Finding segregated networks through Twitter ...

4 downloads 109 Views 6MB Size Report
attribute income levels to Twitter users as the average income in the census sectors ... group in every street; (v) assess the relationship between dynamic ...
Digital  footprints  in  the  cityscape:  1     Finding  segregated  networks  through  Twitter  locational  data     Abstract.  From  a  tradition  that  can  be  traced  back  to  the  Chicago  School,  social  segregation  has  been  mostly   seen   as   the   natural   consequence   of   the   social   division   of   space,   taking   the   space   as   a   surrogate   for   social   isolation.   We   propose   a   change   in   the   focus   from   static   segregation   of   places   to   how   social   segregation   is   performed   in   embodied   urban   trajectories.   Using   social   media   locational   data,   we   analysed   trajectories   of   groups  of  social  actors  differentiated  by  income  levels  in  Rio  de  Janeiro,  Brazil,  in  order  to  (i)  infer  residential   location   of   users   as   the   origin   of   trajectories   examining   geographic   spatiotemporal   positions   in   tweets;   (ii)   attribute   income   levels   to   Twitter   users   as   the   average   income   in   the   census   sectors   inferred   as   residential   location;   (iii)   reconstruct   users’   trajectories   linking   tweet   positions   through   a   logic   of   shortest   paths   as   a   predictor  for  actual  trajectories  in  urban  space;  (iv)  map  segregated  networks  visualising  the  dominant  income   group  in  every  street;  (v)  assess  the  relationship  between  dynamic  segregation  and  territorial  segregation;  and   (vi)   measure   levels   of   social   diversity   on   the   streets.   Finally,   we   discuss   our   findings,   and   the   utility   and   limitations   of   the   approach   in   grasping   the   local   scenario   of   segregated   networks   as   restrictions   on   social   contact.  Key  words:  segregation,  mobilities,  social  networks,  Twitter  locational  data.      

Introduction:  an  alternative  approach  to  urban  segregation   We  will  examine  in  this  paper  the  relationship  between  forms  of  social  segregation  in  the  city  and   the   mobilities   of   socially   different   actors.   We   suggest   that   the   usual,   purely   spatial   forms   of   segregation   cannot   explain   the   phenomenon   of   social   segregation.   Even   if   the   answer   to   the   question   of   the   ways   we   experience   social   segregation   still   implies   a   role   for   space,   we   hope   to   show   that   this   role   cannot   be   reduced   to   territorial   segregation.   In   contrast   to   a   literature   traditionally  focused  on  the  territorial  dimension,  and  closer  to  a  more  recent  trend  in  sociospatial   studies   focused   on   the   positioning   of   actors   in   urban   space   rather   than   residential   location,   our   approach   explores   an   alternative   spatiality   of   segregation,   showing   ways   in   which   segregation   is   shaped  by  the  potential  of  encounter  within  the  channels  of  movement  where  co-­‐presence  is  likely   to   happen   –   or   not.   This   shift   reinforces   a   change   of   focus   from   the   vision   of   static   forms   of   segregation   inherent   in   places   to   the   understanding   of   social   segregation   reproduced   through   the   trajectories   of   bodies   in   urban   space.   This   reformulation   of   the   spatiality   of   segregation   should   reassert  the  body,  the  entity  that  carries  the  signals  of  identities  and  difference,  as  the  primordial   instance  where  segregation  is  socially  revealed  and  experienced  by  the  actor.  In  doing  so,  we  intend   to   show   that   urban   space   maintains   a   key   role   in   segregation   –   in   fact,   a   more   subtle   and   penetrating   role   than   the   usual   reading   of   territorial   segregation   would   have;   a   dynamic   aspect   essential  to  the  lasting  experience  of  segregation.     In   fact,   this   aim   involves   entering   an   elusive   fabric   of   movement   and   interaction.   This   paper   develops   a   method   to   capture   such   fabric,   using   ideas   from   Linton   Freeman's   view   (1978)   segregation   as   "restrictions   on   interaction"   to   references   to   the   time-­‐geography   of   Torsten   Hägerstrand   (1970).   This   method   is   applied   in   an   empirical   study   of   large-­‐scale   mapping   of   urban   trajectories   in   the   city   of   Rio   de   Janeiro.   Our   approach  is  intended  to  help  us  understand  the  subtle   forms   which   render   the   Other   invisible   in   our   daily   lives,   and   how   subtle   forms   of   social   distance   silently   penetrates   everyday   life,   transforming   social   differences   in   distance   –   as   if   we   lived   in   different  social  worlds;  a  subtle  process  that  operates  in  the  final  analysis,  through  the  body.     This  reconsideration  of  segregation  seems  also  useful  if  we  take  into  account  the  complex  patterns   of   daily   mobility   in   contemporary   cities.   From   the   work   of   Park   (1916)   and   Burgess   (1928)   to   recent   approaches  to  the  contextual  characteristics  of  segregation,  mobility  has  been  mostly  represented   by   migration,   with   the   slow   temporality   of   production   of   residential   areas   and   location   as   an                                                                                                                           1

 The  title  recalls  Frederico  de  Holanda’s  work  “Class  footprints  in  the  landscape”  (Holanda,  2000).  

