Ferguson 2017 GRV-SRP comparison

5 downloads 0 Views 4MB Size Report
(high Si). Eucarro Rhyolite. (low Si-Rb/Sr, high Ti). Eucarro Rhyolite. (int. Rb/Sr). Basal Eucarro. Rhyolite/Paney Rhyolite. (high Si-Rb/Sr). Roxby Downs Granite.
Do basaltic intrusions trigger felsic super-eruptions? Matthew Ferguson1 ([email protected]) 1School

of Physical Sciences, University of Tasmania, Hobart, TAS, 7001, Australia

Problem: Unravelling genesis and evolution of ancient volcano-plutonic complexes is complicated by alteration, erosion, deformation, age uncertainties, and by difficulties in constraining formation settings Objective: Compare ancient and recent felsic magmatism for insights into development of ancient rocks

Ancient

Recent

Gawler Range Volcanics (GRV) and Hiltaba Suite (HS), South Australia

1590 Ma

Taupo – New Zealand San Juan, Cascades, Yellowstone (SRP) – North America

< 30 Ma

After Agangi et al., 2011

Wilson, 2008

• Huckleberry Ridge Tuff – 2.1 Ma, 2500 km3, largest Yellowstone eruption, others in hotspot trail

• Dacite and rhyolite lavas • Volume up to ca 3500km3

• Taupo Oruanui eruption – 26.5 ka, most recent super eruption worldwide, approx. 1200 km3

• Erupted at 850–1000°C

Petrography: Textures show that minerals have complex histories; they do not tell us about protoliths 500µm

Opx

Mineral aggregates – complex history

Zircon Apatite



Titanomagnetite, pyroxenes, plagioclase, apatite and zircon

Gawler Range Volcanics •

Titanomagnetite

Spongy and anhedral crystal textures – mineral destabilisation Gawler Range Volcanics

Subhedral-anhedral habits, simple to complex growth relationships

Eucarro Rhyolite (GRVPW20)

Snake River Plain Bachmann et al., 2002

Eucarro Rhyolite (GRVPW20)

Plagioclase

Ellis and Wolff, 2012

Ellsia and Wolff, 2012

Snake River Plain

Snake River Plain

Requires heat and/or volatile addition

1mm

Ellis and Wolff, 2012

Rejuvenation established in recent examples

Geochemistry: Crystal-liquid separation, young crust or juvenile input involved at source

2.5 1.5 0.5

Pondanna Dacite (int. Rb/Sr, high Mg)

Eucarro Rhyolite (int. Rb/Sr) Basal Eucarro Rhyolite/Paney Rhyolite (high Si-Rb/Sr) Roxby Downs Granite (RD2488)

K2O (wt. %)

Eucarro Rhyolite (low Si-Rb/Sr, high Ti)

70 75 SiO2 (wt. %)

2.5 1.5

80 6.5

6.0

6.0

5.0 4.5 4.0

Bonnichsen et al., 2008 Central Snake River Plain

65

6.5

5.5

Cpx

12

70 75 SiO2 (wt. %)

80

10 8 6 4

70 75 SiO2 (wt. %)

10 8 6 Compilation of cSRP pyroxene analyses

4

GRV pyroxenes

GRV and HS

2

2 0

5 10 CaO (wt. %)

15

0

20

5 10 CaO (wt. %)

15

Eucarro Rhyolite aggregates Eucarro Rhyolite Pondanna Dacite Eucarro Rhyolite enclave Moonaree Dacite aggregates Moonaree Dacite

5.0 4.5

80

65

70 75 SiO2 (wt. %)

80



Coexisting, high-Fe pyroxenes



Whole rock and mineral compositions controlled by crystal-liquid separation

Established mafic input Mafic lavas (thin crust)

Felsic units (thick crust) Nash et al., 2006

Snake River Plain

20

20

5.5

4.0 65

Not xenocrysts

12

3.5

0.5 65

Pondanna Dacite (high Si)

4.5

14

7.5 1590 Ma 5.0 Evolved baseline composition 2.5 CHUR 0.0 -2.5 -5.0 Mafic and felsic -7.5 rocks with similar ɛNdt -10.0 -12.5 -15.0 1500 1550 1600 1650 1700 Age (Ma)

10

Zircon ɛHft

3.5

SRP

14

Opx MgO (wt. %)

4.5

FeO(T) (wt. %)

Pondanna Dacite (low Rb/Sr, high Ca)

GRV and HS

K2O (wt. %)

Basal Moonaree Dacite (high Si, low Mg)

FeO(T) (wt. %)

Moonaree Dacite (red facies, low Si)

5.5

MgO (wt. %)

5.5

Moonaree Dacite (Qtz-bearing, high K-Rb/Sr)

Same crystallising assemblage

Whole-rock ɛNdt

Ferropotassic, A-type rocks

Suspected mafic input

0

CHUR

-10 -20

Requires juvenile input or very young crust

-30

All data

Zircon Hf

Eucarro Rhyolite Moonaree Dacite

-40 1500 1550 1600 1650 1700 Age (Ma)

Drew et al., 2013

Conclusion: Mafic magmatism is involved in the development of large volume felsic magmatism Mafic magmas at different scales – prime candidates for suppliers of heat, volatiles and metals Mafic microgranular clot

Lower GRV Upper GRV Yardea enclave Eucarro enclave Yardea enclave margin Eucarro enclave margin

8

MgO (wt. %)

Groundmass

10

6 4

Acknowledgements We are grateful to Karsten Goemann and Sandrin Feig for analytical assistance. I would like to thank Alex Cherry and Nathan Chapman for constructive criticism which improved this poster.

2.5 2

1.5 1 Wilson and Charlier, 2016

2

0.5

0

0 45

1mm

3

TiO2 (wt. %)

Quenched blobs of mafic magma in Upper GRV

Interpreted vertical structure of active, large volume silicic systems

50

55

60 65 70 SiO2 (wt. %)

75

80

45

50

55

60 65 70 SiO2 (wt. %)

75

80

Mafic rocks in the Lower GRV, and compositions of mafic blobs in Upper GRV

Significant mafic influence in lower crust

References Agangi et al. 2011 PhD Thesis. Bachmann et al. 2002 J. Petrol. 43, 1469-1503.

Bonnichsen et al. 2008 Bull. Volcanol. 70, 315-342. Drew et al. 2013 Earth Planet. Sci. Lett. 381, 63-77.

Ellis and Wolff 2012 J. Volcanol. Geotherm. Res. 211, 1-11. Wilson 2008 Elements 4, 29-34. Nash et al. 2006 Earth Planet. Sci. Lett. 247, 143-156. Wilson and Charlier 2016 Elements 12, 103-108.