidae
G. Lions G. Lions G. Valencia Cyclades Islands G. Annaba Ligurian Sea
June 1979 1987 1982–1983 – 1990–199 –
SC SC T – 1 T
1 2 M – HM –
Bothidae Bothidae Bothidae Bothidae Citharidae Cynoglossidae Cynoglossidae Scophthalmidae Scophthalmidae Scophthalmidae Scophthalmidae Scophthalmidae Scophthalmidae Soleidae Soleidae Soleidae
E Mediterranean G. Marseille G. Marseille C Mediterranean Cretan waters Balearic Sea Balearic Sea Balearic Sea G. Valencia Tyrrhenian Sea Tyrrhenian Sea N Aegean Sea G. Valencia Adriatic Sea Balearic Sea Balearic Sea
1985 1980 1980 1985–1987 1990–1992 1979–1977 1976–1978 1976–78 1991–1994 1985–1988 1990–1992 1990–1992 1991–94 1968–1970 1976–1978 1987
T T T T T T T T CL T T T CL T – –
Dasyatidae Rajidae Rajidae Rhinobatidae
Tunisia Egypt Cyclades Islands Egypt
1975–1979 – – 1989–1990
Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Scorpaenidae Sebastidae Sebastidae Triglidae
G. Lions G. Marseille G. Lions G. Lions G. Gab`es G. Lions G. Marseille G. Palermo C Adriatic Sea G. S Evvoikos Cyclades Islands G. Marseille G. Lions G. Gab`es Cyclades Islands Balearic Sea Ionian Sea Catalan Sea
June 1981 1980 1980–1986 June 1981 – 1980–1986 1980 1981–1983 1987–1991 1992–1993 – 1980 1980–86 – – 1976–1978 1996–1997 1985–1986
Triglidae
C Tyrrhenian Sea
1985–1987
T
S
70
F, N, ES
Colloca et al. (1994)
Triglidae
Catalan Sea
1985–1986
T
S
589
F, N, W, ES
Moreno-Amich (1994)
Triglidae Triglidae
G. Marseille Cretan waters
1980 1988–1991
T T
M M
1 396
F, N, W, ES N, W, ES
Bell and Harmelin-Vivien (1983) Labropoulou and Machias (1998)
256. Uranoscopus scaber 257. Uranoscopus scaber 258. Xiphias gladius 259. Xiphias gladius Pleuronectiformes 260. Arnoglossus laterna 261. Arnoglossus thori 262. Bothus podas 263. Bothus podas 264. Citharus linguatula 265. Symphurus nigrescens 266. Symphurus nigrescens 267. Lepidorhombus boscii 268. Lepidorhombus boscii 269. Lepidorhombus boscii 270. Lepidorhombus boscii 271. Lepidorhombus boscii 272. Lepidorhombus whiffiagonis 273. Buglossidium luteum† 274. Solea solea 275. Solea solea Rajiformes 276. Dasyatis chrysonata marmorata† 277. Raja miraleuts 278. Raja radula 279. Rhinobatos rhinobatos Scorpaeniformes 280. Scorpaena notata 281. Scorpaena notata 282. Scorpaena notata 283. Scorpaena porcus 284. Scorpaena porcus 285. Scorpaena porcus 286. Scorpaena porcus 287. Scorpaena porcus 288. Scorpaena porcus 289. Scorpaena porcus 290. Scorpaena porcus 291. Scorpaena scrofa 292. Scorpaena scrofa 293. Scorpaena scrofa 294. Scorpaena scrofa 295. Helicolenus dactylopterus 296. Helicolenus dactylopterus 297. Chelidonichthys cuculus† 298. Chelidonichthys cuculus† 299. Chelidonichthys gurnardus† 300. Chelidonichthys lastoviza† 301. Chelidonichthys lastoviza† 302. Chelidonichthys lastoviza†
N
Method
Reference
145
F, W
Macpherson (1979a, c, 1981)
18 40 250 – 29 129
F, N F, N N, ES RA F, N, ES F, N, W, ES
Zander and Berg (1984) Zander and Heymer (1992) Sanz (1985) Kyrtatos (1982) Chalabi and Ifrene (1992) Relini Orsi et al. (1995)
– M M S M M M M – S S S – M – M
296 1 2 111 – 1256 1256 669 344 478 347 804 159 – 365 461
F, N, ES F, N, W, ES F, N, W, ES F W F, W F, W F, W F, N, W, ES N F, N, W, ES F, N F, N, W, ES – F, N, ES F, N, ES
Avsar (1994) Bell and Harmelin–Vivien (1983) Bell and Harmelin-Vivien (1983) Schintu et al. (1994) Labropoulou and Markakis (1998) Macpherson (1978c, 1979a) Macpherson (1981) Macpherson (1979a, c, 1981) Morte et al. (1999) Mannini et al. (1990) Sartor and De Ranieri (1996) Papaconstantinou et al. (1993) Morte et al. (1999) Giovanardi and Piccinetti (1981) Ramos (1981) Molinero and Flos (1991)
– CL – T
– – – M
401 381 – 233
F, ES F RA F, N, W, ES
Capape and Zaouali (1992) Ezzat et al. (1987) Kyrtatos (1982) Abdel-Aziz et al. (1993)
T T T T – T T TN TN GN, TN – T T – – T T T
1 M – 1 S – M M S S – M – S – M M S
37 35 123 133 798 139 30 321 298 19 – 2 12 356 – 808 382 193
F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES F, ES RA F, N, W, ES F, N, W, ES F, N, W, ES RA F, W F, N, ES F, N, W, ES
Khoury (1984) Bell and Harmelin-Vivien (1983) Harmelin-Vivien et al. (1989) Khoury (1984) Bradai and Bouain (1990) Harmelin-Vivien et al. (1989) Bell and Harmelin-Vivien (1983) Arculeo et al. (1989a, 1993) Pallaoro and Jardas (1990) Petrakis et al. (1993) Kyrtatos (1982) Bell and Harmelin-Vivien (1983) Harmelin-Vivien et al. (1989) Bradai and Bouain (1990) Kyrtatos (1982) Macpherson (1979a, c, 1981) Madurell and Labropoulou (2000) Moreno-Amich (1992)
Triglidae
Cretan waters
1990–1992
T
M
346
F, N, ES
Labropoulou and Plaitis (1995)
303. Chelidonichthys lucerna† 304. Chelidonichthys lucerna† 305. Chelidonichthys lucerna†
Triglidae Triglidae
G. Valencia C Tyrrhenian Sea
1989–1991 1985–1987
– T
– S
208 135
F, N, ES F, N, ES
Morte et al. (1997) Colloca et al. (1994)
Triglidae
W Adriatic Sea
1973–1974
T
S
310
F, N
Froglia (1976)
306. Chelidonichthys obscurus† 307. Chelidonichthys obscurus† 308. Chelidonichthys obscurus†
Triglidae Triglidae
Catalan Sea G. Valencia
1985–1986 1989–1991
T –
S –
372 231
F, N, W, ES F, N, ES
Moreno-Amich (1996) Morte et al. (1997)
Triglidae Triglidae Triglidae Triglidae Triglidae Triglidae Triglidae Triglidae
C Tyrrhenian Sea Catalan Sea C Tyrrhenian Sea G. Saronikos G. Pagassitikos G. Thermaikos Thracian Sea Cretan waters
1985–1987 1978–1979 1985–1987 1977–1978 1977–1978 1977–1978 1977–1978 1988–1991
T GN T T T T T T
S M S S S S S S
75 831 141 437 270 303 427 694
F, N, ES F, N, W, ES F, N, ES F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES N, W, ES
Colloca et al. (1994) Moreno and Matallanas (1983) Colloca et al. (1994) Caragitsou and Papaconstantinou (1990) Caragitsou and Papaconstantinou (1990) Caragitsou and Papaconstantinou (1990) Caragitsou and Papaconstantinou (1990) Labropoulou and Machias (1998)
309. Lepidotrigla cavillone 310. Lepidotrigla cavillone 311. Lepidotrigla cavillone 312. Lepidotrigla cavillone 313. Lepidotrigla cavillone 314. Lepidotrigla cavillone 315. Lepidotrigla cavillone
225 Table 1A. Continued Species
Family
Area
Year
SM
SF
316. Trigla lyra 317. Trigla lyra 318. Trigla lyra 319. Trigla lyra Squaliformes 320. Centroscymnus coelolepis 321. Dalatias licha†
Triglidae Triglidae Triglidae Triglidae
Balearic Sea S Adriatic Sea G. Saronikos N Aegean Sea
1976–1978 1961 1989 1990–1992
T – T T
M – M S
Dalatiidae Dalatiidae Dalatiidae Dalatiidae
Catalan Sea Balearic Sea Balearic Sea Balearic Sea
1988–1990 1976–1977 1976–1977 1976–1978
T, H T T T
Syngnathidae Syngnathidae Syngnathidae Syngnathidae
G. Marseille G. Lions G. Marseille G. Marseille
1980 June 1981 1980 1980
Torpedinidae Torpedinidae
Egypt Egypt
Caproidae Zeidae Zeidae
Balearic Sea G. Marseille G. Evvoikos and Pagassitikos
322. Etmopterus spinax 323. Etmopterus spinax Syngnathiformes 324. Hippocampus hippocampus 325. Syngnathus acus 326. Syngnathus acus 327. Syngnathus typhle Torpediniformes 328. Torpedo marmorata 329. Torpedo torpedo Zeiformes 330. Capros aper 331. Zeus faber 332. Zeus faber
1995, 2000a; Pauly et al., 1995, 1998c; Pauly and Palomares, 2000). Real consumers do not usually have TROPHs with integer values and the definition of TROPH for any consumer species (i) is (Pauly et al., 1995, 1998c; Pauly and Christensen 2000a; Pauly and Palomares, 2000): TROPHi = 1 +
G
N
Method
Reference
230 234 246 185
F, W N F, N, W, ES N, W, ES
Macpherson (1979a, c, 1981) Jardas and Županovi´c (1983) Caragitsou and Papaconstantinou (1994) Papaconstantinou et al. (1993)
– M M M
86 31 353 355
F, N, W, ES F, W F, W F, W
Carrass´on et al. (1992) Macpherson (1979a, 1980a, 1981) Macpherson (1979a, 1980a) Macpherson (1981)
T T T T
M 1 M M
2 17 21 14
F, N, W, ES F, N, W, ES F, N, W, ES F, N, W, ES
Bell and Harmelin-Vivien (1983) Khoury (1984) Bell and Harmelin-Vivien (1983) Bell and Harmelin-Vivien (1983)
1991–1992 1991–1992
T T
M M
84 177
F, N, W, ES F, N, W, ES
Abdel-Aziz (1994) Abdel–Aziz (1994)
1976–1978 1980 1986–1988
T T T
M M S
1067 1 181
F, W F, N, W, ES F, N, W, ES
Macpherson (1979a, c, 1981) Bell and Harmelin-Vivien (1983) Stergiou and Fourtouni (1991)
prey) (Pauly et al., 2000d). TrophLab also provides an estimate of omnivory (i.e., species feeding on more than one trophic level) by estimating an omnivory index (OI) defined as: OI =
G
(TROPHj − TROPHi )2 ∗ DCij .
j =1
DCij ∗ TROPHj ,
j =1
where TROPHj is the fractional trophic level of prey (j), DCij represents the fraction of j in the diet of i and G is the total number of prey species. Thus defined, the TROPH of aquatic consumers is a measurable entity that can take any value between 2.0, for herbivorous/detrivorous, and 5.0, for piscivorous/ carnivorous organisms (Pauly et al., 1998c; Pauly and Palomares, 2000). TROPH values were calculated from each dataset using TrophLab (Pauly et al., 2000d), which is a stand-alone application for estimating TROPHs and their standard errors (SE) from two different types of data: (a) from quantitative diet composition data (i.e., using the weight or volume contribution of each prey species to the diet); and (b) from qualitative diet composition data (i.e., using only the list of prey items known to occur in the diet). The latter is employed when diet composition is expressed using indices that are not good indicators of how much a particular item contributes to the diet of a given species (e.g., numerical contribution and frequency of occurrence of
The OI value equals zero when feeding on prey of the same TROPH and increases with an increase in the variety of prey’s TROPH. The square root of OI is the SE of the TROPH (Christensen and Pauly, 1992a, b). TROPHs and their SE (Table 1B) were estimated from the gravimetric abundances of prey (which were available for 222 out of a total of 332 datasets) using the “quantitative approach” of TrophLab. For all remaining datasets, TROPHs were estimated from the list of prey items known to occur in the diet using the “qualitative approach” of TrophLab. The histogram of all estimated TROPH values was decomposed into separate normal distributions and the corresponding mean and standard deviation (SD) of TROPH per normal distribution were calculated. The decomposition was done using Bhattacharya’s (1967) method, which is incorporated into FiSAT (Gayanilo and Pauly, 1997). TROPH values from each dataset were regressed against the Lmax of the species in concern. Finally, for studies reporting diet composition per length class, TROPH was also estimated separately for each length class and its relationship with the mid-point of the
226 Table 1B. Feeding habits of Mediterranean marine fish. Length range: length range (or mean length) of specimens (in cm); W (or N): gravimetric (or numerical) contribution (%) of prey in the diet of the fish species examined; TROPH: trophic level; SE: standard error of TROPH; and Lmax : maximum body length (in cm). Habitat type and Lmax extracted from “FishBase online” (www.fishbase.org). ∗∗Diet composition data expressed as frequency of occurrence (F); † Valid names of species (from “FishBase online”; www.fishbase.org) Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
1. Conger conger
–
51, 16, 33
Bathydemersal
3.20
0.40
300
2. Conger conger 3. Conger conger 4. Gnathophis mystax
9–22 – 10–39
Fish (Micromesistius poutassou, Gadiculus argenteus argenteus), crustaceans, other Decapods, brachyurans, polychaetes, other Fish, polychaetes, decapods 10–19 cm, decapods (Alpheus glaber, Calocaris macandreae), polychaetes, other 20–29 cm, decapods (Alpheus glaber, Calocaris macandreae), fish, other 30–39 cm, decapods (Goneplax rhomboides, Processa mediterranea), polychaetes, other Decapods (Alpheus glaber, Processa canaliculata), fish, mysids, other Fish, molluscs, decapods, other Copepods, ostracods, polychaetes, amphipods, other Copepods, crustaceans, mysids, decapods, other Fish (Mullus barbatus), cephalopods Fish (Engraulis encrasicolus), crustaceans, molluscs Fish (Boops boops, Solea solea), molluscs, crustaceans Decapods, fish, polychaetes, molluscs, isopods Decapods, euphausids, fish, mysids, other Fish (Engraulis encrasicolus, Gadiculus argenteus argenteus), decapods, cephalopods, other Fish (Engraulis encrasicolus, Gadiculus argenteus argenteus), crustaceans, molluscs, other 371–667 m: 15–30 cm, decapods (Sergia robusta, Calocaris macandreae), fish, euphausids, other 40–60 cm, decapods (Pasiphaea multidentate, Calocaris macandreae), cephalopods, fish, other 984–1584 m: 10–39 cm, fish (Antonogadus megalokynodon), decapods, cephalopods, other 40–61 cm, cephalopods (Todarodes sagittatus), fish, decapods, other Fish (Micromesistius poutassou, Gadiculus argenteus argenteus), decapods, molluscs, other 19–29 cm, ophiurids, amphipods, polychaetes, other 30–39 cm, ophiurids, decapods, polychaetes, other 40–49 cm, ophiurids, decapods, other 50–59 cm, ophiurids, decapods, other >60 cm, decapods (Medaeus couchi, Polycheles typhlops), ophiurids, other Copepods, plants, cladocerans Diatoms, copepods, euphausids, eggs, larvae, algae Copepods (Centropages typicus, Onceae spp.), molluscs, other Copepods, cladocerans, crustaceans, appendicularians, molluscs, other Copepods, cladocerans, crustaceans, appendicularians, molluscs, other Euphausids, fish, decapods, other Crustaceans (Meganyctiphanes norvegica, Nyctiphanes couchii), fish, other 10–16 cm, fish, euphausids, decapods, other 17–23 cm, fish, euphausids, decapods, other 24–35 cm, fish, decapods, euphausids, cephalopods, other Crustaceans (Meganyctiphanes norvegica, Pasiphaea sivado), fish, other 18.5 cm, euphausids, fish, crustaceans, decapods, cephalopods, mysids Fish, decapods, mysids, isopods Euphausids, decapods, fish, cephalopods, other Crustaceans (Alpheus glaber, Processa nouveli), fish, other
45, 22, 15, 18 99.5, 0.4, 0.1 90, 4, 6
Bathydemersal Bathydemersal Demersal
4.49 3.42 3.55
0.80 0.50 0.57
300 300 60
66, 21, 13
3.85
0.61
92, 5, 3
3.60
0.59
5. Gnathophis mystax
13–40
6. Ophichthus rufus 7. Atherina boyeri 8. Bathypterois mediterraneus 9. Saurida undosquamis 10. Saurida undosquamis 11. Synodus saurus 12. Sargocentron rubrum 13. Hoplostethus mediterraneus 14. Galeus melastomus
– Mean TL 3.7 5–18 – 14–33 16–26 – 9–21 10–60
15. Galeus melastomus
–
16. Galeus melastomus
15–61
17. Scyliorhinus canicula
–
18. Chimaera monstrosa
19–60
19. Sardina pilchardus 20. Sardina pilchardus 21. Engraulis encrasicolus
12–16 10–14 Mean TL 11.0
22. Engraulis encrasicolus
Mean TL 12.3
23. Engraulis encrasicolus
Mean TL 13.4
24. Gadiculus argenteus argenteus – 25. Gadiculus argenteus argenteus – 26. Micromesistius poutassou
10–35
27. Micromesistius poutassou
–
28. Micromesistius poutassou
Mean TL 17.2
29. Micromesistius poutassou 30. Micromesistius poutassou 31. Trisopterus minutus†
Mean TL 24.9 5–27 8–21
71, 8, 4, 17
Demersal
3.62
0.57
60
58, 16, 16, 10 ∗∗ (32, 23, 19, 11, 15) (99, 1) (95, 4, 1) (93, 5, 2) 81, 6, 6, 4, 3 (42, 35, 10, 6, 7) 52, 23, 19, 6
Demersal 4.25 Demersal 3.30 Bathydemersal 3.20 Demersal 4.49 Demersal 3.80 Demersal 4.20 Reef-associated 3.50 Benthopelagic 3.50 Bathydemersal 4.26
0.68 0.43 0.43 0.79 0.56 0.58 0.53 0.53 0.67
60 20 19 50 50 40 32 42 61
42, 12, 11, 35
Bathydemersal
3.70
0.57
61
65, 14, 3, 18
Bathydemersal
3.86
0.65
61
56, 17, 13, 14
3.80
0.57
58, 35, 5, 2
4.17
0.71
37, 33, 26, 4
4.18
0.59
41, 26, 7, 26
Demersal
