the bark samples: taxifolin glycoside, astringin, tetra- hydroxy-stilbenoids I and II, piceid, isorhapontin. 2b. Content of cell wall-bound phenolics liberated through.
Figure S1 Sequence alignment of TAG from different organisms (S. aureus MSSA476; S. aureus MRSA252; S. typhi; E. coli; gi|152977981, Actinobacillus ...
The ZP domain underlined with red is immediately followed by a putative proteolytic cleavage site (Arg-X-Lys/Arg-Arg) underlined with green.
PKM I. WILL. |. RII Z. Z < m
Background. Leung et al.1,2 identified trichohyalin as an autoantigen involved in alopecia areata. We know from. Pandemrix induced narcolepsy3 that vaccine ...
S5 Sequence alignment of selected PRD class proteins ce NPAX-3 ce NPAX-4. Acey NPAX-4. Ce NPAX-1 ce NPAX-2. Dm Poxn. Cc PoXn. Cg EKC37735.
Pandemrix vaccine induced narcolepsy,7 that vaccine antigens can induce ... hypocretin receptor and H1N1 nucleoprotein contained in the Pandemrix vaccine.
We know from Pandemrix induced narcolepsy3 that vaccine antigens can induce autoimmunity due to molecular mimicry. Protein sequence alignment between ...
Background. Ahmed et al.1 demonstrated that Pandemrix induced narcolepsy was caused by molecular mimicry between influenza nucleoproteins (NP) and the ...
Anti-RNP antibody and anti-Sm antibody were identified as risk factors for Systemic ... Rinaldi et al.2 describe Saccharomyces cerevisiae mannan related SLE ...
We know from Pandemrix vaccine induced narcolepsy,2 that vaccine antigens can induce autoimmunity due to molecular mimicry. Protein sequence alignment ...
LQT1 α, KCNH2 and KCNA4 have been associated with cardiac arrhythmias1. The origin of these autoantibodies is unknown. We know from Pandemrix vaccine ...
Jun 27, 2013 - obtained using phenix.resolve sequence assignment alone. (Terwilliger, 2003) to 247 of a possible 359. Additionally, the procedure was tested ...
100 Sussex Drive, Ontario K1A OR6, Canada, and dDepartment of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario ...
Oct 23, 2008 - As a result, significance is typically estimated by aligning random sequences .... points below indicate that MAVID alignment followed by ...
continuous recrystallization. In that instance, the formation of finely dispersed Mn-containing precipitates effectively retards the grain boundary motion, so that.
Jul 24, 2017 - Each individual patch image is assigned the defocus para- meters of its ...... PHENIX (Adams et al., 2010), leading to a final Rfree factor of 34%.
GST-pulldown was performed using GST-SPOP and in vitro cell-free translated. HA-SRC-3 protein followed by SDS-PAGE and Western blotting using anti-HA.
Several benzodiazepine derivatives containing an Addi- tional ring are of pharmacological interest (Sternbach,. 1978). In connection with our investigation on ...
S1a Fig. Case Management of SPs in Village Clinics. Page 2. S1b Fig. Case Management of SPs in Township Health Centers. Page 3. S1c Fig.
1 Max-Planck Institut f ur Kolloid- und Grenz achenforschung. 14424 Potsdam .....
Hwa, T. and L assig, M., Proceedings of the Second Annual International.
ten across the page and the other down the left-hand side. Whenever .... of Medicine, http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html). Once the.
server (at www. expasy.ch/tools/blast/) to gather and align themâ. Claverie J, Notredame C (2007). Bioinformatics for Dummies (2nd Edn). Wiley publishing, Inc.
Fig. S1A Sequence alignment between PatA-DUF and ... - IUCr Journals
density map contoured at 1.2 o from PHENIX with experimental phases calculated from anomalous scattering atoms. (b) Electron density map calculated with ...