expression.   In   this   view,   the   temporality   and   spatiality   inherent   to   everyday   mobility,   such   as   the   ability   to   access   and   join   social   situations,   have   been   neglected.   In   fact,   there   are   highly   interdependent   forms   of   mobility,   which   are   central   to   complex   connections   in   a   network   society   (Urry,   2002:1).   We   wish   to   explore   the   elusive   conditions   of   contact   between   the   actors.   We   will   develop  these  ideas  in  order  to  achieve  a  clearer  understanding  of  the  circumstances  of  encounter   approaching   (1)   segregation   as   restrictions   on   social   contact,   and   (2)   the   role   of   mobility   in   the   opportunities   of   encounter,   and   its   relation   to   social   differences   in   an   unequal   society.   Then   we   shall   (3)   develop   a   concept   of   social   network   able   to   include   encounters   and   movement   in   urban   space;   (4)   explain   the   methodological   use   of   social   media   locational   data   to   grasp   movement;   (5)   apply  this  framework  in  an  empirical  study  of  class  networks  in  Rio  de  Janeiro;  and  finally  (6)  discuss   our  findings  on  social  differences  and  segregated  networks  and  how  they  respond  to  the  intention   of  breaking  free  from  the  spatial  reduction  of  segregation  to  a  social  division  of  space.     1.  Segregation  as  restrictions  on  social  contact   Segregation   is   usually   seen   as   a   social   division   of   space,   a   form   of   controlling   contact   naturally   stemming  from  socially  homogeneous  territorial  areas  [omitted  for  purposes  of  blind  review].  This   view  of  territorial  segregation  as  a  surrogate  for  social  segregation  may  be  traced  back  to  Charles   Booth’s   maps   of   income,   class   and   residential   distribution   in   London   in   1889,   and   the   Chicago   School’s  works  on  residential  segregation  in  American  cities.  These  works  established  a  traditional   focus  on  causal  relations  in  spatial  patterns  of  residential  segregation  in  the  following  decades,  such   as   Duncan   and   Duncan   (1955);   Liberson   (1961),   Tauber   and   Tauber   (1964),   Guest   and   Weed   (1976),   Massey  and  Denton  (1988)  and  Quillian  (2002),  among  many  others.  Schelling  (1969)  showed  how   the   effects   of   individual   preferences   on   location   unfold   into   patterns   of   residential   segregation,   and   how   an   integrated   society   would   generally   unravel   into   a   segregated   one   even   though   no   individual   actor   strictly   prefers   this   (see   also   Pancs   and   Vriend,   2007).   Extensive   empirical   work   reinforced   the   conflation.  More  recently,  Schnell  and  Yoav  (2001;  2005)  expanded  on  such  approaches  in  order  to   measure   levels   of   social   aggregation   around   individuals’   activity   places   other   than   home,   such   as   work,  leisure  and  friends’  location  –  along  with  isolation  from  other  social  groups.     An  alternative  view  of  segregation  is  found  in  Freeman  (1978:  413):  "All  restrictions  on  interaction,   whether  they  involve  physical  space  or  not,  are  forms  of  segregation   –  in  social  space."  We  wish  to   explore   Freeman's   view   of   the   restriction   on   interaction   in   order   to   understand   segregation   as   a   restriction  of  the  presence  of  the  other  in  our  actions  in  the  city,  immersed  in  the  delicate  fabric  of   encounters   and   interactions   that   keeps   local   social   systems   together.   Usual   approaches   seem   ill-­‐ equipped   to   recognize   these   subtle   dimensions   of   segregation   active   in   urban   rhythms   of   the   encounter.   Our   approach   shares   the   focus   on   social   spheres   and   routinized   activities   found   in   a   number  of  more  recent  works  (e.g.  Schnell  and  Yoav,  2001;  2005;  Dixon  et  al,  2005;  Lee  and  Kwan,   2011;   Selim,   2015).   Schnell   and   Yoav’s   work   explores   “an   index   that   emphasizes   an   individual   agent’s   experience   of   isolation   from   or   exposure   to   actual   everyday   life   spaces   of   other   groups”   (2001:623).  Another  class  of  study  based  on  Hägerstrand  (1970)  focuses  on  spatiotemporal  paths  of   actors  and  interaction  in  personal  social  networks  (Lee  and  Kwan,  2011).       These   approaches   do   not   identify   networks   of   movement   of   socially   different   actors   and   do   not   assess  their  overlapping  levels.  They  tend  to  be  centred  on  a  representation  of  actors  as  dispersed  /   aggregated   entities   on   a   spatial   basis,   assuming   proximity   of   location   as   encounter   opportunities.   In   their  turn,  Lee  and  Kwan  do  assess  movement  in  space-­‐time  prisms  and  other  interesting  abstract   representations,   but   paths   are   not   aggregated   into   networks   of   movement   related   to   socially   different   actors.   Our   approach   is   based   on   modelling   the   channels   of   movement   in   public   spaces   and   the   activity   places   where   co-­‐presence   and   encounter   may   or   not   happen,   so   that   ‘the   other’   may   be   perceived   and   acknowledged.   We   would   like   to   emphasise   that,   if   we   want   to   fully   understand  the  integrative  /  segregative  potential  of  the  encounter,  we  must  turn  to  the  fabric  of  

 