3.80
0.59
100
93, 3, 2, 2 91, 4, 3, 2 84, 13, 3 59, 35, 6 94, 5, 1
Bathydemersal
3.38 3.39 3.42 3.51 3.59
0.35 0.36 0.39 0.47 0.58
120
∗∗ (85, 6, 2, 3, 3, 1) ∗∗
Pelagic Pelagic Pelagic
3.20 3.10 3.50
0.42 0.32 0.48
25 25 20
∗∗
Pelagic
3.40
0.44
20
∗∗
Pelagic
3.40
0.44
20
57, 22, 17, 4 74, 7, 19
Pelagic Pelagic
3.90 3.55
0.64 0.54
15 15
54, 21, 20, 5 51, 29, 20, 5 42, 25, 18, 12 39, 26, 35
Benthopelagic
0.64 0.67 0.64 0.64
50
Benthopelagic
3.97 3.95 4.04 3.90
76, 11, 5, 4, 3, 1
Benthopelagic
3.34
0.44
50
3.78
0.59
4.39 3.77 3.76
0.77 0.60 0.63
45, 38, 5, 4, 4, 4 87, 11, 1, 1 32, 31, 29, 3, 5 80, 18, 2
Benthopelagic Benthopelagic Benthopelagic
50
50 50 40
227 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
32. Trisopterus minutus†
4–21
63, 11, 9, 17
Benthopelagic
3.39
0.49
40
33. Trisopterus minutus†
5–27
Mysids (Processa nouveli, Alpheus glaber), crustaceans, fish, other Decapods (Alpheus glaber), fish, other
52, 30, 18
Benthopelagic
3.81
0.63
40
34. Trisopterus minutus† 35. Trisopterus minutus†
9–23
Fish, decapods, brachyurans, other
34, 27, 12, 26
Benthopelagic
3.79
0.64
40
5–23
Mysids (Lophogaster typicus), decapods, euphausids, other
(41, 26, 15, 18)
Benthopelagic
3.50
0.48
40
36. Gaidropsarus biscayensis†
4–14
Decapods, fish, euphausids, other
68, 19, 6, 7
Benthopelagic
3.72
0.62
40
37. Gaidropsarus biscayensis†
5–21
5–12 cm, decapods (Processa nouveli, Alpheus glaber), fish, other 13–21 cm, decapods (Processa nouveli, Alpheus glaber), fish, other Decapods, brachyurans, polychaetes, other Decapods, amphipods, brachyurans, other Decapods, brachyurans, polychaetes, other Decapods, brachyurans, other
73, 9, 15
Benthopelagic
3.61
0.51
40
3.75
0.61
45, 22, 15, 18 46, 36, 14, 4 45, 22, 15, 18 94, 4, 2
Demersal Demersal Demersal Demersal
3.41 3.42 3.49 3.42
0.47 0.50 0.38 0.50
5 5 6 6
80, 18, 2
38. Gaidropsarus mediterraneus 39. Gaidropsarus mediterraneus 40. Gaidropsarus vulgaris 41. Gaidropsarus vulgaris 42. Molva macrophthalma†
– – – – –
Fish (Gadiculus argenteus argenteus, Antonogadus megalokynodon)
100
Demersal
4.50
0.80
90
43. Caelorinchus caelorhincus†
5–39
5–9 cm, polychaetes, amphipods, copepods, decapods, other 10–19 cm, polychaetes, decapods, other 20–29 cm, decapods (Solenocera membranacea), polychaetes, fish, other 30–39 cm, decapods (Alpheus glaber), other
43, 18, 17, 11, 11
Benthopelagic
3.17
0.38
40
3.20 3.45
0.38 0.51
44. Caelorinchus caelorhincus† 45. Hymenocephalus italicus
– 9–19
46. Hymenocephalus italicus
–
47. Nezumia aequalis
10–39
66, 23, 11 61, 34, 3, 2
3.60
0.59
Polychaetes, decapods, other Decapods (Solenocera membranacea), mysids, amphipods, copepods, other Euphausids (Processa mediterranea, Solenocera membranacea), decapods, copepods, other 10–19 cm, polychaetes (Nephthys sp.), decapods, mysids, isopods, other 20–29 cm, decapods (Calocaris macandreae), polychaetes, ophiurids, amphipods, other 30–39 cm, polychaetes, isopods, mysids Decapods, polychaetes, ophiurids, other
99, 1 52, 31, 17 48, 24, 11, 9, 8
Benthopelagic Benthopelagic
3.20 3.40
0.41 0.51
40 25
45, 31, 9, 15
Benthopelagic
3.20
0.38
25
33, 30, 14, 8, 15
Benthopelagic
3.29
0.45
36
3.49
0.53
3.09 3.20
0.31 0.39
10–19 cm, decapods, other 20–29 cm, decapods, polychaetes, other 30–39 cm, decapods (Alpheus glaber), fish
96, 4 92, 6, 2 75, 25
Benthopelagic
3.58 3.56 3.83
0.58 0.57 0.65
60
35, 32, 14, 5, 14 85, 10, 5 46, 33, 10, 11
48. Nezumia aequalis
–
49. Trachyrincus scabrus†
10–39
50. Trachyrincus scabrus† 51. Trachyrincus scabrus† 52. Merluccius merluccius
–
Decapods, other
88, 12
Benthopelagic
3.20
0.40
60
6–18 –
(37, 29, 13, 13, 8) 68, 14, 18
Benthopelagic Demersal
3.50 3.90
0.56 0.64
60 140
53. Merluccius merluccius
8–65
Amphipods, ostracods, polychaetes, decapods, other Fish (Micromesistius poutassou, Lesueuriogobius friesii), crustaceans, other 8–14 cm, fish (Sardina pilchardus, Cepola rubescens), euphausids, decapods, mysids 14–25 cm, fish (Sardina pilchardus, Cepola rubescens), decapods, euphausids, mysids 25–40 cm, fish (Sardina pilchardus, Cepola rubescens), decapods 40–65 cm, fish (Sardina pilchardus, Cepola rubescens), decapods 4–8 cm, euphausids, amphipods, cephalopods, decapods, fish 8–13 cm, euphausids, decapods, fish, cephalopods, amphipods 13–18 cm, decapods, euphausids, fish 18–25 cm, decapods, fish 25–31 cm, fish, decapods 31–37 cm, fish, decapods >37 cm, fish, decapods, cephalopods Fish (Engraulis encrasicolus, Sardina pilchardus), decapods, cephalopods, other Fish (Engraulis encrasicolus, Sprattus sprattus), decapods, amphipods, mysids, other Fish (Trachurus spp., Boops boops), cephalopods, crustaceans Fish, cephalopods, decapods, mysids, crustaceans Fish, euphausids, other
55, 17, 15, 13
Demersal
3.98
0.67
140
78, 12, 6, 4
4.26
0.75
90, 10
4.41
0.78
92, 8
4.43
0.79
3.43
0.44
79, 9, 6, 4, 2
3.37
0.46
66, 18, 16 83, 17 63, 37 84, 16 73, 22, 5 (56, 6, 1)
Demersal
3.67 3.75 4.17 4.36 4.20 4.30
0.60 0.63 0.73 0.77 0.74 0.61
140
(64, 21, 6, 5, 4)
Demersal
4.00
0.67
140
∗∗
Demersal
4.40
0.65
140
69, 14, 9, 5, 3 96, 3, 1
Demersal Demersal
4.32 4.45
0.71 0.79
140 140
54. Merluccius merluccius
4–74
55. Merluccius merluccius
–
56. Merluccius merluccius
8–35
57. Merluccius merluccius
15–52
58. Merluccius merluccius 59. Merluccius merluccius
– 4–38
60, 22, 14, 2, 2
Benthopelagic
Demersal
36
140
228 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
60. Merluccius merluccius 61. Merluccius merluccius 62. Merluccius merluccius
4–38 4–38 –
81, 8, 5, 6 74, 14, 5, 7 –
Demersal Demersal Demersal
4.44 4.19 4.10
0.78 0.72 0.60
140 140 140
63. Merluccius merluccius
5–19
74, 9, 7, 10
Demersal
4.19
0.72
140
64. Merluccius merluccius 65. Lepidion lepidion 66. Lepidion lepidion
– 7–23 –
37, 27, 20, 16 (96, 2, 2) 65, 17, 10, 8
Demersal Bathypelagic Bathypelagic
3.75 3.30 3.67
0.61 0.39 0.59
140 34 34
67. Phycis blennoides 68. Phycis phycis
6–35 15–49
77, 23 66, 21, 8, 5
Benthopelagic Benthopelagic
3.77 4.09
0.63 0.72
11 65
69. Apletodon dentatus 70. Lophius budegassa
– –
56, 37, 7 65, 19, 16
Demersal Bathydemersal
3.19 3.90
0.41 0.62
4 100
71. Lophius budegassa 72. Lophius piscatorius
– –
Fish, cephalopods, euphausids, other Fish, euphausids, mysids, other Fish (Micromesistius poutassou, Engraulis encrasicolus), euphausids, decapods, cephalopods Fish (Vinciguerria sp., Argyropelecus hemigymnus), mysids, euphausids, other Decapods, fish, euphausids, other Crustaceans, cephalopods, polychaetes Crustaceans (Acanthephyra eximia, Calocaris macandreae), fish, foraminiferans, other Decapods (Alpheus glaber, Calocaris macandreae), fish Fish (Boops boops, Chromis chromis), decapods, brachyurans, other Amphipods, copepods, foraminiferans Fish (Gadiculus argenteus argenteus, Phycis blennoides), crustaceans, other Fish, cephalopods, crustaceans Fish, cephalopods, crustaceans
85, 10, 2 80, 9, 5
Bathydemersal Bathydemersal
4.40 4.30
0.64 0.65
100 200
73. Notacanthus bonaparte† 74. Cataetyx alleni 75. Ophidion barbatum
– 6–10 9–26
94, 6 (73, 25, 2) 61, 27, 9, 3
Bathypelagic Bathypelagic Demersal
3.40 3.10 3.56
0.35 0.38 0.57
– 12 25
76. Ophidion barbatum 77. Parophidion vassali 78. Alepocephalus rostratus 79. Alepocephalus rostratus
– – 11–37 –
Ophiurids, other Crustaceans, polychaetes, other Decapods (Processa canaliculata, Alpheus glaber), mysids, fish, other Decapods, brachyurans, amphipods Decapods, brachyurans, polychaetes, other Coelenterata, crustaceans, fish, other 1000–1425 m: Decapods (Sergia robusta, Aristeus antennatus), pyrosomida, euphausids, others 1425–2250 m: 22 cm, fish, decapods, cephalopods, pyrosomida, gastropods, other Decapods, fish Algae, sponges, decapods, ascidians, polychaetes, other Algae, balanoids, polychaetes, copepods, decapods, other
61, 23, 16 53, 22, 15, 10 (37, 33, 7, 23) 50, 38, 4, 8
Demersal Demersal Bathydemersal Bathydemersal
3.47 3.43 3.40 3.52
0.59 0.43 0.40 0.53
25 25 50
89, 5, 3, 3
3.39
0.46
24, 24, 20, 15, 3, 14
3.91
0.58
58, 42 (40, 30, 14, 6, 3, 7) (40, 28, 10, 8, 6, 8)
Demersal Demersal Demersal
3.98 3.00 3.20
0.69 0.32 0.34
15 30 8
Polychaetes, bivalves, echinoderms, other Polychaetes, bivalves, foraminiferans Juveniles: Fish (Engraulis encrasicolus, Sardina pilchardus), cephalopods, other Adults: Fish (Sardina pilchardus, Merluccius merluccius), cephalopods, other 9–19 cm, decapod larvae, copepods, other 20–24 cm, fish, crustaceans, other 25–33 cm, fish, other Fish (Boops boops, Sardina pilchardus), cephalopods 12 cm, fish, cephalopods, other Fish, crustaceans, other Crustaceans, fish, molluscs Fish, crustaceans, molluscs, algae, polychaetes Crustaceans, polychaetes, fish Fish larvae, copepods, mysids, other Crustaceans, fish Crustaceans, fish, molluscs, algae, polychaetes Crustaceans, fish, molluscs Fish (Atherina boyeri, Boops boops), cephalopods, crustaceans, fish larvae Fish, appendicularians, copepods, cladocerans Copepods, cladocerans Copepods, appendicularians, other Copepods, mysids Copepods, cladocerans, decapod larvae Copepods (Calanus spp., Eucalanus sp.), euphausids, other Decapods (Meganyctiphanes norvegica, Boreomysis megalops), copepods, fish, tunicates, other
54, 35, 5, 6 75, 19, 6 98, 1, 1
Demersal Demersal Reff-associated
3.11 3.09 4.49
0.29 0.28 0.80
15 11 190
4.49
0.77 0.50 0.55 0.71 0.70 0.43 0.66 0.72 0.76 0.47 0.46 0.44 0.56 0.48 0.43 0.55 0.57
190
Reef-associated Pelagic Pelagic Pelagic Pelagic Pelagic Pelagic Pelagic Pelagic
3.50 3.70 4.30 4.50 3.40 3.83 4.37 4.37 3.70 3.50 3.20 3.60 3.70 3.40 3.60 3.90
76, 16, 6, 2 100 (61, 28, 11) 99, 1 ∗∗ (60, 31, 9)
Demersal Demersal Demersal Demersal Demersal Demersal
3.16 3.00 3.30 3.00 3.10 3.11
0.27 0.00 0.39 0.04 0.35 0.27
25 25 25 20 20 70
41, 23, 19, 7, 10
Bathydemersal
3.40
0.42
75
80. Apogon imberbis 81. Parablennius gattorugine 82. Parablennius rouxi
– Mean TL 13.3 Mean TL 5.7
83. Parablennius tentacularis† 84. Callionymus risso 85. Seriola dumerili
– – Mean SL 29.6
86. Seriola dumerili
Mean SL 91.8
87. Seriola dumerili 88. Seriola dumerili
9–33 Mean SL 109.1
89. Seriola dumerili 90. Trachurus mediterraneus 91. Trachurus mediterraneus 92. Trachurus mediterraneus 93. Trachurus mediterraneus 94. Trachurus trachurus 95. Trachurus trachurus 96. Trachurus trachurus 97. Trachurus trachurus
2–30 13–24 15–32 20–38 8–38 16–28 18–27 20–33 –
98. Spicara maena 99. Spicara maena 100. Spicara maena† 101. Spicara smaris 102. Spicara smaris 103. Cepola macrophthalma
– – – – 11–19 11–51
104. Epigonus telescopus
–
89, 10, 1 ∗∗ ∗∗ ∗∗ 71, 29 74, 18, 8 55, 24, 8, 13 74, 17, 9 92, 4, 4 ∗∗ ∗∗ ∗∗ 39, 20, 11, 30 ∗∗ ∗∗ ∗∗ –
Reef-associated
Reef-associated Reef-associated
190 190
190 60 60 60 60 70 70 70 70
229 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
105. Buenia jeffreysii† 106. Deltentosteus quadrimaculatus 107. Deltentosteus quadrimaculatus 108. Deltentosteus quadrimaculatus 109. Gobius auratus 110. Gobius auratus 111. Gobius bucchichi 112. Gobius cruentatus 113. Gobius fallax 114. Gobius geniporus 115. Gobius niger 116. Gobius niger 117. Gobius niger
Mean TL 3.9 Mean TL 2.8 – – Mean TL 5.8 5–9 3–12 – – 1–6 – 5–17 5–14
(56, 24, 8, 12) (62, 12, 10, 10, 6) 60, 20, 15, 5 – (43, 15, 12, 10, 20) (64, 12, 5, 5, 1, 13) 45, 27, 8, 7, 13 44, 18, 10, 8, 20 68, 26, 4, 2 (69, 9, 6, 16) 46, 38, 8, 5, 3 ∗∗ 54, 29, 17
Reef-associated Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal
3.60 3.30 3.11 3.30 3.10 3.30 2.74 3.25 3.37 3.50 3.20 3.30 3.47
0.52 0.35 0.32 0.44 0.34 0.40 0.33 0.36 0.54 0.47 0.41 0.46 0.51
6 8 8 8 10 10 10 18 9 16 15 15 15
118. Pomatoschistus bathi 119. Pomatoschistus bathi 120. Pomatoschistus quagga 121. Zosterisessor ophiocephalus 122. Coris julis 123. Coris julis 124. Coris julis
Mean TL 3.1 1–3 – – – – –
(83, 10, 7) (94, 6) 100 54, 41, 5 43, 20, 9, 28 43, 24, 14, 9, 10 49, 16, 11, 9, 6, 5, 4
Demersal Demersal Demersal Demersal Demersal Demersal Demersal
3.30 3.20 3.29 3.16 3.27 3.30 3.63
0.41 0.22 0.53 0.40 0.41 0.42 0.47
– – – 25 30 30 30
125. Coris julis 126. Ctenolabrus rupestris 127. Labrus merula 128. Labrus viridis
5–17 – – –
∗∗ 69, 16, 9, 4, 2 66, 18, 12, 4 41, 22, 9, 9, 7, 7, 5
Demersal Demersal Demersal Demersal
3.30 3.19 3.47 3.84
0.41 0.35 0.55 0.64
30 18 45 47
129. Symphodus cinereus 130. Symphodus cinereus 131. Symphodus cinereus 132. Symphodus mediterraneus 133. Symphodus mediterraneus 134. Symphodus melanocercus 135. Symphodus ocellatus 136. Symphodus ocellatus 137. Symphodus ocellatus 138. Symphodus ocellatus 139. Symphodus rostratus 140. Symphodus rostratus 141. Symphodus rostratus 142. Symphodus tinca 143. Symphodus tinca
5–8 2–11 5–9 – 6–14 – 6–9 – – 5–10 – 2–13 5–12 – –
43, 20, 9, 28 33, 27, 16, 9, 15 ∗∗ 57, 23, 7, 13 ∗∗ 40, 27, 19, 14 27, 22, 13, 12, 26 38, 36, 20, 6 86, 6, 4, 4 ∗∗ 27, 22, 13, 12, 26 44, 25, 18, 6, 7 ∗∗ 37, 31, 8, 7, 17 41, 26, 11, 7, 7, 4, 4
Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal
3.28 3.30 3.10 3.22 3.10 3.25 3.26 3.30 2.99 3.40 3.41 3.30 3.40 3.26 3.14
0.47 0.42 0.39 0.41 0.40 0.40 0.49 0.42 0.17 0.51 0.51 0.42 0.51 0.45 0.35
16 16 16 18 18 14 12 12 12 12 13 13 13 44 44
144. Symphodus tinca 145. Mullus barbatus
13–21 9–15
∗∗ ∗∗
Demersal Demersal
3.20 3.30
0.44 0.43
44 30
146. Mullus barbatus 147. Mullus barbatus
Mean TL 1.7 Mean TL 1.7
∗∗ 59, 20, 21
Demersal Demersal
3.10 3.40
0.38 0.46
30 30
148. Mullus barbatus
5–9
20, 17, 15, 11, 37
Demersal
3.40
0.43
30
149. Mullus barbatus
–
41, 19, 14, 26
Demersal
3.30
0.47
30
150. Mullus barbatus
9–19
33, 22, 21, 18, 6
Demersal
2.95
0.40
30
151. Mullus barbatus
8–20
53, 18, 11 18
Demersal
2.99
0.42
30
152. Mullus barbatus
–
32, 24, 17, 27
Demersal
2.79
0.36
30
153. Mullus barbatus 154. Mullus barbatus 155. Mullus barbatus 156. Mullus barbatus
12–18 12–18 12–18 10–16
34, 34, 20, 12 64, 21, 9, 6 52, 20, 11, 17 54, 33, 8, 5
Demersal Demersal Demersal Demersal
3.48 3.20 3.42 3.14
0.53 0.38 0.51 0.33
30 30 30 30
157. Mullus barbatus
–
Copepods, brachyurans, fish, other Copepods, decapods, amphipods, polychaetes, other Polychaetes, amphipods, copepods, other Polychaetes, decapods Copepods, decapods, isopods, polychaetes, other Copepods, decapods, polychaetes, gastropods, algae, other Crustaceans, algae, polychaetes, molluscs, other Polychaetes, ophiurids, decapods, crustaceans, other Amphipods, decapods, mysids, crustaceans Copepods, crustaceans, decapods, other Polychaetes, amphipods, mysids, decapods, other Polychaetes, amphipods, decapods, other Decapods, polychaetes (Glycera rouxii, Terebellides stroemi), other Copepods, decapods, other Copepods, other Amphipods Polychaetes, amphipods, other Copepods, gastropods, decapods, crustaceans, other Bivalves, gastropods, decapods, crustaceans, other Molluscs, crustaceans, cephalopods, decapods, isopods, polychaetes, algae Molluscs, gastropods, decapods Bivalves, ophiurids, amphipods, decapods, other Brachyurans, decapods, echinoderms, other Fish, brachyurans, echinoderms, decapods, isopods, polychaetes, other Copepods, gastropods, decapods, crustaceans, other Bivalves, gastropods, amphipods, decapods, other Crustaceans, euphausids, pycnogonids Bivalves, amphipods, polychaetes, other Molluscs, algae, copepods, crustaceans Bivalves, copepods, amphipods, other Copepods, crustaceans, echinoderms, gastropods, other Amphipods, gastropods, copepods, other Copepods, algae, crustaceans, other Crustaceans, pycnogonids Copepods, crustaceans, echinoderms, gastropods, other Amphipods, decapods, isopods, fish, other Crustaceans, decapods, mysids Amphipods, bivalves, isopods, polychaetes, other Polychaetes, crustaceans, algae, decapods, amphipods, molluscs, other Crustaceans, algae, decapods, molluscs Crustaceans (Ampelisca sp., Leucothea sp.), polychaetes, amphipods, decapods, other Polychaetes, bivalves, algae, amphipods, other Polychaetes (Aricidea spp., Megallona rosea), bivalves, other Decapods (Processa sp.), bivalves, amphipods, polychaetes, other Polychaetes (Sternaspis scutate, Nephthys hystricis), bivalves, crustaceans, other Decapods (Processa canaliculata, Amolopenaeus elegans), polychaetes, mysids, amphipods, other Decapods (Crangon crangon, Processa canaliculata), polychaetes, mysids, other Decapods (Processa canaliculata, Crangon crangon), polychaetes, mysids, other Euphausids, polychaetes, mysids, other Polychaetes, euphausids, mysids, other Euphausids, polychaetes, mysids, other Polychaetes (Pectinaria koreni, Sternaspis scutate), molluscs, crustaceans, other Decapods, gastropods, crustaceans