ANS . Q ANS . Q ASS . Q A DMGQ AD L GQ PD LGP AQV . N EGK . N
D A RQMV D A RQMV D A RQMV D A RQMV D A RQMV D A RQMV D A RQMV D A RQMV
L L L L I I L L
L L L L L L L L
L L L L L L L L
SGQ SGQ AGQ ASQ SGQ SGQ SGQ SGQ
Y GWK Y GWK Y GWK Y GWK Y GWK Y GWK Y GWK Y GWK
V V V V V V V V
F F L L I L L L
A A V V V V V V
Y Y Y Y Y Y Y Y
D D D D D D D D
Y Y Y Y Y Y Y Y
L L L L L L L L
GNN GNN ASD GEN GEN DAN GDN GEN
I I I I I I I I
QA QA QP QP QP QA QA QE
I I V V V V V V
K K K K K K K K
L L L L L L L L
K K K K K K K K
L L L L L L L L
GT GT GT GT GT GT GT GV
LGYD LGYD LGYD LGYD LGYD LGYD LGYD LGYD
FGT FGT FGS FGT FGT FGT FGS FGS
I I I I I I L L
E E E E E E E E
S S S S S S S A
L L L L L L L L
I I I I I I I I
YVER YVER Y I ER YVER YMER YVER YVER F VQR
V V V V V V V V
S S S S S S S S
S S S S S S S P
WT WT WT WT WT WT WT WT
V V L L L L L L
L L L L L L L L
F F F F F F F F
KQLMP P F D KQLMP P F D KQLMP P F E KQLMP P F D KQLMP P F D KQLMP P F D KQLMPGVQ KQLMPGV S
T T T T T T T T
P P P P P P P P
N N N N N N N N
I I I I I I L L
E E E E E E E E
PGV PGV PGV PG I PGV PG I PG I PGV
L L L L L L L L
TNRS TNRS TGR T TGRK TGKK TKRT SGRS TGRS
V V V V V V V I
YA YA YA YA YA YA YA YA
F F I L L I I I
AG . NMV AG . NMV SEGVSV GGGVMV DGG I MV GGGVMV DG . T A I EG . TM I
P P P P P P P P
A A A A A A A A
462 431 404 424 417 423 418 415
Y Y Y Y Y Y Y Y
I I I I I I I I
DP TGP DP TGP EPKGP DP TGP AP TGP DP TGP E PGGA E P VGG
F F F F F F F F
ASS ASE ARE AAE ASD AAE ARD SRD
T T A A V S V V
H H L R R R A E
510 479 452 472 465 471 466 463
L L L L L L L L
F F F F Y Y F F
SGQV SGQV SGQV SGQV SGQ I SGQV SGQV SGQV
V V V I V I V V
P P P P P P P P
V V I V V V V V
V V I I I L I I
E E E E E E E E
PQS PQS PQS PQS PLG PQS VPN I NN
558 527 500 520 513 519 514 511
L L L L L L L L
V NAA L E A V RA EGGDAGE A R I RQ V NAA L E A V RA EGGDAGE A R I RQ VNAA F E T VQAA EGEADRDAMSR V S AAMDA VQA E DGA AD E E T I RK V NAAME A VQA E DG T AD E DR I RK V S AAMA A VQA E AGA AD E E T I RK VQAA I QT VQAQA T EAQE E S I RR V SAA I E S VQS E AGDAQEDA I RR
T T T T T T T T
L L L L L L L L
DG DG GS DG DG DG GS SS
L L L L L L L L
N N N N N N N N
F F F F F F F F
A A S S A A A A
V V V V V V S S
T T T T T T T T
S Q S V A A GME S Q S V A A GME S QA V AQGME S QA V A V GME S QA V A V GME S E A V A V GME A E A V A T GME AQAVGAGY E
QAAQT QAAQT QAAS T QAAQT QAAQT QAAQT QAAS T QAAQT I I I I I I L I
F F F F F F F F
YR YR FR YR FR FR FR YR
T T T T T T T T
I I I I I I I I
DV DV DV DV DV DV DV DV
SD SD SD SD SD SD SD SD
L L L L L L I T
V V I I I I I I
V V I V V V I I
F F F F F F F F
L L L L L L L L
NR NR NR NR NR NR SR NR
I I V I I I I I
Y Y Y Y Y Y Y Y
Y Y Y Y Y Y Y Y
D D D D D D D D
R R R R R R R R
606 575 548 568 561 567 562 559
T T T T T T T T
V V V V V V V V
EKS EKS EKS EKS EKS EKS EKS EKS
P P P P P P P P
F F F F F F F F
CRL CRL CRM CRM CR I CRM CRL CRL
654 623 596 616 609 615 610 607
S S S S S S T S
700 671 644 664 657 663 658 655
T MG E T MG E T LGE T LGE T LGE T LGE T LGE T LGE
V V V V V V V V
R R K R R R R R
SWS SWS SWS SWS SWS SWS SWS SWS
L L L L L L L L
. S P P P P P A
. Y Y Y Y Y Y Y
Fig. S1A Sequence alignment between PatA-DUF and homologues from related cyanobactin biosynthetic pathways. Residues involved in Zn2+ coordination (as identified in the PatG-DUFsp. structure) are highlighted with red triangles.