2  

bodily   movement   towards   activities   beyond   segregated   areas.   This   means   the   possibility   of   exploring   a   more   complex   spatiality   of   segregation,   along   with   potentials   of   integration   latent   in   spaces  that  allow  the  co-­‐presence  of  socially  different  actors.       A  closer  look  into  urban  practices  of  different  social  groups  requires  a  concept  able  to  identify  how   actors  perform  their  actions  in  order  to  access  and  join  social  situations.  Let  us  define  patterns  of   mobility   not   only   in   terms   of   distances   to   be   overcome   by   actors,   but   as   a   composite   capacity   related   to   (i)   distances   overcome   in   time;   (ii)   the   complexity   of   trajectories,   as   they   indicate   movement  in  different  directions,  indicating  complexities  in  spatial  behaviour;  and  (iii)  the  number   of   activities   that   actors   are   capable   of   participating   (e.g.   residence,   work,   consumption   places)   in   time.  As  we  shall  see  below,  our  source  of  spatial  data  unfortunately  does  not  allow  the  inclusion  of   activities,   as   we   did   in   other   studies   [references   omitted],   since   tweet   locations   may   not   overlap   with  actual  activity  places.       Nevertheless,   the   focus   on   mobility   also   allows   the   investigation   of   segregated   networks,   as   different   mobilities   may   be   associated   with   different   social   groups   and   different   forms   of   urban   experience.  We  will  argue  that  income  is  a  key  factor  in  unequal  societies  and  may  have  effects  on   mobility   as   it   includes   transport   costs   and   access   to   a   number   of   activities.   The   location   of   activities   is  also  important,  and  here  approaches  to  residential  segregation  still  have  much  to  say,  given  that   living   in   accessible   places   means   being   closer   to   more   activities   and   having   conditions   to   perform   in   greater  numbers  of  them.  Encounters  can  be  dispersed  in  the  streets  or  polarized  in  places  of  work,   leisure   and   consumption,   at   bus   stops,   subway   stations,   institutional   buildings   and   so   on.   These   factors  may  have  an  impact  on  our  actions,  like  sparks  to  a  dense  network  of  daily  movements  from   residential  locations.  If  movement  could  leave  visible  traces  in  space,  such  networks  of  movement   could  reveal  the  potential  to  encounters  and  bodily  segregation  unfolding  in  urban  space.     Mapping   these   networks   of   movement   in   the   city   is   precisely   an   objective   of   this   paper.   In   this   sense,   there   are   substantive   reasons   and   methodological   reasons   for   our   option   for   analysing   trajectories   of   bodies   instead   of   location   of   activities   or   individuals.   Substantively,   our   aim   is   to   address   social   segregation   and   integration   materialized   in   potentials   of   encounter   in   the   city   –   a   dynamical   view   of   segregation   as   ‘restriction   on   interaction’   clearly   opposed   to   usual   views   based   on  residential  location,  a  tradition  stemming  especially  from  the  Chicago  School.  Our  aim  is  to  focus   precisely  on  movement  in  order  to  identify  the  role  of  mobility  in  segregation  along  with  potential   spaces   for   presence.   Methodologically,   Twitter   data   does   offer   locations,   but   we   cannot   know   whether   they   correspond   to   actual   places   or   were   posted   on   the   move.   Furthermore,   lines   of   trajectory  do  contain  a  number  of  actual  and  potential  activity  locations.       In  fact,  the  idea  of  mapping  trajectories  is  far  from  new.  The  work  of  Hägerstrand  (1970)  was  the   first   systematic   attempt   to   capture   trajectories   and   restrictions   spatiotemporal   hanging   over   our   actions.  Although  Hägerstrand’s  approach  –  fashionable  in  the  early  1980s  in  human  geography  (e.g.   Pred,  1981)  –  has  lost  interest  since  then,  recent  empirical  approaches  have  taken  the  spirit  of  that   work  (e.g.  Lee  and  Kwan,  2011),  making  use  of  technologies  capable  of  recording  the  movement  of   actors   and   identify   patterns   of   mobility.2     We   propose   to   add   more   layers   to   this   idea,   and   evaluate   how  the  patterns  of  appropriation  of  actors  shape  opportunities  of  encounter.  We  wish  to  explore   mobilities   potentially   related   to   different   social   groups.   Networks   of   movement   are   of   course   evanescent  features  of  our  effective  presence  in  space.  If  we  could  capture  at  least  some  of  them,   we   could   have   a   better   idea   of   how   socially   differentiated   groups   materialize   their   actions.   These   ‘paths  of  action’  shape  possibilities  of  encounter  between  people  and  may  contain  both  spaces  of   co-­‐presence  and  spaces  of  systematic  absence  of  socially  different  actors.  In  other  words,  mapping                                                                                                                           2

A  method  developed  by  Gonzales  et  al  (2008)  uses  an  extensive  data  base  recorded  through  mobile  phone   communication  in  American  cities  to  map  spatial  paths,  showing  that  actors  have  a  remarkable  tendency  to  recursivity.  