(18, 17, 11)
Demersal
3.50
0.58
30
230 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
158. Mullus barbatus
4–17
52, 21, 21, 6
Demersal
3.31
0.42
30
159. Mullus barbatus 160. Mullus barbatus
9–18 –
∗∗ 73, 13, 4, 3, 7
Demersal Demersal
3.50 3.57
0.53 0.57
30 30
161. Mullus surmuletus 162. Mullus surmuletus
– –
47, 39, 5, 5, 4 29, 18, 16, 14, 8, 6, 9
Demersal Demersal
3.28 3.29
0.47 0.43
40 40
163. Mullus surmuletus 164. Mullus surmuletus 165. Mullus surmuletus 166. Mullus surmuletus 167. Mullus surmuletus
10–22 10–22 Mean TL 1.8 – 10–15
48, 14, 11, 9, 18 49, 16, 10, 9, 16 ∗∗ – 48, 16, 10, 9, 17
Demersal Demersal Demersal Demersal Demersal
3.44 3.38 3.20 3.30 3.53
0.49 0.49 0.42 0.53 0.56
40 40 40 40 40
168. Mullus surmuletus 169. Mullus surmuletus
6–23 6–21
89, 5, 2, 4 70, 28, 2
Demersal Demersal
3.53 3.58
0.56 0.58
40 40
170. Mullus surmuletus
9–12
60, 20, 9, 11
Demersal
3.16
0.36
40
171. Mullus surmuletus
–
58, 29, 5, 2
Demersal
3.51
0.54
40
172. Upeneus asymmetricus 173. Upeneus moluccensis
– –
– 41, 38, 11, 4, 6
Demersal Demersal
3.60 3.40
0.60 0.48
30 20
174. Upeneus moluccensis 175. Upeneus pori 176. Chromis chromis 177. Chromis chromis 178. Sciaena umbra
8–16 – – – 13–37
(52, 17, 14, 17) 80, 17, 3 76, 16, 6, 2 67, 10, 9, 14 72, 24, 4
Demersal Demersal Reef-associated Reef-associated Demersal
3.89 3.51 3.18 4.21 3.80
0.65 0.55 0.31 0.72 0.64
20 19 25 25 70
179. Umbrina cirrosa
13–53
78, 9, 5, 8
Demersal
3.51
0.55
70
180. Euthynnus alletteratus 181. Sarda sarda 182. Scomber scombrus 183. Thunnus thynnus
– – – 28–42
– – – 71, 10, 5, 5, 4, 5
Pelagic Pelagic Pelagic Pelagic
4.50 4.50 3.90 4.24
0.80 0.80 0.66 0.72
122 91 50 458
184. Thunnus thynnus
49–107
93, 6, 1
Pelagic
4.44
0.78
458
185. Thunnus thynnus 186. Thunnus thynnus
63–129 –
(76, 24) –
Pelagic Pelagic
4.50 4.00
0.74 0.66
458 458
187. Epinephelus aeneus 188. Epinephelus caninus 189. Epinephelus fasciatus† 190. Epinephelus marginatus
– – – 16–98
Reef-associated Reef-associated Reef-associated Reef-associated Demersal Demersal
4.10 3.80 4.50 4.13 3.86 3.73 3.37 3.30 4.37 3.80 3.47 3.50
0.56 0.60 0.73 0.76 0.65 0.57 0.42 0.50 0.76 0.50 0.52 0.46
120 157 40 150
– Mean SL 13.2 7–14 – – Mean SL 7.8
– – – 70, 23, 7 34, 33, 32, 1 73, 19, 8 48, 39, 12, 1 81 (43, 16), 6, 7 ∗∗ – 57, 32, 6, 5 29, 29, 24, 15
Demersal Demersal Reef-associated Reef-associated
191. Serranus cabrilla 192. Serranus cabrilla 193. Serranus cabrilla 194. Serranus cabrilla 195. Serranus hepatus 196. Serranus hepatus 197. Serranus hepatus 198. Serranus hepatus 199. Serranus scriba 200. Serranus scriba 201. Siganus luridus 202. Siganus luridus
3–14 – 10–23 5–15 13–25 8–30
74, 17, 4, 3, 1, 1 (63, 13, 11, 13) 52, 30, 13, 5 ∗∗ 100 78, 17, 4, 1
Demersal Demersal Demersal Demersal Reef-associated Reef-associated
3.72 3.73 3.87 3.70 2.00 2.00
0.62 0.63 0.66 0.58 0.00 0.00
25 25 36 36 30 30
203. Siganus rivulatus
7–34
38, 34, 26, 2
Reef-associated
2.00
0.00
40
204. Boops boops 205. Boops boops
– –
Polychaetes (Micronepthys maryae, Nepthys assimilis), molluscs, decapods, other Decapods, amphipods, polychaetes, copepods Decapods (Leptochela pugnax, Liocarcinus pusillus), polychaetes, brachyurans, fish, other Amphipods, mysids, decapods, crustaceans, other Polychaetes, amphipods, decapods, echinoderms, molluscs, isopods, other Polychaetes, fish, brachyurans, decapods, other Polychaetes, fish, brachyurans, decapods, other Polychaetes, bivalves, amphipods, algae, other Decapods, amphipods, brachyurans, bivalves, polychaetes Decapods (Inachus sp., Ethusa mascarone), amphipods, fish, polychaetes, other Decapods, polychaetes, fish, other Crustaceans, polychaetes (Aponuphis bilineata, Harmothoe sp.), other Decapods (Upogebia tipica, Processa nouveli), brachyurans, polychaetes, other Decapods (Leptochela pugnax), polychaetes, brachyurans, other Decapods (Leptochela pugnax), crustaceans Decapods (Leptochela pugnax, Parapenaeus longirostris), fish, polychaetes, molluscs, other Decapods, copepods, mysids, other Decapods (Leptochela pugnax), polychaetes, other Fish, appendicularians, copepods, other Copepods, polychaetes, amphipods, other Decapods (Liocarcinus spp., Brachynotus gemmellari), fish, other Decapods (Liocarcinus spp., Upogebia spp.), polychaetes, molluscs, other Fish (Trachurus spp., Scomber spp.) Fish (Sardina pilchardus, Trachurus spp.) Fish (Sardina pilchardus), crustaceans, gastropods Fish (Sardina pilchardus, Engraulis encrasicolus), euphausids, cephalopods, stomatopods, decapods, other Fish (Engraulis encrasicolus, Sardina pilchardus), crustaceans, cephalopods Fish (Belone acus, Sprattus sprattus), cephalopods Fish (Sardina pilchardus, Scomber scombrus), fish larvae, crustaceans, molluscs Fish, cephalopods, crustaceans Fish, crustaceans, molluscs Fish, cephalopods 60 cm, molluscs, fish, other Mysids, decapods, brachyurans, other Fish (Gobius niger, Sardina pilchardus), decapods, other Crustaceans, euphausids, decapods Fish, cephalopods, crustaceans, polychaetes Brachyurans, decapods, amphipods, mysids Decapods (Upogebia tipica, Processa nouveli), brachyurans, fish (Boops boops, Gobius sp.), other Decapods, fish, polychaetes, mysids, amphipods, other Crustaceans, decapods, polychaetes, other Decapods, fish, brachyurans, other Euphausids, decapods, crustaceans Algae (Dictyota sp., Cystoseira sp., Sphacelaria sp.) Red algae (Polysiphonia spp.), brown algae (Sphacelaria spp.), green algae, blue-green algae Brown algae (Sphacelaria spp.), red algae (Polysiphonia spp.), green algae, blue-green algae Algae, copepods, other Copepods (Temora stylifera, Isias clavipes), appendicularians, other
49, 48, 3 56, 38, 6
Demersal Demersal
2.53 3.30
0.09 0.47
36 36
40 40 40 40 25 25
231 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
206. Dentex dentex 207. Dentex dentex 208. Diplodus annularis 209. Diplodus annularis 210. Diplodus annularis 211. Diplodus annularis 212. Diplodus puntazzo
17–83 – – Mean TL 13.9 – 7–25 28–37
74, 26 – 15, 6, 4, 75 ∗∗ – 31, 23, 23, 23 23, 22, 20, 35
Benthopelagic Benthopelagic Benthopelagic Benthopelagic Benthopelagic Benthopelagic Benthopelagic
4.50 4.50 3.41 3.30 3.40 3.32 2.69
0.73 0.73 0.35 0.45 0.46 0.50 0.17
100 100 24 24 24 24 60
213. Diplodus puntazzo
Mean TL 3.2
Fish, cephalopods Fish, cephalopods Polychaetes, crustaceans, bivalves, other Algae, crustaceans, gastropods, polychaetes, other Algae, crustaceans, gastropods, polychaetes Decapods, polychaetes, molluscs, other Sponges, algae (Flabellia petiolate, Plocamium cartilagineum), anthozoans, other Fish, copepods, amphipods, isopods, algae, other
∗∗
Benthopelagic
3.30
0.48
60
214. Diplodus sargus sargus†
7–40
Bivalves (Mytilus galloprovincialis), echinoderms, algae (Gelidium pusillum, Ulva rigida), other
58, 19, 10, 13
Demersal
3.04
0.31
45
215. Diplodus sargus sargus† 216. Diplodus sargus sargus†
1–48 Mean TL 19.5
20, 16, 15, 9, 40 ∗∗
Demersal Demersal
3.38 3.10
0.51 0.40
45 45
217. Diplodus vulgaris
10–24
52, 14, 8, 4, 22
Benthopelagic
3.00
0.31
45
218. Diplodus vulgaris 219. Diplodus vulgaris 220. Diplodus vulgaris 221. Diplodus vulgaris
– 3–40 – 13–34
78, 11, 6, 5 29, 23, 16, 11, 21 ∗∗ ∗∗
Benthopelagic Benthopelagic Benthopelagic Benthopelagic
3.13 3.70 3.20 3.50
0.30 0.55 0.38 0.46
45 45 45 45
222. Lithognathus mormyrus
Mean TL 20.1
∗∗
Benthopelagic
3.30
0.48
55
223. Lithognathus mormyrus 224. Oblada melanura 225. Pagellus acarne
– 8–14 8–22
Molluscs, fish, decapods, annelids, other Algae (Cymodocea nodosa), bivalves, gastropods, echinoderms, other Bivalves (Mytilus galloprovincialis), ophiurids, polychaetes, algae (Falkenbergia rufolanosa), other Polychaetes, echinoderms, amphipods, other Fish, echinoderms, annelids, molluscs, other Tanaidaceans, polychaetes, amphipods, other Decapods, echinoderms, bivalves, polychaetes, gastropods, other Bivalves, gastropods, echinoderms, decapods, polychaetes, other Amphipods, decapods, molluscs, gastropods, fish, other Copepods, amphipods, ostracods, other 0–12 cm, decapods, fish, polychaetes, molluscs, amphipods, other 12–15 cm, decapods, polychaetes, amphipods, ophiurids, other 15–17 cm, decapods, ophiurids, fish, other >17 cm, ophiurids, decapods, polychaetes, other 8–11 cm, eggs, amphipods, bivalves, other 11–14 cm, crustaceans, decapods, copepods, fish, other >14 cm, decapods, fish, polychaetes, crustaceans, copepods, other Crustaceans, polychaetes, cephalopods, fish, ophiurids, other 4–10 cm, amphipods (Caprella sp.), polychaetes, decapods, other 10–15 cm, polychaetes (Sternaspis scutate, Flabelligera sp.), amphipods, decapods, other 15–20 cm, polychaetes (Sternaspis scutate, Flabelligera sp.), decapods, molluscs, other >20 cm, decapods, polychaetes, echinoderms, molluscs, amphipods, other Annelids, molluscs, decapods, other 0–5 cm, mysids, crustaceans, bivalves, polychaetes 5–10 cm, mysids, crustaceans, polychaetes, decapods, fish, cephalopods 10–15 cm, polychaetes, crustaceans, mysids, decapods, bivalves, other 15–20 cm, polychaetes, decapods, crustaceans, bivalves, ophiurids, other 20–25 cm, polychaetes, crustaceans, ophiurids, decapods, bivalves, cephalopods Decapods, fish, gastropods, polychaetes, bivalves, cephalopods, other Fish, polychaetes, crustaceans, cephalopods, gastropods, other Polychaetes (Sternaspis scutate, Nephthys hystricis), bivalves, decapods, isopods, other Decapods (Galathea nexa), polychaetes, gastropods, isopods, other Brachyurans, decapods, polychaetes, other
– (81, 14, 1, 4) 45, 19, 14, 7, 6, 9
Benthopelagic Benthopelagic Benthopelagic
3.50 3.10 3.65
0.52 0.20 0.58
55 34 36
63, 9, 5, 4, 19
3.54
0.54
65, 26, 4, 5 64, 33, 1, 2 (65, 9, 8, 18) (36, 14, 14, 13, 23) (24, 16, 15, 15, 15, 15)
Benthopelagic
3.56 3.47 3.40 3.50 3.50
0.54 0.45 0.48 0.49 0.50
70
38, 31, 11, 8, 4, 8
Benthopelagic
3.55
0.46
60
69, 14, 3, 14
Benthopelagic
3.25
0.48
60
31, 31, 16, 22
3.31
0.46
38, 25, 22, 25
3.37
0.44
22, 18, 18, 17, 16, 9
3.41
0.47
3.36 3.22 3.39
0.42 0.40 0.46
29, 25, 13, 11, 10, 12
3.36
0.44
33, 25, 16, 8, 8, 10
3.43
0.45
34, 29, 14, 9, 9, 5
3.37
0.40
226. Pagellus bogaraveo
8–16
227. Pagellus erythrinus
–
228. Pagellus erythrinus
4–47
229. Pagellus erythrinus 230. Pagellus erythrinus
4–45 3–36
231. Pagellus erythrinus
7–31
232. Pagellus erythrinus
–
233. Pagellus erythrinus
–
234. Pagellus erythrinus
–
235. Pagellus erythrinus
9–26
42, 21, 20, 17 78, 11, 6, 5 27, 27, 25, 7, 7, 7
Benthopelagic Benthopelagic
60 60
(40, 39, 8, 6, 2, 2, 3)
Benthopelagic
3.63
0.53
60
24, 23, 13, 12, 6, 22
Benthopelagic
3.83
0.53
60
23, 20, 14, 12, 31
Benthopelagic
3.30
0.45
60
25, 24, 20, 7, 24
Benthopelagic
3.16
0.46
60
45, 10, 8, 37
Benthopelagic
3.15
0.48
60
232 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
236. Pagellus erythrinus 237. Pagellus erythrinus 238. Pagellus erythrinus 239. Pagrus auriga 240. Pagrus caeruleostictus 241. Pagrus pagrus 242. Pagrus pagrus
4–22 6–21 – 15–65 8–40 13–45 16–49
Brachyurans, decapods, cephalopods, fish, other Brachyurans, decapods, cephalopods, polychaetes, other Crustaceans, polychaetes, fish Crustaceans, echinoderms, molluscs, other Molluscs, fish, crustaceans, polychaetes, other Fish, molluscs, crustaceans, polychaetes, other 30 cm, brachyurans, fish, anthozoans, echinoderms, decapods, other 14 cm, decapods (Upogebia tipica), fish, polychaetes Decapods, polychaetes (Aponuphis bilineata, Terebellides stroemi), fish, other Fish, decapods, cephalopods, molluscs Algae, epiphytes Algae, epiphytes Algae, epiphytes Algae, copepods, hydrozoans, ostracods, amphipods, isopods, other Rhodophyta (Hypnea musciformis, Gelidium crinale), Phaeophyta, Chlorophyta Molluscs (Ensis sp.), decapods, annelids, other Mysids, crustaceans 20–29 cm, euphausids (Meganyctiphanes norvegica, Nyctiphanes couchii) 30–39 cm, euphausids (Meganyctiphanes norvegica), decapods, fish 40–49 cm, decapods, fish, other 50–59 cm, decapods (Pasiphaea sivado), fish, other 60–69 cm, decapods (Pasiphaea sivado), fish, other
34, 6, 5, 4, 51 25, 10, 7, 5, 53 – 42, 30, 20, 8 28, 28, 17, 11, 16 52, 22, 10, 6, 10 43, 19,11, 27 31,17, 14, 13, 8, 17
Benthopelagic Benthopelagic Benthopelagic Benthopelagic Benthopelagic Reef–associated Reef-associated
3.12 3.08 3.60 3.31 3.51 3.88 3.74 3.76
0.47 0.44 0.54 0.48 0.59 0.67 0.60 0.60
60 60 60 80 90 91 91
3.61
0.60
243. Pagrus pagrus
4–19
244. Pagrus pagrus
–
245. Pagrus pagrus 246. Sarpa salpa 247. Sarpa salpa 248. Sarpa salpa 249. Sarpa salpa
– 7–37 7–37 7–37 Mean TL 3.7
250. Sarpa salpa
12–24
251. Sparus auratus† 252. Spondyliosoma cantharus 253. Lepidopus caudatus
2–29 – 20–69
254. Tripterygion delaisi† 255. Tripterygion delaisi†
38, 20, 11, 9, 9, 13 53, 25, 19, 3
Reef-associated
3.67
0.60
91
70, 27, 3 54, 21, 18, 7
Reef-associated
3.80 3.63
0.65 0.56
91
– 96, 4 99, 1 96, 4 ∗∗
Reef-associated Benthopelagic Benthopelagic Benthopelagic Benthopelagic
3.90 2.06 2.02 2.06 2.50
0.55 0.07 0.04 0.07 0.17
91 51 51 51 51
49, 27, 24
Benthopelagic
2.00
0.00
51
60, 16, 13, 11 70, 30 100
Demersal Benthopelagic Benthopelagic
3.42 3.29 3.20
0.56 0.56 0.40
70 60 205
38, 35, 27
3.69
0.60
72, 27, 1 69, 25, 6 67, 23, 10
3.84 3.80 3.77
0.25 0.64 0.63
Mean TL 6.0
Eggs, copepods, decapods, polychaetes, other
(48, 18, 16, 4, 14)
Demersal
3.50
0.56
9
256. Uranoscopus scaber
2–8 –
(54, 21, 10, 4, 11) (62, 22, 11, 5)
Demersal Demersal
3.50 3.80
0.57 0.57
9 40
257. Uranoscopus scaber
–
–
Demersal
4.00
0.61
40
258. Xiphias gladius
–
(100)
Pelagic
4.50
0.80
450
259. Xiphias gladius
78–192
68, 31, 1
Pelagic
4.49
0.54
450
260. Arnoglossus laterna 261. Arnoglossus thori 262. Bothus podas 263. Bothus podas
– – – 6–16
∗∗ 100 49, 40, 11 ∗∗
Demersal Demersal Demersal Demersal
3.50 3.29 3.41 3.40
0.49 0.53 0.54 0.47
20 18 45 45
264. Citharus linguatula 265. Symphurus nigrescens
– 3–15
– 33,29, 23, 7, 8
Demersal Demersal
3.80 3.32
0.65 0.41
30 12
266. Symphurus nigrescens 267. Lepidorhombus boscii
– 4–32