A F SGN A F SGN AGSGH A F SGH A F SGH AYDGN AASKL AASKL
A RQMV A RQMV A RQMV P RQMV P RQMV V RQMV S QQMV ASQ I V
PatG-DUFsp. L Q M L PatGduf TruG-DUF L QM L TruGduf L LML ArtGduf ArtG-DUF VLML LynGduf LynG-DUF VLML MicroGduf MicG-DUF L LML TenGduf TenG-DUF I LML AcyGduf AcyG-DUF NLML PagGduf PagG-DUF
K E RMA K E RMA KQ TMA K E RMA K E RMA KE LMP KQ LMP KQ LMP
. . P P P P A P
. . . . . . . . . . . . . . . . VN L HGVMV V EMD S I L V V EMD S I L V TQVNG I MV V NMDGA I I V E I DG I T I
. . P P P P P P
. . P P P S A A
P P P P P P P P
950 761 1051 1053 1108 1059 471 452
DRN DRN DNH DRN DRN DRN SEN AEN
P P P P P P P S
D D D D D D A S
E E A E E E E E
A A A S S S A S
R R Y R R R K K
S S S S S S P S
L L L L L L L L
I I I I I I I I
WT WT WT WT WT WT WT WT
L L L L L L L I
N L EGD N L EGD N L DQN S L DGD S L DGD S L DGD NQE L T NQE F N
V V T T T T P P
I I I I I I I V
Y Y Y Y Y Y Y Y
A A A V V A A A
L L L L L L L L
D D D E E D E E
P P P P P P P V
KGP KGP KGP TGA TGA TGP VSG KGG
Y Y Y Y Y Y Y Y
E I F E I F EMF EMF EMF E I F ET L EML
998 809 1099 1101 1156 1107 519 500
F I E F I E FME FVE FVE FVE FVE YVE
R R R R R R R R
L L V I I I V V
S S S S S S S S
V V I I I V I I
TRTV TRTV E RMV NRTV NRTV NRTV DRTV DKT I
E E E E E E E T
L L L L L L L L
F F F F F F F F
SGEVVP SGE VMP SGEVVP SGQV V P SGQV V P SGEVVP SGQV V P SGQE V P
P P P I I L T I
R R R R R R R R
1046 857 1147 1149 1204 1155 567 548
. . . . . . V .