 

3  

movement  can  allow  an  understanding  of  the  spatiality  of  presence  and  absence  as  active  features   of  social  segregation.     We  would  like  to  explore  a  particular  definition  of  ‘social  network’  useful  for  understanding  how  the   spatiality   of   the   encounter   shapes   the   experience   of   social   segregation.   We   shall   not   use   the   concept  as  a  mathematically  identifiable  arrangement  of  personal  ties,  as  in  Social  Network  Analysis   (SNA)   in   quantitative   sociology. 3  We   employ   a   definition   of   social   network   as   an   open   set   of   relationships  changing  over  time  –  one  taking  into  account  the  social  positions  of  the  actors  and  the   circumstances   of   time-­‐space   where   groups   are   formed.   We   are   interested   in   networks   of   encounters   through   which   interaction   may   emerge   and   relationships   be   formed.   Graphically,   we   do   not  represent  actors  by  vertices  and  relationships  by  links,  as  in  classic  SNA.  Instead,  we  invert  this   representation,  seeing  actors  as  “lifelines”  (as  in  Hägerstrand)  converging  to  positions  in  space-­‐time.   Encounters  are  the  vertices,  and  actors’  trajectories  in  space-­‐time,  the  potential  links  between  them   (Figure  1).  This  representation  is  favoured  by  a  principle  of  homology  in  which  lifelines  correspond   to   urban   trajectories,   and   circumstances   of   encounter   correspond   to   positions   in   space.   This   inversion   seeks   to   add   the   temporal   and   spatial   dimensions   as   inherent   dimensions   of   social   networking,   and   render   the   spatiality   of   encounter   more   intuitive.   Such  a   definition   of   network   is   intended  to  account  for  the  probability  of  encounter  a  factor  in  the  genesis  of  social  relationships.      

 

 

Figure  1  –  Principles  of  homology  between  social  and  spatial  networks  in  time.  

  2.  Social  differences  and  different  mobilities   What   is   the   chance   to   meet   someone   from   a   different   social   group?   We   shall   first   examine   a   number   of   conditions   of   encounter   reasonable   from   a   material   standpoint,   some   supported   by   previous  empirical  evidence,  others  still  in  need  of  further  research.     § First,  the  creation  of  social  networks  in  cities  depends  on  circumstances  of  encounter.4   § Second,  cities  are  historically  produced  and  spatially  structured  so  as  to  make  social  situations   in  principle  accessible  to  potential  participants.  In  fact,  city-­‐making  processes  are  consistently   related  to  patterns  of  location  and  accessibility,  as  studies  in  spatial  economics  (from  Hansen,   1959   to   Glaeser,   2010)   and   urban   studies   (from   Lynch,   1960   to   Hillier,   2012)   have   systematically  revealed.  In  a  long  tradition  stemming  from  Alfred  Weber  (1909)  and  Hansen   (1959),   approaches   in   spatial   economics   have   been   able   to   identify   actors’   preferences   and   location  patterns  amidst  the  apparent  randomness  of  location.                                                                                                                           3

 See  graph  theoretical  approaches  in  Freeman  (1978),  Wasserman  and  Faust  (1994)  and  Marques  (2012).    The  heart  of  this  idea  may  be  found  already  in  Jacobs  (1961;  1969);  see  also  Giddens  (1984);  Hillier  and  Hanson  (1984);   Sassen  (2001),  Gordon  and  Ikeda  (2011),  Bettencourt  (2013),  and  Batty  (2013).   4

 

4  

§ §

§

§

Third,   activity   places   tend   to   increase   the   potential   for   convergence   of   actors   who   share   similar  interests  and  mobilities.5     Fourth,  courses  of  action  able  to  include  more  activity  places  may  increase  the  potential  for   social   contact.   The   higher   the   mobility,   the   larger   the   potential   to   increase   personal   social   networks  would  be.   Fifth,   income   may   play   a   role   in   this   process.   People   with   smaller   budgets   face   further   restriction   in   mobility.   As   we   shall   see,   limitations   in   mobility   enhance   localism   –   the   dependency   on   proximity   to   do   create   social   networks.   In   these   cases,   the   density   of   encounters   would   tend   to   increase   especially   around   home,   and   actors   would   tend   to   use   places  in  the  neighbourhood  to  create  and  maintain  relationships.     Furthermore,   there   is   a   range   of   activities   not   dependent   on   proximity   to   the   residence,   such   as  those  around  the  work,  which  can  increase  the  length  and  complexity  of  urban  trajectories   of   lower   income   actors.   Public   transport   and   the   progressive   increase   of   private   vehicle   ownership   in   developing   countries   also   allow   a   broader   and   more   complex   mobility   in   the   city.   In   fact,   a   number   of   empirical   studies   have   consistently   shown   that   higher   levels   of   income  allow  less  dependence  on  spatial  proximity.6  