Brachyurans, decapods, gastropods, pycnogonids, other Fish (Callionymus maculatus, Trachurus trachurus), decapods, cephalopods, other Fish (Atherina boyeri, Mullus surmuletus), cephalopods, crustaceans Fish (Sardina pilchardus, Sardinella aurita, Engraulis encrasicolus) Cephalopods (Todarodes sagittatus, Ommastrephes bartramii), fish, decapods Amphipods, decapods, polychaetes, other Amphipods Decapods, amphipods, polychaetes Polychaetes (Nephthys hombergi, Phyllodoce lineata), mysids, cumaceans, amphipods, gastropods, other Fish, decapods 3–9 cm, polychaetes, ophiurids, decapods, amphipods, other 10–15 cm, decapods, ophiurids, polychaetes, other Polychaetes, decapods, ophiurids, other 4–9 cm, decapods (Solenocera membranacea, Processa mediterranea), mysids, fish, other 10–19 cm, decapods (Alpheus glaber, Processa mediterranea), fish, other 20–32 cm, decapods (Processa mediterranea, Alpheus glaber), fish, other 16 cm, decapods, fish, crustaceans, other Crustaceans, decapods, isopods, fish, cephalopods 5–10 cm, mysids, decapods, amphipods, other 10–20 cm, decapods (Alpheus glaber), mysids, fish, other 20–25 cm, decapods (Alpheus glaber), fish, other
47, 22, 21, 10 39, 26, 17, 18 66, 15, 6, 13
Demersal Demersal
3.42 3.20 3.54
0.47 0.34 0.56
12 40
74, 23, 3
3.80
0.64
87, 10, 3
3.69
0.61
3.53 3.77 3.68 3.80 3.22 3.65 3.85
0.56 0.63 0.61 0.61 0.48 0.57 0.65
268. Lepidorhombus boscii
8–20
269. Lepidorhombus boscii 270. Lepidorhombus boscii
5–29 5–25
76, 10, 2, 12 74, 20, 2, 4 85, 10, 3, 2 (51, 28, 10, 8, 2) 56, 16, 13, 15 48, 26, 14, 12 60, 26, 14
Demersal
Demersal Demersal
40
40 40
233 Table 1B. Continued Species
Length range Main prey
W (or N)
Habitat
TROPH
SE
Lmax
271. Lepidorhombus boscii
4–31
(35, 23, 6, 6, 5, 5, 20)
Demersal
3.50
0.50
40
272. Lepidorhombus whiffiagonis
8–20
51, 28, 3, 1, 17 53, 42, 5 71, 29
Bathydemersal 4.01 4.07 4.24
0.68 0.70 0.75
60
273. Buglossidium luteum† 274. Solea solea
– 13–42
∗∗ ∗∗ ∗∗
Demersal Demersal
3.20 3.20 3.10
0.38 0.38 0.42
15 70
∗∗
3.30
0.46
∗∗
3.30
0.44
∗∗
3.20
0.41
275. Solea solea
–
276. Dasyatis chrysonata marmorata†
–
277. Raja miraletus 278. Raja radula 279. Rhinobatos rhinobatos 280. Scorpaena notata 281. Scorpaena notata 282. Scorpaena notata 283. Scorpaena porcus 284. Scorpaena porcus 285. Scorpaena porcus 286. Scorpaena porcus 287. Scorpaena porcus 288. Scorpaena porcus 289. Scorpaena porcus 290. Scorpaena porcus 291. Scorpaena scrofa 292. Scorpaena scrofa 293. Scorpaena scrofa 294. Scorpaena scrofa 295. Helicolenus dactylopterus
18–50 – 27–180 – – 2–18 – – 2–24 7–20 8–23 8–30 7–24 – – 11–23 10–25 – 4–29
296. Helicolenus dactylopterus 297. Chelidonichthys cuculus†
9–17
298. Chelidonichthys cuculus†
8–20
299. Chelidonichthys gurnardus†
6–39
300. Chelidonichthys lastoviza† 301. Chelidonichthys lastoviza† 302. Chelidonichthys lastoviza†
Mysids, decapods, isopods, amphipods, fish, brachyurans other 16 cm, fish, decapods Amphipods, polychaetes, bivalves 13–20 cm, polychaetes, algae 20–25 cm, cnidarians, polychaetes, molluscs, decapods, algae 25–30 cm, cnidarians, polychaetes, molluscs, decapods, echinoderms, algae, fish 30–35 cm, cnidarians, polychaetes, molluscs, decapods, echinoderms, algae, fish 35–42 cm, polychaetes, molluscs, decapods, echinoderms, fish, algae Polychaetes, amphipods, tanaidaceans, decapods, bivalves, gastropods Fish, polychaetes, gastropods, cephalopods, crustaceans, other Fish, crustaceans, molluscs, polychaetes, other Crustaceans, fish, molluscs Decapods, fish, cephalopods Fish, appendicularians, copepods, other Brachyurans, decapods, other Brachyurans, decapods, amphipods, fish, other Fish, appendicularians, copepods, other Fish, brachyurans, decapods, other Brachyurans, fish, decapods, other Fish, crustaceans, other Brachyurans, fish, decapods, other Brachyurans, fish, decapods, stomatopods, other Decapods, crustaceans, bracyurans Brachyurans (Xantho spp., Portunus spp.), decapods, fish Fish, decapods Fish, brachyurans, decapods, cephalopods Fish, crustaceans, other Fish (Spicara smaris), crustaceans, molluscs 4–9 cm, fish (Gadiculus argenteus argenteus), decapods, other 10–19 cm, decapods (Alpheus glaber), fish, other 20–29 cm, decapods (Goneplax rhomboides, Calocaris macandreae), tunicates, fish, other Decapods, fish, mysids, cephalopods, other
34, 30, 14, 11, 9, 2
Demersal
3.30
0.47
70
∗∗
Demersal
3.70
0.49
60
∗∗ – 48, 45, 6 80, 10, 5, 5 61, 31, 8 49, 23, 9, 8, 11 80, 10, 5, 5 54, 36, 7, 3 63, 25, 6, 6 53, 45, 2 42, 29, 20, 9 43, 39, 12, 3, 3 ∗∗ – 63, 37 71, 16, 8, 5 87, 11, 2 – 52, 34, 14
Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal Demersal
3.90 3.90 4.05 3.49 3.50 3.44 3.44 4.04 3.74 4.03 3.82 3.89 3.40 3.80 4.13 4.26 4.38 4.00 4.01
0.59 0.61 0.69 0.57 0.57 0.52 0.52 0.70 0.64 0.70 0.66 0.68 0.47 0.66 0.67 0.73 0.77 0.66 0.69
60 70 100 24 24 24 30 30 30 30 30 30 30 30 50 50 50 50 45
3.93 3.63
0.67 0.58
53, 39, 8 81, 9, 8, 2 (30, 23, 14, 12, 21)
Demersal
3.80
0.62
45
Decapods (Alpheus glaber, Macropipus pusillus), fish, mysids, other Mysids (Leptomysis gracilis, Lophogaster typicus), decapods, cephalopods, fish, other
43, 42, 11, 4
Demersal
3.82
0.61
50
(78, 7, 7, 5, 3)
Demersal
3.60
0.48
50
33, 30, 17, 15, 5
Demersal
3.58
0.56
60
–
Decapods (Alpheus glaber, Goneplax rhomboides), mysids, fish, euphausids, other Brachyurans
100
Demersal
3.50
0.60
40
–
Decapods, mysids, other
91, 2, 7
Demersal
3.54
0.53
40
–
Decapods (Liocarcinus maculatus, Liocarcinus arcuatus), mysids, other
(91, 2, 7)
Demersal
3.58
0.57
40
303. Chelidonichthys lucerna†
12–35
Decapods (Goneplax rhomboides, Philocheras bispinosus), mysids, fish, molluscs, other
(55, 14, 12, 10, 9)
Demersal
3.40
0.47
75
304. Chelidonichthys lucerna†
6–25
Mysids (Gastrosaccus sanctus), decapods, fish, cephalopods, bivalves, other
(42, 34, 14, 2, 2, 6)
Demersal
3.60
0.54
75
305. Chelidonichthys lucerna†
6–27
∗∗
Demersal
3.70
0.48
75
306. Chelidonichthys obscurus†
8–23
Decapods (Philocheras monacanthus), amphipods, crustaceans, fish, other Decapods (Macropipus depurator, Philocheras sculptus), cephalopods, mysids, other
53, 21, 14, 12
Demersal
3.73
0.52
20
307. Chelidonichthys obscurus†
8–20
(78, 17, 5)
Demersal
3.50
0.46
20
308. Chelidonichthys obscurus†
11–18
Mysids (Gastrosaccus normani, Anchialina agilis), decapods, other Mysids (Gastrosaccus sp., Lophogaster typicus), decapods, amphipods, copepods, fish, bivalves
(49, 42, 4, 3, 1, 1)
Demersal
3.40
0.49
20
–
234 Table 1B. Continued Species
Length range
Main prey
W (or N)
Habitat
TROPH
SE
Lmax
309. Lepidotrigla cavillone
–
74, 18, 8
Demersal
3.29
0.46
20
310. Lepidotrigla cavillone
4–10
(69, 15, 15, 1)
Demersal
3.30
0.44
20
311. Lepidotrigla cavillone
–
76, 10, 14
Demersal
3.17
0.42
20
312. Lepidotrigla cavillone 313. Lepidotrigla cavillone
– –
60, 14, 26 71, 16, 13
Demersal Demersal
3.10 3.37
0.41 0.48
20 20
314. Lepidotrigla cavillone
–
75, 10, 15
Demersal
3.28
0.44
20
315. Lepidotrigla cavillone
–
55, 42, 3
Demersal
3.43
0.52
20
316. Trigla lyra
4–39
85, 12, 3 77, 21, 2 66, 34
Demersal
3.48 3.48 3.53
0.35 0.42 0.52
60
317. Trigla lyra
23–50
3.53 3.70
0.52 0.52
318. Trigla lyra
6–30
319. Trigla lyra
5–33
320. Centroscymnus coelolepis
19–75
Mysids (Lophogaster typicus, Anchialina agilis), decapods, other Mysids (Gastrosaccus sp., Anchialina agilis), amphipods, decapods, copepods Mysids (Lophogaster typicus, Paramysis helleri), decapods, other Decapods (Processa canaliculata), mysids, other Mysids (Paramysis helleri, Lophogaster typicus), decapods, other Mysids (Lophogaster typicus, Paramysis helleri), decapods, other Decapods (Upogebia tipica, Solenocera membranacea), mysids, crustaceans 4–9 cm, ophiurids, hydrozoans, other 10–19 cm, ophiurids, decapods, other 20–29 cm, decapods (Goneplax rhomboides, Pontocaris lacazei), ophiurids 30–39 cm, decapods, ophiurids Crustaceans (Anapagurus laevis, Monodaeus couchi), polychaetes, echinoderms 18 cm, mysids (Lophogaster typicus), brachyurans, decapods, other 18 cm, mysids (Lophogaster typicus), brachyurans, decapods, other 19–39 cm, cephalopods, fish, decapods, other 40–75 cm, cephalopods, fish, other
321. Dalatias licha†
32–101
322. Etmopterus spinax
10–49
323. Etmopterus spinax
–
324. Hippocampus hippocampus 325. Syngnathus acus 326. Syngnathus acus 327. Syngnathus typhle 328. Torpedo marmorata
– – – – 11–62
329. Torpedo torpedo
12–43
330. Capros aper
3–15
331. Zeus faber 332. Zeus faber
– 5–51
Fish (Trachyrhynchus trachyrhynchus, Notoscopelus elongatus), decapods, molluscs, other Fish (Engraulis encrasicolus, Notolepis rissoi), cephalopods, decapods, other Fish (Engraulis encrasicolus, Notolepis rissoi), crustaceans, molluscs, other Amphipods, copepods Brachyurans, polychaetes, decapods, fish, other Decapods, amphipods, mysids, other Fish, mysids, decapods 40 cm, fish 30 cm, fish 3–9 cm, euphausids, euphausids larvae, copepods, other 10–15 cm, euphausids, copepods, other Fish 14 cm, fish (Cepola macrophthalma, Spicara flexuosa), other
reported length classes, Li , was quantified using the following equation (Cortés, 1999): TROPHLi = TROPHL∞ (1 − e−KLi ), where TROPHL∞ is the asymptotic TROPH and K is the rate at which TROPHL∞ is approached, with both estimated using Marquardt’s (1963) algorithm for fitting nonlinear least-squares regression. An F test of significance of the entire nonlinear regression was obtained from the (regression mean square)/(residual
65, 35 (50, 39, 11)
Demersal
60
68, 18, 14 48, 24, 20, 8
Demersal
3.31 3.38
0.47 0.50
60
74, 13, 13 46, 27, 16, 11
Demersal
3.28 3.38
0.45 0.51
60
62, 20, 5, 13 88, 6, 6
Bathydemersal
4.16 4.35
0.48 0.40
120
75, 15, 5, 5
Bathydemersal
4.35
0.75
182
56, 26, 16, 2
Bathydemersal
4.33
0.67
60
49, 19, 11, 21
Bathydemersal
3.80
0.58
60
53, 47 64, 17, 7, 4, 8 75, 16, 8, 1 84, 11, 5 75, 20, 3, 2 95, 5 100 74, 18, 8 95, 5 100 51, 25, 21, 3 54, 22, 24 100 89 (39, 33), 9, 2
Demersal Demersal Demersal Demersal Demersal
3.15 3.44 3.47 4.31 4.45 4.50 4.50 4.32 4.45 4.50 3.16 3.21 4.50 4.36
0.39 0.40 0.55 0.75 0.72 0.78 0.80 0.74 0.79 0.80 0.36 0.38 0.80 0.77
15 46 46 30 60
4.50
0.80
99.7 (65, 19), 0.3
Demersal
Demersal Benthopelagic Benthopelagic
60
30 90 90
mean square) ratio, which was compared to the critical value F0.5(1),v1,v2, where v1 = regression degrees of freedom (df) = 2 and v2 = residual df = (total number of length classes) = 3 (Zar, 1999).
Results Overall, 332 datasets of diet composition were gathered, which corresponded to 146 fish species, 59
235 families and 21 orders (Table 1A). The maximum reported body size (Lmax ) of the 146 species ranged from 4 cm, for Apletodon dentatus, to 458 cm, for Thunnus thynnus (Table 1B). The majority of the datasets referred to the Western Mediterranean (183 datasets, 83 of which referred to the Gulf of Lions, including the Gulf of Marseille, and 65 to the Balearic Sea) and, to a lesser extent, to the Eastern Mediterranean (102 datasets, 85 of which referred to the Aegean Sea) (Figure 1). Only 47 datasets were derived from the Central Mediterranean Sea (Figure 1). Furthermore, only 33 datasets were derived from the southern rim of the Mediterranean Sea (Figure 1). The compiled datasets were based on samples collected mainly with trawls (Figure 2a) and on a monthly or seasonal basis (Figure 2b). The sampling gear (Figure 2a) and sampling frequency (Figure 2b) was not reported for 60 and 76 datasets, respectively. Diet composition was expressed as percentages of numerical abundance (N), gravimetric abundance (W), frequency of occurrence (F) or rank relative abundance (RA) of prey in relation to the number of stomachs containing food (Figure 2c). For 222 datasets, the stomach content was expressed using W along with N and/or F whereas for the remaining 110 datasets it was expressed using N and/or F or RA (Figure 2c). The length range of the specimens studied was provided for 169 datasets and the mean length for 26 datasets, whereas no information on the length structure of the specimens studied was available for the remaining 137 datasets (Figure 2d). Finally, the number of empty stomachs was provided for 213 datasets (64.2%) (Table 1A). The total number of stomachs analyzed per dataset, which ranged from 1 for eight datasets to 5,223 for Saurida undosquamis in SE Mediterranean in 1980– 1981, was not reported for 35 datasets (Figure 3). For about half of the datasets (156, 47%) the total number of stomachs analyzed was lower than 200 (Figure 3). The estimated TROPH values (Table 1B) ranged from 2.0 to 4.5 units and displayed three main modes, at 3.4–3.5, 3.8–3.9 and 4.3–4.4 units, and two minor ones at 2.0–2.1 and 2.5–2.6, and three normal distribution components were identified (Figure 4). The above-mentioned modes and normal distributions might correspond to the following general functional trophic groups: (a) Pure herbivores (TROPH = 2.0–2.1, mean = 2.02, SD = 0.03), which were very rare among
the datasets reviewed here (Figure 4). They were represented by the reef-associated Siganus luridus and Siganus rivulatus datasets (in the Dodecanese in 1985–1986 and in SE Mediterranean, undated) and the benthopelagic Sarpa salpa (in the Southern Adriatic Sea in 1989; and in the Gulf of Lions, Gulf of Marseille and Corsican waters, all undated). The above-mentioned stocks all feed on red, brown, green and blue-green algae, with the last three Sarpa salpa stocks also accidentally consuming small quantities of epiphytes (Table 1B). (b) Omnivores with a preference for vegetable material (2.1 < TROPH < 2.9, mean = 0.50, SD = 0.12), but also feeding on other prey, such as sponges, hydrozoans, anthozoans, polychaetes, ostracods, isopods, amphipods and copepods. They were very rare among the datasets reviewed here and represented by the following species (Table 1B): Gobius bucchichi in the Northern Adriatic Sea (undated); Boops boops in the Gulf of Marseille in 1980; Diplodus puntazzo in the Western Mediterranean Sea in 1992-1993; Sarpa salpa in Western Sicilian waters in 1991; and 13–20 cm Solea solea in the Western Mediterranean Sea in 1976–1978. (c) Omnivores with a preference for animals (2.9 < TROPH < 3.7, mean = 3.40, SD = 0.19) feeding on a wide variety of prey (e.g., algae, foraminifera, brachyurans, balanoids, ostracods, bivalves, ascidians, amphipods, appendicularians, annelids, isopods, gastropods, cumaceans, cnidarians, ophiurids, polychaetes, cladocerans, mysids, euphausids, fish larvae, cephalopods) (Figure 4). They were the most numerous group among the datasets reviewed (Figure 4). They were mainly represented by the species of the families Blenniidae, Bothidae, Centracanthidae, Gobiidae, Labridae, Lotidae, Macrouridae, Mullidae, Ophidiidae, Soleidae, Triglidae (Figure 5), Cynoglossidae (Symphurus nigrescens), Alepocephalidae (Alepocephalus rostratus), Clupeidae (Sardina pilchardus) and Engraulidae (Engraulis encrasicolus) (Table 2). Although the members of this group occurred in all habitat types, they were mainly distributed in the bathypelagic, benthopelagic and demersal habitats (Figure 6). (d) Carnivores with a preference for large decapods, cephalopods and fish (3.7 < TROPH < 4.5), which were the next most abundant group among the datasets reviewed (Figure 4). They were mainly represented by the species of the families Dalatiidae, Lophiidae, Scombridae, Scyliorhinidae, Synodontidae, Torpedinidae (Figure 5), Merlucciidae
236
Figure 1. Spatial allocation of the 332 compiled datasets on diet composition of Mediterranean fish as well as names of main seas, gulfs and islands. Division of Mediterranean Sea into Western, Central and Eastern parts follows the system of the General Fisheries Council for the Mediterranean Sea (GFCM).