V V L I I I I L
. . EY . . EY N . NL ARQV SRQV SRRV TGET SEEL
HN HN HN RN RN RN QN QN
1091 902 1193 1196 1251 1202 615 595
F F F F F F F F
CRLN CRLN CRLN CR I N CRRN CR I N CR I N CRVN
1139 950 1241 1244 1299 1250 663 643
V V V V V V V V
EPE EPE EPE EPE EQK EPE QPE EPE
Y Y F Y Y Y Y Y
T T T S S T N S
S S S S S S S S
AD AD AE DE DE DE DD DD
PARR PARR PGRQ PARQ PARQ PARR PAR L PGQ I
T T T T T T T T
NA NA NL NT NT NA NS NG
L L L L L L L L
V V V V V V V V
DAALAT DAALAT DAALGT NAAMA A NAAMV A DAAMA A DAALQT DAALQT
RDRA RDRA RDRA RDRA RDRA RDRA KDRA KDRA
L L L L L L L L
N N N N N N N N
F F F F F F F F
T T A A A A S A
V V V A A A V A
T T T T T T T T
QAAS QAAS QAAA QAAS QAAS QAAS QAAS QAAC
T T T V V V S S
F F F F F F F F
AQA AQV AEA AKA AKA AKA SQA AQA
I I I I I I I V
A A A A A A S S
SGRQ SGRQ ADRR ERRQ ERRQ ERRQ T GMQ T GME
F F F F F F F F
Y Y F F S Y F F
D D D D D D D D
P P P P P P P P
E E E E E E E E
HGRRSRRV HGRRSRRV DGKRSRQV S SRRGRKV RS SRGRKV NSRRGRKV NGRRAKKV RG L RAKKV
F F F F F F F Y
R R R R L R L L
F F F F F F F F
D D D D D D D D
V V V V V V V V
V V V V I V V V
V V I V V V V V
L L L K K K K K
L L L L L L L L
T T T E E E K K
N N N N N N N N
T T T I I I A A
E E AD E D S L RQG E E AD E D S L RQG EEGSEGL LREG D E AQA P L VQQA D E AQA P L I QQA DEAQA P L VRQA A P AQE I AMR K A A D A N E I QMR R S
T T T T T T T S
L L I L L L I I
F F F F F F F F
ATNV ATNV ADD I SDQ I SDQ I SGQ I AAD I AADV V V V V V V V V
V V L V V V I I
N N N K K N T T
V V V V V V L I
RD RD RN HD HD HD TN NN
L L L L L L L L
T T T T T I S S
A A A A S T S S
F F F F F F F F
L L L L L L L L
NR NR NR NR NR NR NR KR
V V V V V V V V
Y Y Y Y Y Y Y Y
HD HD YE ND ND ND YD FD
L L L L L F L L
D D D D D D D D
T T T T T T S T
I I I I I I I I
E E E K E K E E
V V V V V V V I
NK NK EK EK EK EK EK EK
S S S S S S S S
P P P P P P P P
Y Y Y F F F F F
VYVLP VYVLP ADSMP V L QMP V L QMP R L LMP SDR I P S YM I P
V V V V V V V V
T T T T T T T T
VGS I VGS I VGS I LGEV LGK I LGEV L GQV L GQV
L L L L L L L L
D D D D D D N N
K SWS L P G K SWS L P G K RWA I P G K SWS L P . K SWSMP . K SWS L P . R SWS V . . R SWS V P .
1186 997 1288 1290 1345 1296 708 689
Fig. S1B Sequence alignment between PatAG-DUF sp. and homologues from related cyanobactin biosynthetic pathways. Residues involved in Zn2+ coordination (as identified in the PatGDUFsp. structure) are highlighted with red triangles.
(a)
(b)
Fig. S2 Final refined of PatG-DUFsp. Y925 model with (a) Electron density map contoured at 1.2 σ from PHENIX with experimental phases calculated from anomalous scattering atoms. (b) Electron density map calculated with phases after density PHENIX modification of experimental phases.
Fig. S3 Near UV CD-spectra of PatG-DUFsp. (green) and PatG-DUFdi. (blue). A blank containing only buffer is shown in red. The CD-spectra overlay well suggestion the sequence variations (three point mutations) do not alter the tertiary structure of the domain.
Fig. S4 ITC data of PatE’ titrated into PatG-DUFdi. solution. The top panel shows raw data representing the heat evolved in response to injections, the bottom panel shows the integrated heats of injections ( ) and the best fit (-) to the one-site model (origin).
(a)
(b)
(c)
(d)
Fig. S5A 1H-15N-HSQC of PatE’ (blue) with 0.5 (green), 1.0 (purple) and 2.0 (red) equivalence of PatG-DUFdi.
(a)
(b)
(c)
(d)
Fig. S5B 1H-15N-HSQC of heterocyclized-PatE’ (blue) with 0.5 (green), 1.0 (purple) and 2.0 (red) equivalence of PatG-DUFdi.