  Our  hypothesis  is  that  similarities  in  patterns  of  mobility  and  appropriation  of  space  would  lead  to   increases   in   the   density   of   encounters   between   socially   similar   actors.   In   turn,   this   spatial   trend   toward   both   higher   levels   of   homophily   and   different   degrees   of   connectivity   in   personal   social   networks,   both   generated   by   differences   in   income,   lifestyles   and   mobility,   may   have   strong   implications  for  social  performance.     A   number   of   studies   support   the   idea   of   a   substantial   change   in   the   dependency   on   proximity   in   the   formation   of   personal   social   networks   according   to   class   and   income   –   in   Brazil,   country   of   our   case   study,  and  other  countries  in  the  world.  A  recent  study  by  Marques  (2012)  in  Sao  Paulo  analyses  the   profiles   of   sociability   of   actors   in   poverty   and   its   role   in   the   formation   of   social   networks,   and   reveals   differences   between   personal   network   structures   of   actors   from   different   social   classes.   Middle   class   networks   tend   to   be   less   dependent   on   the   proximity,   as   if   they   were   personal   deterritorialized  communities  (Wellman  in  Marques,  2012)  –  a  very  different  pattern  than  actors  in   poverty.   A   similar   relationship   of   income   and   network   formation   is   found   in   analyses   of   cases   in   California   USA,   and   Israel   (Fischer   and   Shavit,   1995),   France   (Grosseti,   2007),   Finland   and   Russia   (Lonkila,   2010)   and   Chinese   (Lee   et   al.,   2005),   among   others.   Their   findings   suggest   that   personal   networks  vary  according  to  social  class  more  than  in  relation  to  cultural  and  regional  contexts.  The   inverse  relationship  between  the  dependence  on  proximity  and  income  also  finds  support  in  Briggs   (2005).     These  approaches  to  segregation,  however,  still  tend  to  view  the  spatiality  networks  limited  to  the   location  of  residential  areas.  We  need  to  clarify  how  the  formation  of  social  networks  is  effectively   performed   both   spatially   and   temporally,   involving   circumstances   of   co-­‐presence   and   absence.   Could   mobility   –   and   not   proximity   –   be   the   key   factor   in   networking?   In   turn,   approaches   to   mobility  that  make  use  of  geographic  information  derived  from  digital  data  (say,  the  data  usage  of   mobile  phones)  are  still  restricted  to  capture  spatial  patterns  of  behaviour  (e.g.,  Gonzales,  Hidalgo   and  Barabasi,  2008)  –  with  no  connection  with  the  social  conditions  of  spatial  behaviour,  such  as  the   influence  of  income  and  class.  We  propose  that  a  detailed  analysis  of  urban  trajectories  could  clarify   causal  factors  in  the  formation  of  segregated  networks.                                                                                                                               5

 Bettencourt  (2013)  has  recently  theorized  the  effects  of  linear  paths  over  the  density  of  encounters.    See  Holanda  (2000)  and  Marques  (2012).  Empirical  data  on  transport  expenses  in  Brazil  show  that  higher  income  groups   not  only  spend  more  than  low-­‐income  groups,  they  spend  more  than  proportionally  (POF,  2009).   6

 

5  

3.  Mobilities  and  networking   Now   let's   analyse   the   temporal   formation   of   personal   social   networks   in   an   urban   context.   It   seems   quite   reasonable   to   say   that   increases   in   our   access   to   different   social   situations   could   lead   to   expansions  in  our  personal  networks.  It  also  seems  reasonable  to  say  that  this  increase  depends  on   increased   mobility.   We   know   that   broader   and   diverse   personal   networks   allow   more   opportunities   for   social   and   economic   activity   (Marques,   2012).   We   arrive   now   at   another   key   point   of   our   argument.  If  social  networks  are  to  really  offer  more  opportunities  for  activity,  networks  must  first   be  formed.  However,  social  networking  in  cities  is  a  spatial  capability.  In  other  words,  mobility  and   urban   trajectories   create   encounters,   new   contacts   and   opportunities   for   activity,   which   generate   and  expand  social  networks.     If  this  is  the  case,  mobility  should  be  considered  as  a  key  factor  in  overcoming  localism  and  in  the   diversification  of  sociability.  Income  certainly  keeps  its  central  role,  as  it  supports  mobility,  but  we   have   to   consider   that   a   higher   mobility   is   directly   related   to   a   higher   capacity   to   form   personal   networks  and  perform  in  them.  On  the  other  hand,  low  mobility  tends  to  limit  interactions,  as  we   can   see   in   the   case   of   poor   actors.   Mobility   and   income   are   associated   in   a   circle   that   leads   to   increases  or  decreases  in  the  potential  to  create,  maintain  and  expand  personal  networks.  But  how   does  this  happen?  If  networking  depends  on  situations  of  encounter,  we  need  to  understand  how   mobility   matters   in   the   structure   of   urban   encounters,   as   the   instance   in   which   social   segregation   operates  in  everyday  life.     We   have   seen   that   mobility   may   have   a   direct   influence   on   interaction   potentials.   We   also   know   that   low-­‐income   actors,   despite   having   more   limited   mobility,   are   not   static   within   socially   homogeneous   areas.   Differences   in   levels   of   localism   and   sociability   in   their   personal   networks   suggest  variations  in  their  spatial  reach  and,  by  extension,  in  their  condition  of  presence  in  places  in   the   city.   But   how   (and   where)   does   the   potential   of   encounter   between   the   socially   different   materialize?  In  order   to   answer   this   question,   we   need   to   examine   the  effects   of   different   mobilities   in   the   formation   of   personal   networks   within   and   between   social   groups   in   order   to   understand   the   opportunities   of   encounter.   We   suggest   that   if   social   networks   are   formed   so   that   actors   can   perform  connections,  then  class  networks  (i.e.,  social  networks  operating  within  large-­‐scale  groups   with   common   economic   features   that   strongly   influence   their   actions   and   lifestyles)7  and   other   forms  of  social  grouping  are  shaped  by  probabilities  of  encounter  in  personal  networks.     As   we   hope   to   show   in   our   empirical   study,   space   matters   here.   Even   though   we   do   not   usually   think   about   it,   our   daily   trajectories   constitute   the   backbone   of   our   interactions   and   shape   the   elusive  structure  of  social  life  in  the  city.  The  distance  between  locations  in  a  city,  associated  with   different   mobilities,   may   impose   limitations   on   probabilities   of   encounter.   Differences   in   mobility,   income   and   lifestyle   could   bring   inequalities   in   the   capacity   to   participate   in   social   situations.   Actually,  a  counterfactual  perspective  is  able  to  reveal  the  extent  of  this  problem  in  the  experience   of  segregation.  Inequalities  and  incompatibilities  in  patterns  of  appropriation  are  forms  of  what  we   may   call   the   disjunction   of   encounters   –   a   way   of   disrupting   the   possibility   of   encounters   that   otherwise   could   happen.   The   disjunction   of   encounters   may   be   especially   active   among   socially   different   people   –   as   consequences   of   the   social   and   material   conditions   that   prevent   them   to   become   co-­‐present   and   acknowledge   each   other.   Simply   put,   there   would   be   a   greater   chance   of   social  networks  incorporate  actors  who  share  similar  mobilities.       These   ideas   begin   to   portray   an   image   of   the   complex   material   fabric   of   sociality   in   a   city.   However,   how   can   we   understand   in   detail   such   volatile   spatiality   of   the   encounter?   How   can   we   see   the   fabric  of  personal  trajectories  that  intertwine,  only  to  be  separated  later  in  space-­‐time?                                                                                                                             7