(Merluccius merluccius), Sebastidae (Helicolenus dactylopterus), Xiphiidae (Xiphias gladius) and Zeidae (Zeus faber) (Table 2). Although the members of this group also generally occurred in all habitat types, they were mainly distributed in the bathydemersal, pelagic and reef-associated habitats (Figure 6). This group was further divided into two subgroups: one exhibiting a preference for decapods and fish, feeding also on polychaetes, brachyurans, echinoderms, crustaceans, molluscs, mysids and cephalopods (3.7 < TROPH < 4.0, mean = 3.85, SD = 0.09) and another one exhibiting a preference for fish and cephalopods (4.0 < TROPH < 4.5, mean = 4.38, SD = 0.12), feeding also on crustaceans and decapods. Among the latter subgroup, the species characterized by datasets with the highest TROPH (4.5; Dentex dentex, Molva macrophthalma, Seriola dumerili, Xiphias gladius, Thunnus thynnus, Zeus faber, Torpedo marmorata, Torpedo torpedo, Epinephelus fasciatus, Euthynnus alletteratus and Sarda sarda) and with TROPH values ranging between 4.4 and 4.5 (Saurida undosquamis, Seriola dumerili, Conger conger, Merluccius merluccius, Thunnus thynnus and Xiphias gladius) (Table 1B, Table 2) can be considered
as top carnivores when compared to the remaining species reviewed here. The family Sparidae, which was characterized by the highest number of species and datasets, was represented in all functional trophic groups (Figure 5). In addition, the families Carangidae, Congridae, Gadidae, Scorpaenidae, Serranidae, Scophthalmidae and Syngnathidae all included representatives in both trophic groups (c) and (d) (Figure 5). The most intensively studied species were Mullus barbatus, Merluccius merluccius, Pagellus erythrinus and Mullus surmuletus, represented by more than 10 datasets each, followed by Scorpaena porcus and Lepidotrigla cavillone (8 and 7 datasets respectively) (Table 2). In addition, 69 species were represented by 2 to 5 datasets (Table 2) each and the remaining 71 species by 1 dataset each. The TROPH values estimated from the different datasets of the same species varied with area (Table 2). The coefficient of variation ranged between 0.0 and 20% and for most species (49, 65%) it was smaller than 5% whereas for 6 species it was higher than 10% (Table 2). The TROPH difference (i.e., difference between maximum and minimum TROPH per species) ranged between 0.0 and 1.3 units,
237
Figure 2. (a) Sampling gear (for other gears see Table 1A), (b) frequency of sampling, (c) indices used for the expression of diet composition data (W = gravimetric contribution, N = numerical contribution, F = frequency of occurrence of prey, RA=rank relative abundance) and (d) type of length of examined specimens reported, for the 332 datasets on diet composition of Mediterranean fish compiled in the present study. NR = Not reported.
depending on species (Figure 7). For most species (43, 57%) TROPH differences ranged between 0.0 and 0.3 units whereas for 16 species they were greater than 0.5 units (Figure 7). Across the datasets analyzed, TROPH and mean TROPH per species increased with a corresponding increase in species’ Lmax (Figure 8). The latter accounted for 20–23% of the variance in TROPH and this percentage increased to 32–36% when few outliers, corresponding to all datasets of the pure herbivores Siganus luridus, Siganus rivulatus and Sarpa salpa, were excluded from the analysis (Figure 8). Stomach content data for different length classes of the same stock were available for 38 datasets only (Table 3). TROPH increased between the smallest and largest length classes for 32 datasets (Table 3). TROPH differences ranged from −0.4 to 1.1 units,
with about half of the datasets (i.e., 17, 45%) exhibiting a difference of 0.0–0.2 units (Figure 9). The relationship between TROPH and the midpoint of each length class was estimated only for 11 datasets for which data were available for more than three length classes (Table 3). The asymptotic model provided a significant (i.e., regression F value > critical value F0.5(1),v1,v2) fit for 9 datasets (Figure 10, Table 4). It described the datasets adequately (i.e., R2 > 0.73), with two exceptions (Figure 10b, c) for which R2 was 0.40 and 0.42 (Table 4). For these two datasets, TROPH increased linearly with length (Chimaera monstrosa: TROPHLi = 3.36 + 0.034Li, R2 = 0.90, P < 0.05; Caelorinchus caelorhincus: TROPHLi = 2.97 + 0.54Li, R2 = 0.93, P < 0.05). The asymptotic model did not provide a fit for two datasets (Figure 10a, f) for which TROPH did not change significantly (P > 0.05) with length.
238
Figure 3. Histogram of the total number of stomachs on which the 332 datasets on diet composition of Mediterranean fish were based. NR = Not reported.
Figure 4. Histogram of all TROPH values of Mediterranean fish listed in Table 1B, including those referring to different length classes (N = 416), together with the three normal distributions identified. The latter are characterized by their means (left) and standard deviations (right, in parentheses). The two classes at the left (i.e., midpoint 2.05) and right (i.e., midpoint 4.55; all cases had TROPHs = 4.5) edges of the TROPH distribution were not considered in the analysis.
239
Figure 5. Box – Whisker plots of the TROPH values of Mediterranean fish by major family. The central box covers 50% of the data, the whiskers extend out to the minimum and maximum values of the data, the vertical line within the box is the median and the black dot is the mean. Numbers in parentheses indicate number of species (left) and number of datasets (right) per family. The vertical lines indicate the trophic groups identified in Figure 4.
Discussion From Tables 1 and 2 it became apparent that stomach contents, and thus TROPH estimates, are available for many of the most important, in terms of reported catches, Mediterranean fish (i.e., Engraulis encrasicolus, Sardina pilchardus, Merluccius merluccius, Sparus auratus, Trachurus spp., Boops boops, Mullus spp., Thunnus thynnus, Micromesistius poutassou: their percentage contribution to the 1996 catch ranged from 29.2 to 1.4% respectively). Yet, we did not find any data for the feeding habits of many other commercially important fish, which are recorded separately in the statistical Bulletins of the Food and Agriculture Organisation (FAO) and contribute considerably to the overall reported Mediterranean catches, such as: (a) Scomber japonicus, Sardinella aurita, Sprattus sprattus, Merlangius merlangus (all of which contributed more than 1% of the total 1996 Mediterranean catch); (b) Auxis spp., Pomatomus saltatrix, Mustelus spp., Psetta maxima, Sphyraena spp. (all of which contributed more than 0.1% of the total 1996 Mediterranean catch); and (c) other less
abundant yet important components of the Mediterranean ecosystems (e.g., Belone belone, Dentex macrophthalmus, Squalus acanthias, Caranx spp., Squatina squatina, Platichthys flesus, Katsuwonus pelamis, Lamna nasus, Thunnus obesus, Istiophorus albicans, Pleuronectes platessa). Thus, the study of the feeding habits of the above-mentioned species, especially of those from the bathypelagic, bathydemersal, reef-associated and pelagic habitats, which were underrepresented in our compilation (Figure 6), together with similar information on other organisms such as large crustaceans and cephalopods, will be essential for the development of Ecopath models, for the estimation of “Primary Production Required” to support the Mediterranean fisheries, as well as for the evaluation of the ‘fishing down the food web’ effect at a small, local scale in the Mediterranean Sea, where such information is lacking to a great extent (Stergiou and Polunin, 2000). In marine ecosystems, consumers have TROPH values that range between 2.0, for herbivorous/ detrivorous organisms, and 5.0, for piscivorous/ carnivorous organisms, the latter being rare even
240 Table 2. Minimum, maximum and mean fractional trophic level (TROPH) values for all Mediterranean fish species represented by more than one dataset (N). CV: coefficient of variation. When TROPH was available per length class, the mean of all classes was taken
Species
N
TROPH Mimimum
Maximum
Mean
CV (%)
Siganus luridus Sarpa salpa Boops boops Diplodus puntazzo Spicara smaris Sardina pilchardus Spicara maena Symphodus mediterraneus Solea solea Diplodus sargus sargus Gobius auratus Symphodus tinca Symphodus cinereus Deltentosteus quadrimaculatus Symphodus ocellatus Nezumia aequalis Pomatoschistus bathi Mullus barbatus Lepidotrigla cavillone Caelorinchus caelorhincus Symphurus nigrescens Hymenocephalus italicus Diplodus vulgaris Gobius niger Diplodus annularis Symphodus rostratus Pagellus erythrinus Coris julis Mullus surmuletus Lithognathus mormyrus Bothus podas Gaidropsarus mediterraneus Engraulis encrasicolus Trachyrincus scabrus Gaidropsarus vulgaris Syngnathus acus Trigla lyra Scorpaena notata Lepidion lepidion Alepocephalus rostratus Trachurus mediterraneus Tripterygion delaisi Ophidion barbatum Chelidonichthys lastoviza Chelidonichthys obscurus Chelidonichthys lucerna Serranus hepatus
2 5 2 2 2 2 3 2 2 3 2 3 3 3 4 2 2 16 7 2 2 2 5 3 4 3 12 4 11 2 2 2 3 3 2 2 4 3 2 2 4 2 2 3 3 3 4
2.00 2.00 2.53 2.69 3.00 3.10 3.00 3.10 3.04 3.04 3.10 3.14 3.10 3.11 2.99 3.20 3.20 2.79 3.10 3.20 3.20 3.20 3.00 3.20 3.30 3.30 3.08 3.27 3.16 3.30 3.40 3.41 3.40 3.20 3.42 3.44 3.33 3.44 3.30 3.40 3.20 3.50 3.47 3.50 3.40 3.40 3.47
2.00 2.50 3.30 3.30 3.10 3.20 3.30 3.22 3.30 3.38 3.30 3.26 3.30 3.30 3.40 3.29 3.30 3.57 3.43 3.36 3.37 3.40 3.70 3.47 3.41 3.41 3.83 3.63 3.58 3.50 3.41 3.42 3.50 3.66 3.49 3.47 3.51 3.50 3.67 3.59 3.70 3.50 3.56 3.58 3.73 3.70 3.73
2.00 2.13 2.92 3.00 3.05 3.15 3.15 3.16 3.17 3.17 3.20 3.20 3.23 3.24 3.24 3.25 3.25 3.27 3.28 3.28 3.29 3.30 3.31 3.32 3.36 3.37 3.37 3.38 3.38 3.40 3.41 3.42 3.43 3.45 3.46 3.46 3.47 3.48 3.49 3.49 3.50 3.50 3.52 3.54 3.54 3.57 3.61
0.00 9.90 18.70 14.40 2.30 2.30 4.80 2.70 5.80 5.70 4.40 1.90 3.40 3.40 1.00 2.00 2.20 6.90 3.40 3.40 3.70 4.30 8.70 4.10 1.70 1.80 7.00 5.10 4.30 4.10 2.40 0.20 1.70 6.80 1.40 0.60 5.00 0.90 7.50 3.80 6.20 0.00 1.80 1.10 4.80 4.30 3.90
241 Table 2. Continued
Species
N
TROPH Mimimum
Maximum
Mean
CV (%)
Gaidropsarus biscayensis Lepidorhombus boscii Gnathophis mystax Upeneus moluccensis Trachurus trachurus Trisopterus minutus Chromis chromis Conger conger Chelidonichthys cuculus Serranus cabrilla Gadiculus argenteus argenteus Pagrus pagrus Scorpaena porcus Serranus scriba Helicolenus dactylopterus Uranoscopus scaber Micromesistius poutassou Galeus melastomus Etmopterus spinax Saurida undosquamis Lophius budegassa Merluccius merluccius Scorpaena scrofa Seriola dumerili Thunnus thynnus Zeus faber Xiphias gladius Dentex dentex
2 5 2 2 4 5 2 3 2 4 2 5 8 2 2 2 5 3 2 2 2 13 4 5 4 2 2 2
3.52 3.50 3.62 3.40 3.40 3.39 3.18 3.20 3.60 3.30 3.55 3.63 3.40 3.70 3.80 3.80 3.56 3.70 3.80 3.80 3.90 3.75 4.00 3.83 4.24 4.43 4.49 4.50
3.72 3.80 3.67 3.89 3.90 3.81 4.21 4.49 3.82 4.37 3.90 3.90 4.04 3.87 3.86 4.00 4.39 4.26 4.33 4.49 4.40 4.45 4.38 4.50 4.50 4.50 4.50 4.50
3.62 3.64 3.65 3.65 3.65 3.65 3.70 3.70 3.71 3.71 3.73 3.77 3.77 3.79 3.83 3.90 3.92 3.97 4.07 4.15 4.15 4.17 4.19 4.21 4.30 4.47 4.50 4.50
3.90 3.13 0.96 9.50 5.70 5.30 19.70 18.60 4.20 13.30 1.60 3.10 6.40 3.20 1.10 3.60 7.90 1.99 9.20 11.80 3.00 5.50 3.90 8.00 5.30 1.10 0.20 0.00
in fish such as sharks (Cortés, 1999), characterizing only specialized predators of marine mammals (e.g., killer whales or polar bears; Pauly et al., 1995, 1998c). In the Mediterranean Sea, the highest TROPH value, 4.5, was recorded for Dentex dentex, Epinephelus fasciatus, Euthynnus alletteratus, Molva macrophthalma, Sarda sarda, Seriola dumerili, Thunnus thynnus, Torpedo marmorata, Torpedo torpedo, Xiphias gladius and Zeus faber (>14 cm), followed by Saurida undosquamis, Conger conger and Merluccius merluccius (TROPH values from 4.4 to 4.49). Such TROPH values are much higher than those estimated for many sharks, which generally range between 3.1 and 4.7 (Cortés, 1999), and many marine mammals, which generally range between 3.2 and 4.5 (Pauly et al., 1995, 1998c), with members of both groups being generally considered as top predators.
We also estimated TROPH from the weight of the prey in the stomach contents of one monk seal Monachus monachus, one bottle-nosed dolphin Tursiops truncatus, one dolphin Stenella coeruleoalba and one leatherback turtle Dermochelys coriacea from the Mediterranean Sea (Table 5). Our TROPH estimates (Figure 4) were all lower than those for Tursiops truncatus and Monachus monachus, whereas the TROPH of Stenella coeruleoalba was 4.5 (Table 5). Hence, the fish species mentioned above, along with marine mammals, must be considered as top predators in the Mediterranean Sea. The analysis of the estimated TROPHs indicated a number of different functional trophic groups (i.e., pure herbivores; omnivores with a preference for vegetable material; omnivores with a preference for a variety of animal prey; carnivores with a preference
242
Figure 6. Box – Whisker plots of the fractional trophic level (TROPH) values of Mediterranean fish by habitat type. The central box covers 50% of the data, the whiskers extend out to the minimum and maximum values of the data, the vertical line within the box is the median and the black dot is the mean. Numbers in parentheses indicate number of datasets per habitat type. Habitat type was extracted from “FishBase online” (www.fishbase.org). The vertical lines indicate the trophic groups identified in Figure 4.
Figure 7. Frequency distribution of the differences between the minimum and maximum TROPH values for all Mediterranean fish species represented by more than one dataset (N = 75; see Table 2).
243
Table 3. Fractional trophic level (TROPH) values for the smallest and largest length class of Mediterranean fishes for which diet composition was available for different length classes. N: number of length classes
Species
Area
N
TROPH Smallest class
Largest class
Zeus faber Merluccius merluccius Chimaera monstrosa Lepidopus caudatus Pagellus erythrinus Solea solea Caelorinchus caelorhincus Merluccius merluccius Pagellus acarne Pagellus erythrinus Trigla lyra Epinephelus marginatus Gnathophis mystax Helicolenus dactylopterus Lepidorhombus boscii Lepidorhombus boscii Lepidorhombus boscii Lepidorhombus whiffiagonis Micromesistius poutassou Nezumia aequalis Pagellus bogaraveo Pagrus pagrus Seriola dumerili Seriola dumerili Torpedo marmorata Torpedo torpedo Trachyrincus scabrus Alepocephalus rostratus Capros aper Centroscymnus coelolepis Gaidropsarus biscayensis Galeus melastomus Micromesistius poutassou Pagrus pagrus Seriola dumerili Symphurus nigrescens Trigla lyra Trigla lyra
G. Evvoikos C Mediterranean W Mediterranean W Mediterranean C Tyrrhenian Sea W Mediterranean W Mediterranean G. Lions G. Evvoikos G. Lions W Mediterranean G. Annaba W Mediterranean W Mediterranean W Mediterranean G. Valencia Tyrrhenia Sea G. Valencia W Mediterranean W Mediterranean N Aegean Sea Dodecanese Tyrrhenia Sea G. Castellammare Egypt Egypt W Mediterranean W Mediterranean W Mediterranean W Mediterranean C Adriatic Sea Catalan Sea G. Patraikos Cretan waters Catalan Sea W Mediterranean G. Saronikos N Aegean Sea
12 7 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2
3.40 3.43 3.38 3.20 3.22 2.30 3.17 3.98 3.65 3.25 3.48 4.13 3.55 4.01 3.54 3.53 3.22 4.01 3.97 3.29 3.40 3.74 3.50 3.40 4.45 4.32 3.58 3.39 3.16 4.16 3.40 3.86 3.34 3.67 4.49 3.32 3.31 3.28
4.50 4.20 3.59 3.77 3.37 3.20 3.60 4.43 3.47 3.41 3.53 3.73 3.60 3.63 3.69 3.68 3.85 4.24 4.04 3.09 3.50 3.61 4.30 4.37 4.50 4.50 3.83 3.91 3.21 4.35 3.63 4.18 3.78 3.80 4.49 3.42 3.38 3.38
244
Figure 8. Relationship between maximum reported body length (Lmax , cm) (extracted from “FishBase online”; www.fishbase.org) and: (a) TROPHs of 330 out of the 332 datasets compiled; and (b) mean TROPH per species. Lmax was not available for Notacanthus bonaparte and Pomatoschistus quagga. When the lower outliers (corresponding to all datasets of the pure herbivores Siganus spp. and Sarpa salpa) were not included in the analysis, the regression equations were for (a) Log(TROPH) = 0.433 + 0.075Log(Lmax ) [SE(b) = 0.006; r2 = 0.32, n = 322, P < 0.01] and for (b) Log(Mean TROPH) = 0.440 + 0.073 Log(Lmax ) [SE(b) = 0.008; r2 = 0.36, n = 141, P < 0.01].
