Final Exam Info with Solutions.

6 downloads 139 Views 75KB Size Report
Pr(+|notD)Pr(notD) = .95*.005+.03*.995=0.0346. Using properties of binomial, E( Y) = np = 100*0.0346=3.46. b. If three randomly selected people were tested, ...
Stat  515  final  exam:  Tues,  Dec  14th.  1:30-­‐3:30PM.  LGRT  103.   Format:  Open  book  and  open  note.  Calculators  are  fine,  but  they  are  not  necessary.     Coverage:   • Chapter  2  (omit  2.9  and  2.12)   • Chapter  3  (omit  moment  generating  functions  and  3.10)   • Chapter  4  (omit  moment  generating  functions  and  4.11)   • Chapter  5  (omit  5.9,  5.10,  and  5.11)   • Chapter  7  (omit  7.4)     The  exam  will  emphasize  chapters  4,  5,  and  7,  but  there  will  be  one  problem  from   chapters  2  and/or  3.  There  are  six  problems  on  the  exam,  and  about  80-­‐85%  of  the   points  are  similar  to  the  questions  below  or  a  question  from  one  of  the  previous   exams.  Note,  if  you  recognize  a  probability  distribution  function  (e.g.  uniform,   normal,  etc),  you  may  use  facts  about  that  distribution  (e.g.  mean,  cdf,  etc)  without   proof  or  derivation.       Suggested  practice  problems:     1. A  medical  test  has  the  following  properties.  Given  that  someone  has  the   disease,  it  says  that  she  does  (a  “positive”  test)  with  95%  probability.  Given   that  someone  does  not  have  the  disease,  it  says  that  she  does  not  (a   “negative”  test)  with  97%  probability.  Suppose  0.5%  of  the  population  has   the  disease.   Note,  Pr(+|D)  =  .95,  Pr(-­|notD)  =  .97,  Pr(D)  =  0.005.   a. If  100  randomly  selected  people  were  tested,  how  many  would  be   expected  to  receive  positive  tests?   Let  Y    be  number  tested.  Y  is  binomial(100,p)  where  p  is  probability  a   person  gets  a  positive  test.  p=Pr(+)  =  Pr(+,D)+P(+,noD)  =  Pr(+|D)Pr(D)  +   Pr(+|notD)Pr(notD)  =  .95*.005+.03*.995=0.0346.  Using  properties  of   binomial,  E(Y)  =  np  =  100*0.0346=3.46.   b. If  three  randomly  selected  people  were  tested,  what  is  the  probability   that  2  were  positive  and  1  was  negative?   Now,  Y  is  Bin(3,0.0346).  Pr(Y=2)  =  (3  choose  2)0.03462(1-­0.0346)=   0.003467215.   c. Given  that  a  randomly  selected  person  receives  a  positive  test,  what  is   the  probability  that  she  has  the  disease?   Want  Pr(D|+)  =  Pr(D,+)/Pr(+)  =  Pr(+|D)Pr(D)/Pr(+)  =  .95*.005/0.0346   =  0.1372832.   d. Given  that  a  randomly  selected  person  receives  a  negative  test,  what   is  the  probability  that  she  does  not  have  the  disease?   Want  Pr(notD|-­)  =  Pr(notD,-­)/Pr(-­)  =  Pr(-­|notD)Pr(notD)/Pr(-­)  =   .97*(1-­.005)/(1-­0.0346)  =  0.999741.   e. What  would  need  to  happen  to  make  both  answers  to  c  and  d  one?   Pr(+|D),  and  Pr(-­|notD)  could  become  close  to  one.  Also,  Pr(D)   increasing  to  0.5  would  “help.”  

  2. A  warehouse  has  10  diesel  generators  in  it.  Two  of  them  do  not  work.  Three   different  generators  are  randomly  chosen.     Let  Y  be  the  number  of  generators  that  work  in  a  sample  of  size  3,  chosen   without  replacement.  Y  is  hypergeometric  with  population  size  N=10,  M=8  of   the  type  in  which  we’re  interested,  and  sample  size,  n=3.     a. What  is  the  probability  that  they  all  work?   Pr(Y=2)  =  (8  choose  3)*(2  choose  0)/(10  choose  3)  =  0.47.   b. What  is  the  probability  that  at  least  2  work?   Pr(Y=0  or  Y=1)  =  0.47+(8  choose  2)*(2  choose  1)/(10  choose  3)  =   0.47+0.47.   c. What  is  the  expected  number  of  generators  in  the  sample  of  three  that   work?   E(Y)  =  3*8/10  =  2.4.   3. A  random  variable  Y  has  can  take  on  three  values:  1,  2,  and  3  with  Pr(Y=1)  =   0.5,  Pr(Y=2)  =  0.3.   a. What  is  Pr(Y=3)?   Pr(Y=1)+Pr(Y=2)+Pr(Y=3)  =  1,  so  Pr(Y=3)  =  0.2.   b. What  is  Pr(Y>2)?   Pr(Y>2)  =  Pr(Y=2)+Pr(Y=3)  =  0.5   c. What  is  E(Y)?   E(Y)  =  1*Pr(Y=1)+  2*Pr(Y=2)+3*Pr(Y=3)=1.7   d. What  is  Var(Y)?   Var(Y)  =  E((Y-­EY)2)=(1-­1.7)2*Pr(Y=1)+  (2-­1.7)2*Pr(Y=2)+  (3-­ 1.7)2*Pr(Y=3)=0.61.   e. What  is  Pr(Y2