 We  derive  this  notion  from  Giddens’  concept  of  social  class  (Giddens,  1993).  

 

6  

4.  The  methodological  use  of  Twitter  locational  data   It  seems  almost  impossible  to  see  the  spatiality  of  the  tremendously  complex  flows  of  convergences   and  divergences  of  our  actions  and  paths  in  the  city.  Our  own  previous  studies  remained  at  a  level   of   small   scale,  using   social   and   spatial   data   derived   from   interviews   (Netto   et   al   2010;   forthcoming).   They  offered  delicate  images  of  segregation  in  social  class  networks  operating  in  the  city.  So  a  key   question  posed  to  us  is  how  can  we  expand  this  dynamic  approach  in  order  to  grasp  the  panorama   of  segregation  in  an  entire  city?  The  answer  is  that  we  can  track  and  record  the  movement  of  a  large   number  of  (socially  different)  actors  in  the  city  exploring  the  potential  of  Twitter  locational  data  as  a   way  of  dealing  with  the  urban  environment.   In  fact,  a  number  of  works  has  recently  emerged  using   social  media  locational  data  in  order  to  extract  information  of  human  patterns  of  movement.  On  a   substantive   level,   Liben-­‐Nowell   et   al   (2005)   related   geography   and   online   social   networks   (a   community  of  bloggers)  to  find  that  one-­‐third  of  relationships  are  not  dependent  on  geography.  Lee   et  al  (2011)  examine  how  the  use  of  mobile  communication  channels  of  information  affects  just-­‐in-­‐ time   choices   in   consumption   travelling   behaviour.   On   a   methodological   level,   Li   et   al   (2011),   Ribeiro   et   el   (2012)   and   Zielinshki   and   Middleton   (2013)   developed   forms   to   infer   indirect   locations   from   Twitter   geotag   and   timestamp,   whereas   Veloso   and   Ferraz   (2011)   and   Takhteyev   et   al   (2012)   inferred  spatially  reliable  information  through  regression  models  correlating  tweet  frequencies  with   real   world   events.   Sakaki   et   al   (2010)   filtered   georeferenced   tweets,   whereas   Boettcher   and   Lee   (2012)  applied  density-­‐based  spatial  clustering.       In  the  spirit  of  these  works,  we  conducted  an  empirical  study  in  the  city  of  Rio  de  Janeiro.  Twitter   offers  particularly  attractive  possibilities,  as  it  makes  its  metadata  bank  public  through  a  principle  of   anonymity.   The   set   of   variables   provided   by   Twitter   API   includes   user   IDs   along   with   a   spatiotemporal   signal,   the   timestamp   and   geographic   coordinates   for   each   tweet.   We   collected   metadata  from  tweets  posted  in  Rio  through  the  official  Twitter  streaming  API  between  November   12th  (0:07:13  am)  and  14th  (2:36:45)  in  2014.  We   would   like   to   show   initial   results   from   an   ongoing   empirical  experiment  in  Rio.  We  recorded  posts  during  a  period  of  56  hours,  generating  a  database   of   20,192   users   and   333,407   tweets   with   spatiotemporal   positions.   We   tested   this   time   frame   against   a   241   hours   database,   with   70,403   users   and   2,252,348   tweets   collected  along   18   days,   and   found   a   Pearson   linear   correlation   of   0.976   (p-­‐value   2.2e-­‐16)   between   the   datasets   regarding   the   spatial  distribution  of  tweets  according  to  districts.  We  also  could  find  a  clear  temporal  pattern  in   tweeting  behaviour.  There  is  a  steady  increase  during  the  day,  a  little  peak  around  midday,  raising   again   to   drop   immediately   around   midnight,   to   raise   again   in   the   early   morning,   when   the   cycle   begins   again   –   something   like   “the   social   pulse   of   the   city”   seen   through   the   prism   of   digital   information  (figure  2).    