Table 4. Estimated values of the parameters TROPHL∞ and K, together with their standard errors (SE), of the relationship between factional trophic level (TROPHLi ) and body length (mid-point of reported length classes, Li ; in cm) [TROPHLi = TROPHL∞ (1 − e−KLi )] for nine fish stocks (see Figure 10). R2 : coefficient of determination. N: number of length classes Species
Area
TROPHL∞
SE
K
SE
R2
N
Chimaera monstrosa Caelorinchus caelorhincus Merluccius merluccius Merluccius merluccius Pagellus erythrinus Pagellus erythrinus Lepidopus caudatus Solea solea Zeus faber
W Mediterranean W Mediterranean G. Lions C Mediterranean G. Lions C Tyrrhenian Sea C Mediterranean W Mediterranean G. Evvoikos
3.50 3.44 4.40 4.25 3.37 3.39 3.88 3.58 4.51
0.047 0.117 0.034 0.117 0.028 0.016 0.079 0.348 0.048
0.13 0.35 0.21 0.14 0.45 1.20 0.076 0.075 0.186
0.027 0.109 0.014 0.019 0.058 0.082 0.009 0.022 0.011
0.40 0.42 0.95 0.83 0.73 0.89 0.89 0.79 0.92
5 4 4 6 4 5 5 5 12
245
Figure 9. Histogram of the differences between the TROPH values of the smallest and largest length classes for all Mediterranean fish species for which diet composition was available for different length classes (N = 38; see Table 3). Table 5. Fractional trophic levels (TROPH) estimated using diet composition data from reported stomach contents, of four species of marine mammals and turtles in the Mediterranean Sea Species
Area
TROPH
Reference
Dermochelys coriacea Monachus monachus Stenella coeruleoalba Tursiops truncatus
SW Sicilian waters C Aegean Sea W Mediterranean Sea Livorno waters
4.00 4.57 4.50 4.87
Jereb and Ragonese (1990) Cebrian et al. (1990) Duguy et al. (1979) Voliani and Volpi (1990)
for decapods and fish; and carnivores with a preference for fish and cephalopods: Figure 4). Although we are not aware of similar studies in other ecosystems, it would be interesting to see what the patterns of TROPH distribution are in other regions of the world’s oceans. The trophic groups identified (Figure 4) are provisional and subject to revision (in terms of mean TROPH and range) when more datasets for other species/habitats (see above) and areas (especially from the Southern Mediterranean, which was underrepresented in our compilation: Figure 1) become available. In any case, such a grouping may serve as the basis for the maintenance of trophic level balance in the Mediterranean Sea, by evaluating corresponding indicators (e.g., aggregate annual removal from each trophic group) and reference points (e.g., maximum
% removal from each trophic group). This will set the basis for an ecosystem approach to the management of the Mediterranean Sea. Only eight datasets belonging to five shark species (i.e., three datasets of Galeus melastomus; one of Scyliorhinus canicula; one of Centroscymnus coelolepis; one of Dalatias licha; and two of Etmopterus spinax) were included in our review and their TROPH values were higher than those estimated by Cortés (1999) (Table 6). This must be attributed to the fact that Cortés’ (1999) estimates are mean estimates per species, irrespective of the distributional area of the species. Indeed, our results showed that within-species TROPH estimates might differ considerably spatially (Table 2). Yet, the differences observed in the present study (Table 2) might also reflect the effect of factors other than spatial distri-
246 Table 6. Comparison of the fractional trophic levels (TROPH) of five shark species included in the study of Cort´es (1999) with those estimated in the present study
Species
TROPH Present study
Cort´es (1999)
Galeus melastomus Scyliorhinus canicula Centroscymnus coelolepis Dalatias licha Etmopterus spinax
3.70–4.26 3.80 4.35 4.35 3.80–4.33
3.70 3.60 4.20 4.10 3.80
bution, such as different methodologies and investigators, temporal variability in feeding, and differences in the length structure of specimens analyzed. Within-species TROPHs also differ with time (e.g., Pauly and Palomares, 2000). Unfortunately, our compilation did not include datasets referring to the same stock for more than 2–3 different time periods (Table 1). Thus, the identification of temporal trends in the TROPH of Mediterranean fish was not possible with the available datasets. This is mainly the result of the fact that, with few exceptions, research on this and other fisheries issues in the Mediterranean Sea lacks continuity in sampling, which seriously hampers management (Stergiou, 2000; Lleonart, 2000). TROPH generally increases ontogenetically with size for stocks for which such data are available (Pauly et al., 1998b; Pauly and Palomares, 2000; Polunin and Pinnegar, 2000). Our analysis of the Mediterranean datasets also indicated that for most species TROPH increased with length (Table 3) and this increase was asymptotic in shape (Figure 10). Such a relationship between TROPH and length may mask the identification of the “fishing down the food web” effect (Pauly et al., 1998a, b, 2000a). Recently, a method to circumvent such a masking effect has been developed by Pauly and Palomares (2000) and Pauly et al. (2001). A similar relationship between TROPH and length is also true for among-species comparisons (Figure 8; see also: Cortés, 1999; Pauly et al., 2001). It is worthy to point out that both within- and amongspecies changes in TROPH with size will not hold for pure herbivores, such as Siganus spp. and Sarpa salpa. Indeed, all stocks of these species deviated (i.e., outliers) from the general TROPH-Lmax relationships built (Figure 8).
The among- and within-species asymptotic relationships between TROPH and length can be explained in the light of foraging behaviour and prey selection theory. For most fish, the sizes of prey consumed generally increase with a corresponding increase in predator size. This is true for comparisons within-species (e.g., Keast and Webb, 1966; Kaiser and Hughes, 1993; Juanes and Conover, 1994; Pauly et al., 1998b) and among-species (e.g., Juanes, 1994; Scharf et al., 2000; Pauly, 2000a). Yet, withinspecies, the range of prey sizes consumed increases with length, with maximum prey sizes increasing while minimum prey sizes remain constant (Juanes and Conover, 1994; Scharf et al., 2000). This is the result of the fact that as fish grow their relative success rates increase due to ontogenetic changes in sensory and swimming capacities (e.g., Juanes and Conover, 1994) as well as in mouth morphology, and thus successively larger prey are included in the diet. Yet smaller prey (i.e., of lower TROPH) is never excluded, since this prey’s relative vulnerability remains high (e.g., Juanes, 1994; Juanes and Conover, 1994; Scharf et al., 2000). In fact, many studies have demonstrated that fish tend to ingest prey much smaller than the possible maximum: the latter is estimated from their vertical mouth dimension (Schmitt and Holbrook, 1984; Hambright, 1991; Juanes, 1994). One may postulate that this is also true for among-species comparisons, as indicated by the high variance in the plot of predator-prey length relationships for a large number of fish species (see Pauly, 2000a). The above-mentioned facts are in agreement with an asymptotic relationship between body length and TROPH for both among-species (Figure 8) and within-species (Figure 10) comparisons. There are three main methods for estimating TROPH values, all of which display advantages and disadvantages (Stergiou and Polunin, 2000): (a) from stomach content data, with food items expressed in terms of weight, volume or caloric content, with all three measures being equivalent (Palomares and Sa-a, 1998); (b) from isotopic data (Kline and Pauly, 1998; Pinnegar and Polunin, 1999, 2000; Vander Zanden et al., 1999; Polunin and Pinnegar, 2000); and (c) from existing empirical equations between TROPH and body size (e.g., Pauly and Palomares, 2000) for a wide range of fish species, from which TROPH can be estimated from reported body sizes for data-poor situations. The latter is typical of the Mediterranean Sea for which the regression equations shown in Figure 8 can be used. Finally, the Ecopath approach also
247
Figure 10. Relationship between TROPH values and body length (midpoint of length class; in cm) for 11 fish stocks. (a) Trigla lyra in the Western Mediterranean Sea, 1976–1978; (b) Chimaera monstrosa in the Western Mediterranean Sea, 1976–1978; (c) Caelorinchus caelorhincus in the Western Mediterranean Sea, 1976–1978; (d) Merluccius merluccius in the Gulf of Lions, 1993; (e) Merluccius merluccius in the Central Mediterranean Sea, 1982–1983 (the first length class was excluded from the analysis); (f) Pagellus acarne in the Evvoikos Gulf, 1987; (g) Pagellus erythrinus in the Gulf of Lions, 1979–1980; (h) Pagellus erythrinus in the Central Tyrrhenian Sea, 1981–1982; (i) Lepidopus caudatus in the Western Mediterranean Sea, 1976–1978; (j) Solea solea in the Western Mediterranean Sea, 1976–1978; and (k) Zeus faber in the Evvoikos and Pagassitikos Gulfs, 1986–1988. The values of the parameters of the relationships are shown in Table 4.
248 provides an important tool for including additional constraints on TROPH estimates derived from various methods (Stergiou and Polunin, 2000). The stomach content method, on which all the studies reviewed here were based, assumes that all major prey are identified and quantified correctly, and their TROPH values are validated (Polunin and Pinnegar, 2000; Stergiou and Polunin, 2000). In fact, there are important problems with identifying many types of organisms (e.g., gelatinous zooplankton and detritus) (Polunin and Pinnegar, 2000). In addition, carnivores may have empty stomachs most of the time (e.g., Beyer, 1998), most stomach content data often represent mere snapshots of diet, and prey’s TROPHs are often not known (Pinnegar and Polunin, 1999, 2000; Polunin and Pinnegar, 2000, 2002). Thus, cross-validation using different methods (e.g., Ecopath: Christensen and Pauly, 1992a, b; Pauly et al., 2000b; 15 N:14 N ratios: Kline and Pauly, 1998; Polunin and Pinnegar, 2000) is essential. For instance, although the study of Kline and Pauly (1998) suggests a good agreement between TROPH values estimated from stomach content data and 15 N:14 N ratio data, Badalamenti et al. (2000) note that analogous estimations do not fully agree for Mullus barbatus in the Gulf of Castellammare. Finally, based on the sampling characteristics and methodology used in the studies reviewed (Figures 2 and 3) and on the results of our analysis, we conclude with some recommendations for future stomach content studies: (a) Stomach content studies must be based on monthly or seasonal samples, which provide an overall pattern of feeding, as opposed to studies based on circumstantial sampling (Figure 2b); (b) As pointed out earlier (Gonzales-Sanson and Aguilar-Betancourt, 1983; Palomares and Sa-a, 1998), with the exception perhaps of fish larvae, which consume food items that are all uniformly small, frequency of occurrence, numerical percentage and rank relative abundance, which are used extensively (Figure 2c), are not good indicators of how much a food item contributes to the diet of a given population. Thus results should be reported in terms of either volume or weight; (c) Researchers must always report the length range together with the mean length (and its SE) of the specimens studied (see Figure 2d); (d) Researchers must report the total number of stomachs analyzed and the percentage of empty stomachs, with the former determined from the plot of number of prey items vs. number of stomachs analyzed (e.g., Link and Almeida, 2000) so that stomach content data is
representative of the full array of prey. In fact, the analysis of a large food habit database, referring to the shelf ecosystem of the NE United States, indicates that for most species diet can be adequately described based on 500–1,000 stomachs, with this figure being generally smaller for food specialists and larger for food generalists (Link and Almeida, 2000). Such a range is much higher than those on which the majority of the studies reviewed here were based (Figure 3); (e) Researchers must estimate feeding habits for different length classes (see Figure 10), especially for consumers that are known to be fish eaters; (f) Feeding studies should be accompanied by estimates of TROPH values; and (g) The collection of routine time series of stomach content data will allow us to search for spatial and temporal trends in species’ TROPHs and for correlations with other parameters such as fishing effort.
Acknowledgements The authors wish to extend their gratitude to an anonymous reviewer and Dr. D. Pauly for useful suggestions and comments.
References Abdel-Aziz, S.H. (1994) Observations on the biology of the common torpedo (Torpedo torpedo, Linnaeus, 1758) and marbled electric ray (Torpedo marmorata, Risso, 1810) from Egyptian Mediterranean waters. Austr. J. Mar. Fresh. Res. 45, 693–704. Abdel-Aziz, S.H., Khalil, A.N. and Abdel-Maguid, S.A. (1993) Food and feeding habits of the common guitarfish, Rhinobatos rhinobatos in the Egyptian Mediterranean waters. Indian J. Mar. Sci. 22, 287–290. Andaloro, F. and Giarritta, S.P. (1985) Contribution to the knowledge of the age, growth and feeding of pandora, Pagellus erythrinus (L. 1758) in the Sicilian Channel. FAO Fish. Rep. 336, 85–87. Andaloro, F. and Pipitone, C. (1997) Food and feeding habits of the amberjack, Seriola dumerili in the Central Mediterranean Sea during the spawning season. Cah. Biol. Mar. 38, 91–96. Andaloro, F., Arena, P. and Giarritta, S.P. (1985) Contribution to the knowledge of the age, growth and feeding of hake Merluccius merluccius (L. 1758) in the Sicilian Channel. FAO Fish. Rep. 336, 93–97. Antoli´c, B., Skaramuca, B., Špan, A., Mušin, D. and Sanko-Njire, S. (1984) Food and feeding of a herbivore fish Sarpa salpa (L.) (Teleostei, Sparidae) in the southern Adriatic (Croatia). Acta Adriat. 35, 45–52. Arculeo, M., Froglia, C. and Riggio, S. (1989a) Cossiderazioni sull’ alimentazione di alcune specie ittiche dei fondali infralitorali den Golfo di Palermo. Oebalia 15, 57–65.
249 Arculeo, M., Pipitone, C. and Riggio, S. (1989b) Aspetti del régime alimentare di Mullus surmuletus L. (Pisces, Mullidae) nel Golfo di Palermo. Oebalia 15, 67–77. Arculeo, M., Froglia, C. and Riggio, S. (1993) Food partitioning between Serranus scriba and Scorpaena porcus (Perciformes) on the infralittoral ground of the South Tyrrhenian Sea. Cybium 17, 251–258. Ardizzone, G.D. and Messina, A. (1983) Feeding habits of Pagellus erythrinus (L.) (Pisces, Sparidae) from the Middle Tyrrhenian Sea. Rapp. Comm. Int. Expl. Sci. Mer Médit. 28, 39–42. Avsar, D. (1994) Diel diet and feeding behavior of scaldfish (Arnoglossus laterna Walbaum, 1792) in the Bay of Mersin. Acta Adriat. 34, 89–101. Badalamenti, F., D’Anna, G., Fazio, G., Gristina, M. and Lipari, R. (1993) Relazioni trofiche tra quattro specie ittiche catturate su differenti substrati nel Golfo di Castellammare (Sicilia N/O). Biol. Mar. Medit. 1, 145–150. Badalamenti, F., D’Anna, G., Lopiano, L., Scilipoti, D. and Mazzola, A. (1995) Feeding habits of young-of-the-year greater amberjack Seriola dumerili (Risso, 1810) along the N/W Sicilian Coast. Sci. Mar. 59, 317–323. Badalamenti, F., Pinnegar, J.K., Polunin, N.V.C. and D’Anna, G. (2000) Estimates of trophic level in the red mullet Mullus barbatus: Comparison between gut-contents and stable-isotope data. In: Briand, F. (ed.), Fishing Down the Mediterranean Food Webs? Vol. 12. CIESM Workshop Series, pp. 19–21. Bell, J.D. and Harmelin-Vivien, M.L. (1983) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 2. Feeding habits. Tethys 11, 1–14. Ben Salem, M. (1988) Régime alimentaire de Trachurus trachurus (Linnaeus, 1758) et de T. mediterraneus (Steindachner, 1868) de la province Atlantico-Méditerranéenne. Cybium 12, 247–253. Beverton, R. (1998) Fish, fact and fantasy: A long view. Rev. Fish Biol. Fish. 8, 229–249. Beyer, J.E. (1998) Stochastic stomach theory of fish: An introduction. Ecol. Model. 114, 71–93. Bhattacharya, C.G. (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23, 115–135. Biagi, F., De Ranieri, S. and Viva, C. (1992) Recruitment, length at first maturity and feeding of poor-cod, Trisopterus minutus capelanus, in the northern Tyrrhenian Sea. Bol. Zool. 59, 87–93. Bingel, F. and Avsar, D. (1988) Food items of Saurida undosquamis in the Northern Cilician Basin (Eastern Mediterranean). Rapp. Comm. Int. Expl. Sci. Mer Médit. 31, 261. Bozzano, A., Recasens, L. and Sartor, P. (1997) Diet of the European hake Merluccius merluccius (Pisces: Merlucciidae) in the Western Mediterranean (Gulf of Lions). Sci. Mar. 61, 1–8. Bradai, M.N. and Bouain, A. (1990) Régime alimentaire de Scorpaena porcus et de S. scrofa (Teleostei, Scorpaenidae) du Golfe de Gabès, Tunisie. Cybium 14, 207–216. Briand, F. (ed.) (2000) Fishing Down the Mediterranean Food Web?, Vol. 12. CIESM Workshop Series, 99 pp. Capape, C. and Zaouali, J. (1992) Le régime alimentaire de la pastenague merbrée, Dasyatis marmorata (Pisces, Dasyatidae), des eaux Tunisiennes. Vie Milieu 42, 269–276. Caragitsou, E. and Papaconstantinou, C. (1985) Feeding habits of red pandora (Pagellus erythrinus) in the Saronikos Gulf. Thalassographica 8, 19–31. Caragitsou, E. and Tsimenides, N. (1977) Food of hake (Merluccius merluccius) in Saronikos Gulf. Thalassographica 1, 232–244. Caragitsou, E. and Tsimenides, N. (1982a) Seasonal changes and comparative analysis of the food of the red mullet (Mullus barbatus) in the Gulfs of Saronikos and Thermaikos. Thalassographica 5, 41–61.
Caragitsou, E. and Tsimenides, N. (1982b) Seasonal changes of food spectrum and day-time rhythm of feeding of the red mullet (Mullus barbatus) in the Thracian Sea. Thalassographica 5, 105–115. Caragitsou, E. and Papaconstantinou, C. (1988) Feeding habits of red Pandora (Pagellus erythrinus) off the western coast of Greece. J. Appl. Ichthyol. 4, 14–22. Caragitsou, E. and Papaconstantinou, C. (1990) Food and feeding habits of large scale gurnard, Lepidotrigla cavillone (Triglidae) in Greek Seas. Cybium 14, 95–104. Caragitsou, E. and Papaconstantinou, C. (1994) Feeding habits of piper (Trigla lyra) in the Saronikos Gulf (Greece). J. Appl. Ichthyol. 10, 104–113. Carrassón, M. and Matallanas, J. (1990) Preliminary data about the feeding habits of some deep-sea Mediterranean fishes. J. Fish Biol. 36, 461–463. Carrassón, M. and Matallanas, J. (1998) Feeding habits of Alepocephalus rostratus (Pisces: Alepocephalidae) in the Western Mediterranean Sea. J. Mar. Biol. Assoc. UK 78, 1295–1306. Carrassón, M., Stefanescu, C. and Cartes, J.E. (1992) Diets and bathymetric distributions of two bathyal sharks of the Catalan deep sea (western Mediterranean). Mar. Ecol. Prog. Ser. 82, 21– 30. Carrassón, M., Matallanas, J. and Casadevall, M. (1997) Feeding strategies of deep-water morids on the western Mediterranean slope. Deep Sea Res. 44, 1685–1699. Casadevall, M. and Matallanas, J. (1990) Feeding habits of Gnathophis mystax (Delaroche, 1809), (Anguilliformes, Congridae) in the western Mediterranean. J. Fish Biol. 37, 827–829. Casadevall, M., Matallanas, J. and Bartolí, T. (1994) Feeding habits of Ophichthus rufus (Anguilliformes, Ophichthidae) in the western Mediterranean. Cybium 18, 431–440. Cebrian, D., Fatsea, H. and Mytilineou, C. (1990) Some data on biometry and stomach content of a Mediterranean monk seal found in Santorini Island (Greece). Rapp. Comm. Int. Expl. Sci. Mer Médit. 32, 237. Chakroun-Marzouk, N. and Kartas, F. (1987) Denture et régime alimentaire des espèces du genre Pagrus (Pisces, Sparidae) des côtes Tunisiennes. Cybium 11, 3–19. Chalabi, A. and Ifrene, F. (1992) Le régime alimentaire hivernal de l’espadon Xiphias gladius L. pêche pres des côtes est de L’Algerie. SCRS/92/91 ICCAT 40, 162. Christensen, V. (1998) Fishery-induced changes in a marine ecosystem: Insights from the models of the Gulf of Thailand. J. Fish Biol. 53(Suppl. A), 128–142. Christensen, V. and Pauly, D. (1990) A draft guide to the ECOPATH II program (ver. 1.0). ICLARM Software 6, 22 pp. Christensen, V. and Pauly, D. (1991) A guide to the ECOPATH II software system (version 2.0). ICLARM Software 6, 71 pp. Christensen, V. and Pauly, D. (1992a) A guide to the ECOPATH II software system (version 2.1). ICLARM Software 6, 72 pp. Christensen, V. and Pauly, D. (1992b) The ECOPATH II – a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 61, 169–185. Christensen, V. and Pauly, D. (eds.) (1993) Trophic models of aquatic ecosystems. ICLARM Conference Proceedings 26, ICLARM, Manila. 390 pp. Christensen, V. and Pauly, D. (1995) Fish production, catches and the carrying capacity of the world oceans. Naga, ICLARM Q. 18, 34–40. Christensen, V., Walters, C.J. and Pauly, D. (2000) Ecopath with Ecosim: A User’s Guide. Fisheries Centre, University of British Columbia, Vancouver, Canada and ICLARM, Penang, Malaysia. 130 pp.