   Figure  2  –  Total  number  and  frequency  of  tweets  in  Rio  de  Janeiro  November  12th  (12:07:13)  –  14th  (2:36:45).  

 

 

 

7  

Metadata   allowed   us   to   generate   a   classification   of   users   according   to   posting   behaviour.   Filters   were  used  to  ignore  users  that  do  not  provide  sufficient  data  to  infer  their  residential  location,  say   excluding   40%   of   users   with   only   two   or   less   tweets   during   the   study   period.   Automatic   tweeters   posting   for   commercial   purposes   (bots),   identifiable   by   the   large   number   of   tweets   posted   from   the   same  position  in  space,  were  also  excluded.  Furthermore,  the  analysis  of  average  Euclidean  distance   between   tweet   spatial   positions   revealed   users   whose   movements   were   also   not   relevant   to   our   study.   A   statistical   analysis   via   quantile   classification   of   the   results   showed   that   the   threshold   between  high  frequencies  of  short  distances  and  the  exponential  distribution  of  long  distance  was   106  meters  per  tweet.  Values  lower  than  this  were  filtered,  reducing  the  data  set  to  78,825  tweets   posted   by   4,325   users.   After   these   filtering   procedures   in   the   initial   metadata   set,   we   selected   a   number  of  2,543  users  whose  movement  was  relevant  to  this  study.     We  also  identified  spatial  and  temporal  patterns  of  posts  in  order  to  deduct  the  place  of  residence   of   users.   Then   the   tweets   of   valid   users   were   placed   in   the   urban   network   via   a   model   able   to   connect  tweet  positions  through  the  logic  of  shortest  paths,  using  Open  Street  Maps  as  the  GIS  layer   for   the   street   analysis.   The   result   was   a   network   of   thousands   of   paths   within   the   network   of   streets.   It   should   be   clear   that   the   link   between   tweet   positions   via   shortest   paths   should   not   be   taken  as  the  actual  route  covered  by  users  between  their  tweets.  Nevertheless,  there  are  enough   theoretical   work   and   empirical   evidence   (especially   in   the   fields   of   space   syntax,   urban   networks   and   way-­‐finding   studies)   to   offer   reliability   to   this   procedure   as   a   proxy   for   actual   trajectories.   Evidence   shows   that   humans   tend   to   choose   the   shortest   path   between   two   positions   in   space,   in   a   metric  sense  as  well  as  topological  and  angular  minimization  along  the  segments  that  compose  an   urban  path  (see  Hillier,  2012).     The   next   step   was   to   differentiate   users   using   the   criterion   of   income.   This   step   requires   the   crossing  of  residential  locations  and  paths  inferred  from  tweets  with  economic  data.  We  used  the   2010  Census  (Brazilian  Institute  of  Geography  and  Statistics,  IBGE),  which  provides  income  data  for   areas  in  the  city.  The  census  block  unit  used  to  infer  wage  level  of  twitter  users  was  the  smallest  one   made  available  by  the  Brazilian  Institute  of  Geography  and  Statistics  (IBGE).  Within  the  city  of  Rio  de   Janeiro,   the   census   block   unit   has   an   average   number   of   210   households   and   616   Inhabitants   and   a   median   area   of   33,017   squared   meters   (a   considerable   variance   is   found   for   area).   Although   we   could   not   find   empirical   studies   on   income   variation   within   block   units   in   Brazil,   we   assumed   that   proximity   and   its   general   relation   to   land   values   tend   to   correlate   with   similarities   in   income   (as   asserted  in  a  line  of  works  in  urban  economics,  from  Alonso  [1964]  on),  especially  once  the  size  of   census   blocks   is   considered.   Therefore   we   associated   the   initial   positions   of   tweets   with   census   data,   allowing   us   to   assign   average   income   levels   for   users.   We   analysed   income   through   the   standard   deviation   of   the   average   income   per   capita   in   Rio   de   Janeiro,   which   suggested   ranges   between  R$  750;  R$  1,600;  R$  2,500;  R$  3,400,  R$  6,200,  and  above.  These  values  were  identified  as   low,   lower-­‐middle,   middle,   middle-­‐high   and   high-­‐income   users   (differentiated   by   colours   in   figure   3).  Interestingly,  figure  3  shows  two  very  different  readings  of  segregation:  residential  patterns  of   income   levels   as   a   sign   of   residential   segregation   (left)   and   the   pattern   of   distribution   of   tweets   according  to  the  movement  of  users  in  the  city  (right).  Once  we  compare  them,  the  more  complex   pattern   of   tweet   locations   within   the   trajectories   of   users   reveal   a   picture   of   segregation   /   integration   closer   to   users’   activities   –   a   more   dynamic   view   of   segregation   related   to   the   positioning  of  bodies  in  urban  space.  Perhaps  ironically,  the  Twitter  users  map  seems  closer  to  a  real   picture   of   segregation   in   the   city.   This   second   view   resembles   more   closely   Schnell   and   Yoav’s   (2001;  2005)  approach  –  but  we  wish  to  expand  on  this  and  include  spaces  of  potential  encounter   also  within  the  trajectories  of  actors  in  urban  space.    