250 Cochrane, K.L. (2000) Reconciling sustainability, economic efficiency and equity in fisheries: The one that got away? Fish Fish. 1, 3–21. Colloca, F., Ardizzone, G.D. and Gravina, M.F. (1994) Trophic ecology of gurnards (Pisces: Triglidae) in the Central Mediterranean Sea. Mar. Life 4, 45–57. Cortés, E. (1999) Standardized diet compositions and trophic levels of sharks. ICES J. Mar. Sci. 56, 707–717. De La Mare, W.K. (1998) Tidier fisheries management requires a new MOP (management-oriented paradigm). Rev. Fish Biol. Fish. 8, 349–356. Demirhindi, U. (1961) Nutrition of the sardine (Sardina pilchardus Walb.). Proceedings and Technical Papers of the General Fisheries Council for the Mediterranean 6, 253–259. Derbal, F. and Kara, M.H. (1996) Alimentation estivale du mérou, Epinephelus marginatus (Serranidae), des côtes Est Algériennes. Cybium 20, 295–301. Duguy, R., Casinos, A. and Filella, S. (1979) Note sur la biologie de Stenella coeruleoalba dans le bassin occidental de la Méditeranée. Rapp. Comm. Int. Expl. Sci. Mer Médit. 25/26, 137–139. Ezzat, A., Abd El-Aziz, S.M., El-Charabawy, M.M. and Hussein, M.O. (1987) The food of Raja miraletus Linnaeus, 1758 in Mediterranean waters off Alexandria. Bull. Inst. Oceanog. Fish. ARE 13, 59–74. Fabi, G. and Froglia, C. (1983a) Food and feeding of Gobius niger L. in the Central Adriatic Sea (Osteichthyes: Gobiidae). Rapp. Comm. Int. Expl. Sci. Mer Médit 28, 99–102. Fabi, G. and Froglia, C. (1983b) A note on the biology and fishery of the black goby (Gobius niger) in the Adriatic Sea. FAO Fish. Rep. 290, 167–170. Focardi, S., Falciai, L., Gambi, C. and Spadini, V. (1979) Alimentazione di Mullus barbatus L. nel Mar Tirreno. XI Congresso della Societá Italiana di Biologia Marina, Orbetello. Atti della Societá Toscana di Scienze Naturali, Memoria 86(suppl.), 392–395. Focardi, S., Falciai, L., Gambi, C. and Spadini, V. (1980) Analisi del contenuto gastrico de Mullus barbatus L. (Perciformes: Mullidae). Riv. Idrobiol. 19, 235–248. Froese, R. and Pauly, D. (1990) FishBase: An information system to support fisheries and aquaculture research. Fishbyte 8, 21–24. Froese, R. and Pauly, D. (eds.) (1994) FishBase user’s manual, a biological database on fish. ICLARM Software 7, pag. ver. ICLARM, Manila, 129 pp. Froese, R. and Pauly, D. (eds.) (1998) FishBase 98: Concepts, design and data sources. ICLARM, Manila, 293 pp. Froese, R. and Pauly, D. (eds.) (2000) FishBase 2000: Concepts, design and data sources. ICLARM, Manila, 344 pp. Froglia, C. (1973) Osservazioni sull’ alimentazione del merluzzo (Merluccius merluccius L.) del Medio Adriatico. Atti V Congresso Nazionale della Societá Italiana di Biologia Marina 5, 327–341. Froglia, C. (1976) Osservazioni sull’ alimentazione dei giovani di Trigla lucerna della classe di età a nel Medio Adriatico (Pisces, Triglidae). Arch. Oceanogr. Limnol. 18(suppl. 3), 365–373. Froglia, C. (1988) Food preferences of juvenile red mullet Mullus barbatus in Western Adriatic nursery ground (Osteichthyes: Mullidae). Rapp. P.V. CIESM 31, 263. Froglia, C. and Gramitto, M.E. (1998) Osservazioni sull’ alimentazione di Sciena umbra ed Umbrina cirrosa (Pisces, Sciaenidae) in prossimita di barriere artificiali in Adriatico. Biol. Mar. Medit. 5, 100–108.
Gayanilo, F.C. Jr. and Pauly, D. (1997) FAO-ICLARM stock assessment tools. (FiSAT). Reference manual. FAO Computerized Information Series (Fisheries) 8, 262 pp. Giovanardi, O. and Piccinetti, C. (1981) Biology and fishery of the yellow sole, Solea lutea (Risso) 1810, in the western Adriatic Sea. FAO Fish. Rep. 253, 101–112. Gislason, H., Sinclair, M., Sainsbury, K. and O’Boyle, R. (2000) Symposium overview: incorporating ecosystem objectives within fisheries management. ICES J. Mar. Sci. 57, 468– 475. Golani, D. (1993) The biology of the Red Sea migrant, Saurida undosquamis in the Mediterranean and comparison with the indigenous confamilial Synodus saurus (Teleostei: Synodontidae). Hydrobiologia 271, 109–117. Golani, D. (1994) Niche separation between colonizing and indigenous goatfish (Mullidae) along the Mediterranean Coast of Israel. J. Fish Biol. 45, 503–513. Golani, D. and Galil, B. (1991) Trophic relationships of colonizing and indigenous goatfishes (Mullidae) in the eastern Mediterranean with special emphasis on decapod crustaceans. Hydrobiologia 218, 27–33. Golani, D., Ben-Tuvia, A. and Galil, B. (1983) Feeding habits of the Suez Canal migrant squirrelfish, Sargocentron rumbrum, in the Mediterranean Sea. Israel J. Zool. 32, 194–204. Gonzales-Sanson, G. and Aguilar-Betancourt, C. (1983) Comparacion del metodo frecuencial con otros metodos de analisis del contenido estomacal en peces. Rev. Invest. Mar. 4, 105–122. Gramitto, M.E. (1985) Osservazioni sull’ alimentazione di Antonogadus megalokynodon (Kolombatovic) (Pisces; Gadidae) nel Medio Adriatico. Quad. Ist. Ric. Pesca Marit. 4, 205–218. Gramitto, M.E. (1999) Feeding habits and estimation of daily ration of poor cod Trisopterus minutus capelanus (Gadidae) in the Adriatic Sea. Cybium 23, 115–130. Hall, S.J. (1999) The Effects of Fishing on Marine Ecosystems and Communities. Oxford: Blackwell Science, 274 pp. Hambright, K.D. (1991) Experimental analysis of prey selection by largemouth bass: Role of predator mouth width and prey body depth. Trans. Amer. Fish. Soc. 120, 500–508. Harmelin-Vivien, M.L., Kaim-Malka, R.A., Ledoyer, M. and JacobAbraham, S.S. (1989) Food partitioning among scorpaenid fishes in Mediterranean seagrass beds. J. Fish Biol. 34, 715–734. Hughes, R.N. (1997) Diet selection. In: Godin, J.G.J. (ed.), Behavioural Ecology of Teleost Fishes. Oxford University Press, Oxford, pp. 134–162. Jardas, I. (1976) Contribution to the knowledge of the biology of hake in the Adriatic Sea. Rev. Trav. Inst. Pêches Marit. 40, 615– 618. Jardas, I. and Županovi´c, S. (1983) Feeding and some other properties of piper, Trigla lyra L., 1758, (Pisces, Triglidae) population in the South Adriatic pit area (Montenegro Coastal Area). Stud. Mar. 13–14, 167–187. Jardas, I. and Pallaoro, A. (1990) Feeding of Diplodus vulgaris (E. Goeffr., 1817) (Pisces: Sparidae) in the Adriatic Sea. Rapp. Comm. Int. Expl. Sci. Mer Médit. 32, 273. Jarre-Teichmann, A. (1998) The potential role of mass balance models for the management of upwelling ecosystems. Ecol. Appl. 8(suppl.), 93–103. Jereb, P. and Ragonese, S. (1990) On a specimen of the leatherback turtle, Dermochelys coriacea (Linnaeus, 1766), stranded at Mazara del Vallo (South-West Sicily). Rapp. Comm. Int. Expl. Sci. Mer Médit. 32, 239. Jennings, S. and Kaiser, M.J. (1998) The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34, 201–352.
251 Jennings, S. and Polunin, N.V.C. (1996) Impacts of fishing on tropical reef ecosystems. Ambio. 25, 44–49. Jennings, S., Kaiser, M.J. and Reynolds, J.D. (2001) Marine Fisheries Ecology. Oxford: Blackwell Science, 417 pp. Juanes, F. (1994) What determines prey size selectivity in piscivorous fishes? ıIn: Stouder D.J., Fresh K.L. and Feller R.J. (eds.), Theory and Application in Fish Feeding Ecology. Belle W. Baruch Library in Marine Sciences, No. 18, University of South Carolina Press, Columbia, South Carolina, pp. 79–100. Juanes, F. and Conover, D.O. (1994) Piscivory and prey size selection in young-of-the-year bluefish: Predator preference or size-dependent capture success? Mar. Ecol. Progr. Ser. 114, 59–69. Juki´c, S. (1972) Nutrition of the hake (Merluccius merluccius), bogue (Boops boops), striped mullet (Mullus barbatus) and pandora (Pagellus erythrinus) in the Bay of Kaštela. Acta Adriat. 14, 3–40. Kaiser, M.J. and Hughes, R.N. (1993) Factors affecting the behavioural mechanisms of diet selection in fishes. Mar. Behav. Physiol. 23, 105–118. Kaya, M., Benli, H.A., Katagan, T. and Ozaydin, O. (1999) Age, growth, sex-ratio, spawning season and food of golden banded goatfish, Upeneus moluccensis Bleeker (1855) from the Mediterranean and south Aegean Sea coasts of Turkey. Fish. Res. 41, 317–328. Keast, A. and Webb, D. (1966) Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Res. Bd Can. 23, 1845–1874. Khoury, C. (1984) Ethologies alimentaires de quelques espèces de poisons de l’ herbier de Posidonies du Parc National de PortCros. In: Boudouresque C.F., Jeudy de Grissac A. and Olivier J. (eds.), International Workshop Posidonia oceanica Beds, Vol. 1. GIS Posidonie Publications, France, pp. 335–347. Kline, T.C. and Pauly, D. (1998) Cross-validation of trophic level estimates from a mass-balance model of Prince William Sound using 15N/14N data. In: Funk, F., Quinn II, T.J., Heifetz, J., Powers, J.E., Schweigert, J.F., Sullivan, P.J. and Zhang, C.I. (eds.), Fishery Stock Assessment Models. Alaska Sea Grant College Program Report, Number AK-SG-98-01, University of Alaska, Fairbanks, pp. 693–702. Kohler, C.C. and Ney, J.J. (1982) A comparison of methods for quantitative analysis of feeding selection of fishes. Environ. Biol. Fishes 7, 363–368. Kyrtatos, N.A. (1982) Investigation on fishing and biology of the most important fishes of the region around the Aegean Sea. Island of Tinos. Thalassographica 5 (specl. publ.), 88 pp. Kyrtatos, N.A. (1998a) Contribution à la connaissance de la nourriture de Trachurus mediterraneus (Steind.) et de son influence sur les chaînes alimentaires de la mer Égée Centrale. Rapp. Comm. Int. Expl. Sci. Mer Médit. 35, 452–453. Kyrtatos, N.A. (1998b) Evaluation de quelques parameters quantitatifs relatifs à la nutrition de Trachurus mediterraneus (Steindacher 1868) en Mer Égée Centrale. Rapp. Comm. Int. Expl. Sci. Mer Médit. 35, 454–455. Labropoulou, M. and Plaitis, W. (1995) Selective predation on small crustaceans by six demersal fish species in Iraklion Bay (Cretan Sea, north-eastern Mediterranean). In: Eleftheriou, A., Ansell, A.D. and Smith, C.J. (eds.), Biology and Ecology of Shallow Coastal Waters. Olsen and Olsen, Denmark, pp. 351–358. Labropoulou, M. and Eleftheriou, A. (1997) The foraging ecology of two pairs of congeneric demersal fish species: Importance of morphological characteristics in prey selection. J. Fish Biol. 50, 324–340.
Labropoulou, M. and Machias, A. (1998) Effect of habitat selection on the dietary patterns of two triglid species. Mar. Ecol. Prog. Ser. 173, 275–288. Labropoulou, M. and Markakis, G. (1998) Morphological-dietary relationships within two assemblages of marine demersal fishes. Environ. Biol. Fishes 51, 309–319. Labropoulou, M. and Papadopoulou-Smith, K.-N. (1999) Foraging behaviour patterns of four sympatric demersal fishes. Estuar. Coast. Shelf Sci. 49(Suppl. A), 99–108. Labropoulou, M., Machias, A., Tsimenides, N. and Eleftheriou, A. (1997) Feeding habits and ontogenetic shift of the striped red mullet, Mullus surmuletus Linnaeus, 1758. Fish. Res. 31, 257– 267. Labropoulou, M., Tserpes, G. and Tsimenides, N. (1998) Age, growth and feeding habits of the brown comber Serranus hepatus (Linnaeus, 1758) on the Cretan Shelf. Estuar. Coast. Shelf Sci. 46, 723–732. Labropoulou, M., Machias, A. and Tsimenides, N. (1999) Habitat selection and diet of juvenile red porgy, Pagrus pagrus (Linnaeus, 1758). Fish. Bul. 97, 495–507. Larraneta, M.G. (1964) Sobre la biologia de Pagellus erythrinus (L.) especialmente del de las costas de Castellon. Invest. Pesq. 27, 121–146. Lenfant, P. and Olive, C. (1998) Changements graduals du régime alimentaire des juveniles d’oblade (Oblada melanura, Sparidae) lors du recrutement. Cybium 22, 203–210. Link, S.J. and Almeida, P.F. (2000) An overview and history of the food web dynamics program of the Northeast Fisheries Science Center, Woods Hole, Massachusetts. NOAA Technical Memorandum NMFS-NE 159, 1–60. Lipari, R., Badalamenti, F. and D’Anna, G. (1998) Relazioni trofiche e selezione alimentare di Mullus barbatus L. (1758) nella comunita’ a sabbie fini del Golfo di Castellammare (Sicilia N/O). Biol. Mar. Medit. 5, 354–356. Lleonart, J. (2000) Shortcomings in fish stock assessment: A Mediterranean perspective. International Symposium on “Fish stock assessments and predictions: Integrating relevant knowledge”. Bergen, Norway, December 2000. Book of Abstracts, pp. 13. Lundberg, B. and Golani, D. (1995) Diet adaptations of Lessepsian migrant rabbitfishes, Siganus luridus and S. rivulatus, to the algal resources of the Mediterranean Coast of Israel. Mar. Ecol. 16, 73–89. Macpherson, E. (1978a) Régimen alimentario de Micromesistius poutassou (Risso, 1810) y Gadiculus argenteus argenteus Guichenot, 1860 (Pisces, Gadidae) en el Mediterráneo occidental. Invest. Pesq. 42, 305–316. Macpherson, E. (1978b) Régimen alimentario de Phycis blennoides (Brünich) y Antonogadus megalokynodon (Kolombatovich) (Pisces: Gadidae) en el Mediterráneo occidental. Invest. Pesq. 42, 455–466. Macpherson, E. (1978c) Régimen alimentario de Symphurus nigrescens (Pisces, Cynoglossidae) en el Mediterráneo occidental. Invest. Pesq. 42, 325–333. Macpherson, E. (1979a) Relations trophiques des poisons dans la Méditerranée occidentale. Rapp. Comm. Int. Expl. Sci. Mer Médit. 25/26, 49–58. Macpherson, E. (1979b) Ecological overlap between macrourids in the Western Mediterranean Sea. Mar. Biol. 53, 149–159. Macpherson, E. (1979c) Estudio sobre el régimen alimentario de algunos peces en el Mediterráneo occidental. Misc. Zool. 5, 93– 107.
252 Macpherson, E. (1979d) Régime alimentaire de Molva dipterygia macrophthalma (Pisces: Gadidae) dans la Méditerranée occidentale. Rapp. Comm. Int. Expl. Sci. Mer Médit. 25/26, 59–60. Macpherson, E. (1980a) Régime alimentaire de Galeus melastomus Rafinesque, 1810, Etmopterus spinax (L., 1758) et Scymnorhinus licha (Bonnaterre, 1758) en Méditerranée occidentale. Vie Milieu 30, 139–148. Macpherson, E. (1980b) Food and feeding of Chimaera monstrosa, Linnaeus, 1758, in the western Mediterranean. J. Cons. Int. Explor. Mer 39, 26–29. Macpherson, E. (1981) Resource partitioning in a Mediterranean demersal fish community. Mar. Ecol. Prog. Ser. 4, 183–193. Madurell, T. and Labropoulou, M. (2000) A preliminary study on the feeding habits of Hoplostethus mediterraneus and Helicolenus dactylopterus in the Ionian Sea. Proceedings of the 6th Panhellenic Symposium of Oceanography and Fisheries 6, 39–44. Mannini, P., Reale, B. and Righini, P. (1990) Osservazioni sulla biologia di Lepidorhombus boscii (Risso) (Osteichthyes, Scophthalmidae) nel Tirreno Settentrionale. Oebalia 16, 245–255. Marquardt, D.W. (1963) An algorithm for least squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math 11, 431–441. Matallanas, J. (1980) Etude de l’alimentation d’Ophidion barbatum (Pisces, Ophidiidae) dans la Mer Catalane. Cybium 10, 81–89. Matallanas, J., Casadevall, M. Carrassón, M., Boix, J. and Fernández, V. (1995) The food of Seriola dumerili (Pisces: Carangidae) in the Catalan Sea (western Mediterranean). J. Mar. Biol. Assoc. UK 75, 257–260. Mazzola, A., Lopiano, L., Sarà, G. and D’Anna, G. (1993) Sistemi di pesca, cattura ed abitudini alimentary de Seriola dumerili (Risso 1810). Natur. Sicil. 16, 137–148. Mirto, S., Scilipoti, D., Lopiano, L., Badalamenti, F. and Mazzola, A. (1994) Primi dati sul ritmo alimentare giornaliero di tre specie ittiche nello stagnone di Marsala (Sicilia Occidentale). Biol. Mar. Medit. 1, 335–336. Molinero, A. and Flos, R. (1991) Influence of sex and age on the feeding habits of the common sole Solea solea. Mar. Biol. 111, 493–501. Mooney, H.A. (ed.) (1998) Ecosystem management for sustainable marine fisheries. Ecol. Applic. 8(Suppl. 1), 1–174. Morales-Nin, B. and Moranta, J. (1997) Life history and fishery of the common dentex (Dentex dentex) in Mallorca (Balearic Islands, western Mediterranean). Fish. Res. 30, 67–76. Moreno-Amich, R. (1992) Feeding habits of red gurnard, Aspitrigla cuculus (L. 1758) (Scorpaeniformes, Triglidae), along the Catalan coast (northwestern Mediterranean). Hydrobiologia 228, 175–184. Moreno-Amich, R. (1994) Feeding habits of grey gurnard, Eutrigla gurnardus (L., 1758), along the Catalan coast (northwestern Mediterranean). Hydrobiologia 273, 57–66. Moreno-Amich, R. (1996) Feeding habits of longfin gurnard, Aspitrigla obscura (L. 1764), along the Catalan coast (northwestern Mediterranean). Hydrobiologia 324, 219–228. Moreno, R. and Matallanas, J. (1983) Étude du régime alimentaire de Lepidotrigla cavillone (Lacepède, 1801) (Pisces, Triglidae) dans la Mer Catalane. Cybium 7, 93–103. Morovi´c, D. (1961) Contribution to the knowledge of the nutrition of blue-fin tuna (Thunnus thynnus L.) in the Adriatic from fishes caught with ring nets. Proceedings and Technical Papers of the General Fisheries Council for the Mediterranean 6, 155–157. Morte, M.S., Redon, M.J. and Sanz-Brau, A. (1997) Trophic relationships between two gurnards Trigla lucerna and Aspitrigla obscura from the western Mediterranean. J. Mar. Biol. Assoc. UK 77, 527–537.
Morte, M.S., Redon, M.J. and Sanz-Brau, A. (1999) Feeding ecology of two megrims Lepidorhombus boscii and Lepidorhombus whiffiagonis in the western Mediterranean (Gulf of Valencia, Spain). J. Mar. Biol. Assoc. UK 79, 161–169. Mytilineou, C. (1987) Contribution to the Biology of picarel Spicara flexuosa (Raf. 1810), in the Patraikos Gulf (Greece). PhD Thesis, University of Athens, 152 pp. Okey, T.A. and Pauly, D. (1999) A mass-balanced model of trophic flows in Prince William Sound: Decompartmentalizing ecosystem knowledge. Ecosystem Approaches for Fisheries Management. Alaska Sea Grant College Program, AK-SG-9901, pp. 621-635. Pallaoro, A. and Jardas, I. (1990) Food and feeding habits of black scorpionfish (Scorpaena porcus L. 1758) (Pisces, Scorpaenidae) along the Adriatic Coast. Acta Adriat. 32, 885–898. Palomares, M.L. and Sa-a, P. (1998) The diet Table. In: Froese, R. and Pauly, D. (eds.), FishBase 98: Concepts, Design and Data Sources. ICLARM, Manila. Papaconstantinou, C. and Caragitsou, E. (1987a) The food of hake (Merluccius merluccius) in Greek Seas. Vie Milieu 37, 77–83. Papaconstantinou, C. and Caragitsou, E. (1987b) Preliminary study of the trophic relationship of red mullet (Mullus barbatus) off the western coast of Greece. Proceedings of the 2nd Panhellenic Symposium of Oceanography and Fisheries 2, 577–583. Papaconstantinou, C. and Caragitsou, E. (1989) Feeding interaction between two sympatric species Pagrus pagrus and Phycis phycis around Kastellorizo Island (Dodecanese, Greece). Fish. Res. 7, 329–342. Papaconstantinou, C., Petrakis, G., Mytilineou, C., Politou, C.-Y., Vassilopoulou, V. and Fourtouni, A. (1989) Fisheries Investigations on the Demersal Fishes of the Euboikos and Pagassitikos Gulfs, Technical Report. National Centre for Marine Research, Athens, Hellas. Papaconstantinou, C., Caragitsou, E., Vassilopoulou, V., Petrakis, G., Mytilineou, C., Fourtouni, A., Tursi, A., Politou, C.-Y., Giagnisi, M., D’Onghia, G., Siapatis, A., Matarrese, A., Economou, A. and Papageorgiou, E. (1993) Investigation of the Abundance and Distribution of Demersal Stocks of Primary Importance to the Greek Fishery in the North Aegean Sea (Greece), Technical Report. National Centre for Marine Research, Athens, Hellas. Papaconstantinou, C., Politou, C.-Y., Caragitsou, E., Stergiou, K.I., Mytilineou, C., Vassilopoulou, V., Fourtouni, A., Karkani, M., Kavadas, S., Petrakis, G., Siapatis, A., Chatzinikolaou, P. and Giagnisi, M. (1994) Investigations on the Abundance and Distribution of Demersal Stocks of Primary Importance in the Thermaikos Gulf and the Thracian Sea (Hellas), Technical Report, North Aegean Series 4/1994. National Centre for Marine Research, Athens, Hellas. Pauly, D. (1998a) Beyond our original horizons: The tropicalization of Beverton and Holt. Rev. Fish Biol. Fish. 8, 307–334. Pauly, D. (1998b) Tropical fishes: Patterns and propensities. J. Fish Biol. 53(Suppl.), 1–17. Pauly, D. (2000a) Predator-prey ratios in fishes. In: Froese, R. and Pauly, D. (eds.), FishBase 2000: Concepts, Design and Data Sources. ICLARM, Manila, p. 201. Pauly, D. (2000b) Herbivory as a low-latitude phenomenon. In: Froese, R. and Pauly, D. (eds.), FishBase 2000: Concepts, Design and Data Sources. ICLARM, Manila, p. 179. Pauly, D. and Christensen, V. (1995) Primary production required to sustain global fisheries. Nature 374, 255–257. Pauly, D. and Christensen, V. (2000a) Trophic levels of fishes. In: Froese, R. and Pauly, D. (eds.), FishBase 2000: Concepts, Design and Data Sources. ICLARM, Manila, p. 181.
253 Pauly, D. and Christensen, V. (2000b) The Ecopath modelling approach and FishBase. In: Froese, R. and Pauly, D. (eds.), FishBase 2000: Concepts, Design and Data Sources. ICLARM, Manila, p. 177. Pauly, D. and Froese, R. (1992) FishBase, base de datos computarizada sobre los peces: uso potential para America Latina. Jaina 3, 11–13. Pauly, D. and Palomares, M.L. (2000) Approaches for dealing with three sources of bias when studying the fishing down marine food web phenomenon. In: Briand, F. (ed.), Fishing Down the Mediterranean Food Webs? Vol. 12. CIESM Workshop Series, pp. 61–66. Pauly, D. and Sa-a, P. (2000) Estimating trophic levels from individual food items. In: Froese, R. and Pauly, D. (eds.), FishBase 2000: Concepts, Design and Data Sources. ICLARM, Manila, p. 185. Pauly, D., Trites, A., Capuli, E. and Christensen, V. (1995) Diet composition and trophic levels of marine mammals. ICES C.M. 1995/N:13. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres, F. Jr. (1998a) Fishing down marine food webs. Science 279, 860–863. Pauly, D., Froese, R. and Christensen, V. (1998b) Response to Caddy et al. How pervasive is “fishing down marine food webs?” Science 282, 1384–1386. Pauly, D., Trites, A., Capuli, E. and Christensen, V. (1998c) Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481. Pauly, D., Christensen, V., Froese, R. and Palomares, M.L. (2000a) Fishing down aquatic food webs. Am. Sci. 88, 46–51. Pauly, D., Christensen, V. and Walters, C. (2000b) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impacts on marine ecosystems. ICES J. Mar. Sci. 57, 697–706. Pauly, D., Froese, R. and Rius, M.J.F.D. (2000c) Trophic pyramids. In: Froese, R. and Pauly, D. (eds.), FishBase 2000: Concepts, Design and Data Sources. ICLARM, Manila, pp. 203–204. Pauly, D., Froese, R., Sa-a, P.S., Palomares, M.L., Christensen, V. and Rius, J. (2000d) TrophLab Manual. ICLARM, Manila. Pauly, D., Palomares, M.L.D., Froese, R., Sa-a, P., Vakily, M., Preikshot, D. and Wallace, S. (2001) Fishing down Canadian aquatic food webs. Can. J. Fish. Aquat. Sci. 58, 51–62. Pepe, P., Badalamenti, F. and D’Anna, G. (1996) Abitudini alimentari di Diplodus vulgaris sulle strutture artificiali del Golfo di Castellammare (Sicilia Nord-Occidentale). Biol. Mar. Medit. 3, 514–515. Pepe, P., Badalamenti, F. and D’Anna, G. (1998) Abitudini alimentari di Diplodus sargus nell’ area delle strutture artificiali di Alcamo Marina (Golfo di Castellammare, Sicilia NordOccidentale). Biol. Mar. Medit. 5, 367–370. Petrakis, G. and Stergiou, K.I. (1987) The trophic niche of blue whiting (Micromesistius poutassou) in Patraikos and Korinthiakos Gulfs. Proceedings of the 2nd Panhellenic Symposium of Oceanography and Fisheries 2, 558–564. Petrakis, G., Stergiou, K.I., Christou, E., Politou, C.-Y., Karkani, M., Simboura, N. and Kouyoufas, P. (1993) Small Scale Fishery in the South Euboikos Gulf, Final Report, Contract No XIV1/MED-91/007. National Centre for Marine Research, Athens, Hellas. Pinnegar, J.K. and Polunin, N.V.C. (1999) Differential fractionation of δ 13 C and δ 15 N among fish tissues: implications for the study of trophic interactions. Function. Ecol. 13, 225–231. Pinnegar, J.K. and Polunin, N.V.C. (2000) Contributions of stableisotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122, 399–409.
Pipitone, C. and Andaloro, F. (1995) Food and feeding habits of juvenile greater amberjack, Seriola dumerili (Osteichthyes, Carangidae) in inshore waters of the Central Mediterranean Sea. Cybium 19, 305–310. Pitcher, T.J. (2000) Ecosystems goals can reinvigorate fisheries management, help dispute resolution and encourage public support. Fish Fish. 1, 99–103. Pitcher, T.J., Hart, P.J.B. and Pauly, D., eds. (1998) Reinventing Fisheries Management. Chapman and Hall, London, 435 pp. Plounevez, S. and Champalbert, G. (2000) Diet, feeding behaviour and trophic activity of the anchovy (Engraulis encrasicolus L.) in the Gulf of Lions (Mediterranean Sea). Oceanol. Acta 23, 175– 191. Politou, C.-Y. and Papaconstantinou, C. (1994) Feeding ecology of Mediterranean poor cod, Trisopterus minutus capelanus (Lacepede), from the eastern coast of Greece. Fish. Res. 19, 269– 292. Politou, C.-Y., Stergiou, K.I. and Petrakis, G. (1988) Feeding of poor cod (Trisopterus minutus capelanus R.) in the Euboean and Pagassitikos Gulfs (Greece). FAO Fish. Rep. 412, 90–93. Polovina, J.J. (1984) Models of a coral reef ecosystem I: the ECOPATH model and its application to French frigate shoals. Coral Reefs 3, 1–11. Polunin, N.V.C. and Pinnegar, J.K. (2000) Trophic-level dynamics inferred from stable isotopes of carbon and nitrogen. In: Briand, F. (ed.), Fishing down the Mediterranean Food Webs? Vol. 12. CIESM Workshop Series, pp. 69–72. Polunin, N.V.C. and Pinnegar, J.K. (2002) Fishes in marine food webs. In: Hart, P.J.B. and Reynolds, J.D. (eds.), Handbook of Fish and Fisheries, Volume 1. Blackwell, Oxford (in press). Pölzer, W. and Patzner, R.A. (1998) Nahrungsspektrum und Gebiß der Anemonengrundel Gobius bucchichi (Gobiidae) im Mittelmeer. Z. Fischk. 5, 83–90. Ramos, J. (1981) Régimen y comportamiento alimentario del lenguado (Solea solea L.) (Pisces, Soleidae). Infor. Téc. Inst. Invest. Pesq. 83, 3–15. Relini Orsi, L. and Wurtz, M. (1979) Biology of Trachyrhynchus trachyrhynchus (Risso, 1810) (Osteichthyes, Macrouridae) during the first years of benthic life. Rapp. Comm. Int. Expl. Mer Médit. 25/26, 71–77. Relini Orsi, L., Garibaldi, F., Cima, C. and Palandri, G. (1995) Feeding of the swordfish, the bluefin and other pelagic nekton in the western Ligurian Sea. SCRS/92/91 ICCAT 44, 283–286. Rijavec, L. and Županovi´c, S. (1965) A contribution to the knowledge of biology of Pagellus erythrinus L. in the middle Adriatic. Rapp. Comm. Int. Expl. Sci. Mer Médit. 18, 195–200. Rosecchi, E. (1983) Régime alimentaire du pageot, Pagellus erythrinus, Linne 1758, (Pisces, Sparidae) dans le Golfe du Lion. Cybium 7, 17–29. Rosecchi, E. (1987) L’alimentation de Diplodus annularis, Diplodus sargus, Diplodus vulgaris et Sparus aurata (Pisces, Sparidae) dans le Golfe du Lion et les lagunes littorals. Rev. Trav. Inst. Pêches Marit. 49, 125–141. Rosecchi, E. and Nouaze, Y. (1987) Comparaison de cinq indices alimentaires utilisés dans l’analyse des contenus stomacaux. Rev. Trav. Inst. Pêches Marit. 49, 111–123. Sala, E. and Ballesteros, E. (1997) Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar. Ecol. Prog. Ser. 152, 273–283. Sanz, A. (1985) Contribución al estudio de la biología de Uranoscopus scaber Linnaeus, 1758 (Osteichthyes, Uranoscopidae) del Mediterráneo occidental. Invest. Pesq. 49, 35–46.
254 Sanz Brau, A. (1990) Sur la nourriture des jeunes thons rouges Thunnus thynnus (L. 1758) des côtes du Golfe de Valence. Rapp. Comm. Int. Expl. Sci. Mer Médit. 32, 274. Sartor, P. and De Ranieri, S. (1996) Food and feeding habits of Lepidorhombus boscii (Pisces, Scophthalmidae) in the southern Tuscan Archipelago, Tyrrhenian Sea. Vie Milieu 46, 57–64. Scharf, F.S., Juanes, F. and Rountree, R.A. (2000) Predator size – prey size relationships of marine fish predators: Interspecific variation and effects of ontogeny and body size on trophic niche breadth. Mar. Ecol. Progr. Ser. 208, 229–248. Schintu, P., Passariello, M., Belluscio, A. and Ardizzone, G.D. (1994) Growth and diet of Bothus podas (Pisces: Bothidae) in the Central Mediterranean Sea. Sci. Mar. 58, 359–361. Schmitt, R.J. and Holbrook, S.J. (1984) Ontogeny of prey selection by black surfperch Embiotoca jacksoni (Pisces: Embiotocidae): the roles of fish morphology, foraging behaviour, and patch selection. Mar. Ecol. Progr. Ser. 18, 225–239. Smith, T.D. (1998) “Simultaneous and complementary advances”: Mid-century expectations of the interaction of fisheries science and management. Rev. Fish Biol. Fish. 8, 335–348. Stergiou, K.I. (1988) Feeding habits of the Lessepsian migrant Siganus luridus in the eastern Mediterranean, its new environment. J. Fish Biol. 33, 561–543. Stergiou, K.I. (1993) Abundance-depth relationship, condition factor and adaptive value of zooplanktophagy of red bandfish, Cepola macrophthalma. J. Fish Biol. 42, 645–660. Stergiou, K.I. (2000) Stock assessment in the eastern Mediterranean: Problems and pitfalls. Hellenic Fishing News 209, 147–151. Stergiou, K.I. (2002) Overfishing, tropicalization of fish stocks, uncertainty and ecosystem management: Resharpening Ockham’s razor. Fish. Res. 55, 1–9. Stergiou, K.I. and Fourtouni, H. (1991) Food habits, ontogenetic diet shift and selectivity in Zeus faber Linnaeus, 1758. J. Fish Biol. 39, 589–603. Stergiou, K.I. and Koulouris, M. (2000) Fishing down the marine food webs in the Hellenic Seas. In: Briand, F. (ed.), Fishing Down the Mediterranean Food Webs?, Vol. 12. CIESM Workshop Series, pp. 73–78. Stergiou, K.I. and Polunin, N. (2000) Executive summary. In: Briand, F. (ed.), Fishing Down the Mediterranean Food Webs?, Vol. 12. CIESM Workshop Series, pp. 7–15. Stergiou, K.I., Christou, E.D., Georgopoulos, D., Zenetos, A. and Souvermezoglou, C. (1997) The Hellenic Seas: Physics, chemistry, biology and fisheries. Ocean. Mar. Biol. Ann. Rev. 35, 415–538. Stokes, T.K., Butterworth, D.S., Stephenson, R.L. and Payne, A.I.L. (1999) Confronting uncertainty in the evaluation and implementation of fisheries-management systems. Introduction. ICES J. Mar. Sci. 56, 795–796. Tudela, S. (2000) Assessment of the ecological footprint of fishing in the Catalan central coast (NE Spain). In: Briand, F. (ed.), Fishing Down the Mediterranean Food Webs?, Vol. 12. CIESM Workshop Series, pp. 79–82. Tudela, S. and Palomera, I. (1995) Diel feeding intensity and daily ration in the anchovy Engraulis encrasicolus in the northwest Mediterranean Sea during the spawning period. Mar. Ecol. Prog. Ser. 129, 55–61.
Tudela, S. and Palomera, I. (1997) Trophic ecology of the European anchovy Engraulis encrasicolus in the Catalan Sea (northwest Mediterranean). Mar. Ecol. Prog. Ser. 160, 121–134. Tsimenides, N. (1980) Contribution to the study of the angler-fishes Lophius budegassa Spinola, 1807 and L. piscatorius L., 1758 in Greek Seas. PhD Thesis, University of Patras, 190 pp. Ulltang, Ø. (1996) Stock assessment and biological knowledge: Can prediction uncertainty be reduced? ICES J. Mar. Sci. 53, 659– 675. Vander Zanden, M.J. Casselman, J.M. and Rasmussen, J.B. (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467. Vassilopoulou, V. and Papaconstantinou, C. (1993a) Feeding habits of red mullet (Mullus barbatus) in a gulf in western Greece. Fish. Res. 16, 69–83. Vassilopoulou, V. and Papaconstantinou, C. (1993b) Feeding habits of red mullet (Mullus barbatus) in the N. Aegean Sea. Proceedings of the 4th Hellenic Symposium on Oceanography and Fisheries 4, 491–492. Verlaque, M. (1985) Note preliminaire sur le comportement alimentaire de Sarpa salpa (L.) (Sparidae) en Méditerranée. Rapp. Comm. Int. Expl. Sci. Mer Médit. 29, 193–196. Verlaque, M. (1990) Relations entre Sarpa salpa (Linnaeus, 1758) (Téléostéen, Sparidae), les autres poisons brouteurs et le phytobenthos algal méditerranéen. Oceanol. Acta 13, 373–388. Voliani, A. and Volpi, C. (1990) Stomach content analysis of a stranded specimen of Tursiops truncatus. Rapp. Comm. Int. Expl. Sci. Mer Médit. 32, 238. Wagué, A. (1997) Biologie, écologie et dynamique de l’espèce Serranus hepatus (L., 1758) (Poisson, Serranidae) dans le Golfe de Thermaikos (Mer Égée, Grèce). Thèse de Doctorat, Université d’Aristotle de Thessaloniki, 150 pp. Walters, C., Christensen, V. and Pauly, D. (1997) Structuring dynamic models of exploited ecosystems from trophic massbalance assessments. Rev. Fish Biol. Fish. 7, 139–172. Walters, C.J., Pauly, D. and Christensen, V. (1999) Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554. Walters, C.J., Pauly, D., Christensen, V. and Kitchell, J.F. (2000) Representing density-dependent consequences of life history strategies in an ecosystem model: ECOSIM II. Ecosystems 3, 70–83. Watson, R., Alder, J. and Walters, C. (2000) A dynamic massbalance model for marine protected areas. Fish Fish. 1, 94–98. Wootton, R.J. (1990) Ecology of Teleost Fishes. Chapman and Hall, New York, 404 pp. Zander, C.D. and Berg, J. (1984) Feeding ecology of littoral gobiid and blennoid fishes of the Banyuls area (Mediterranean Sea). II. Prey selection and size preference. Vie Milieu 34, 149–157. Zander, C.D. and Heymer, A. (1992) Feeding habits of Gobius auratus and other benthic small-sized fish from the French Mediterranean Coast under regard of some alternating parameters. Zool. Anz. 228, 220–228. Zar, J.H. (1999) Biostatistical Analysis, 4th edn. Prentice Hall, New Jersey, USA