 

8  

 

 

Figure  3  –  Residential  segregation  and  a  picture  of  segregation  derived  from  user’s  tweet  locations:  income  levels  in   census  blocks  units  (blue  to  red,  left),  and  the  more  complex  pattern  of  tweet  locations  within  the  trajectories  of  users.  

  In  this  sense,  our  methodological  procedure  can  be  summarized  as  follows:     1.  Collect  metadata   Identification  of  the  position  in  time  and  space  of  tweets  posted  on  the  city   Period:  12  Nov  (0:07:13)  -­‐  14  Nov  2014  (02:36:45)     Active  Twitter  users  in  the  period:  20,192  users;  333,407  tweets     2.  Filter  users   Minimum  number  of  tweets  per  user:  3   Eliminate  automatic  tweeters   Selected  users:  2,543  users     3.  Geographical  analysis  of  tweets  and  residential  location  of  users   Identification  of  the  location  of  the  first  tweet  in  the  morning  (first  in  the  sequence  of  tweets)   Confirmation  by  repeating  location  of  the  first  tweet  day.  We  used  recurrent  morning  tweet  locations,  since   the  night  position  brings  limitations  to  the  sample  regarding  tweeting  behaviour.     4.  Generation  of  shortest  paths  between  tweet  positions   An   analytical   procedure   performed   through   GIS   software   allowed   us   to   find   the   shortest   paths   within   the   urban  fabric,  as  a  proxy  for  the  actual  paths  of  users.     5.  Crossing  census  data  (income)  with  the  inferred  location  of  users   Procedure  performed  through  GIS  software.  

  A  final  methodological  question  involves  the  representation  Twitter  in  relation  to  the  population  of   Rio  de  Janeiro  –  for  example,  how  do  we  have  all  social  classes  and  income  groups  that  make  up  the   city   proportions   in   the   use   of   Twitter?   First   we   compared   histograms   of   the   average   per   capita   income   in   Rio’s   population   and   Twitter   users.   Although   histograms   display   a   similar   trend,   there   are   differences   (figure   4,   left).   We   investigated   this   question   and   found   a   significant   correlation   between   population   (at   different   levels   of   income)   and   income   profile   of   Twitter   users   (figure   4,   right).  Linear  regression  (dark  line)  brings  an  adjusted  R  squared  of  0.67,  showing  that  the  income   distribution  of  users  has  a  fairly  reasonable  degree  of  similarity  with  the  income  distribution  of  the   population  in  general.      

 

9  

Figure  4  –  Histograms  of  average  per  capita  income  in  Rio’s  population  and  Twitter  users  (left);  and  regression  between   users  (Y)  and  population  (X)  in  urban  districts;  colours  display  income  level  (right).  

 

  Therefore,  the  use  of  Twitter  does  not  seem  to  be  associated  with  specific  income  levels   –  it  seems   like  a  democratic  medium  in  Rio,  confirming  the  high  penetration  rate  of  Twitter  in  Brazil  (Graham   and  Stephens,  2012).  This  empirical  observation  leads  us  to  rule  out  the  usual  hypothesis  of  a  digital   divide  in  the  city,  and  also  shows  a  relative  match  between  Twitter  users  and  the  general  population   (contrary  to  Steiger  et  al’s  [2015]  observation).       5.  Overlapping  networks:  a  digital  study   What   does   our   experiment   reveal   about   the   dynamic   segregation   as   revealed   by   Twitter   users'   trajectories   in   the   city?   We   counted   the   number   of   actors’   trajectories   classified   by   income   level   for   each   segment   where   there   were   trajectories.   We   also   quantified   the   length   of   streets   covered   by   users   in   their   trajectories   in   order   to   verify   the   potential   of   co-­‐presence   of   different   income   groups,   seeking   more   precision   in   the   description   of   spatial   convergences   and   divergences   between   socially   differentiated  users.  After  classifying  actors  according  to  income  level  to  generate  proxies  to  social   classes   in   Rio,   we   linked   their   tweets   locations   through   shortest   paths,   calculated   through   GIS   software.   Trajectories   are   measured   with   the   same   metric   length   of   street   segments.   This   information   is   registered   for   each   actor   and   accumulated   for   her/his   income   groups.   Then   we   calculated   the   overlapping   of   income   groups,   using   the   number   of   actors   for   each   group   passing   through  each  street  segment.  The  criteria  for  determining  visually  the  dominant  presence  of  a  single   group   over   a   street   segment   is   ‘the   social   class   with   the   higher   number   of   paths   overlapped   in   a   street   segment   provides   the   colour   for   that   segment’   –   i.e.   once   we   consider   the   proportion   of   social   classes   in   actual   numbers,   when   a   group   has   one   person   above   that   percentage,   it   has   dominant   presence.   Intensities   matter:   streets   with   higher   number   of   actors   of   different   groups   have  more  weight  than  streets  with  similar  distributions  of  groups  but  lower  number  of  actors.       Maps   in   figure   5   show   the   dominant   income   group   in   the   streets   that   make   up   their   trajectories.   Results  of  the  analysis  seem  to  grasp  traces  of  dynamic  segregation  and  the  spatiality  of  potential   encounter.      

 

10  

 

Figure  5  –  A  picture  of  segregated  networks:  blue  (low  income),  green  (lower-­‐middle),  yellow  (middle),  orange  (middle-­‐ upper)  and  red  (high  income)  groups.  The  larger  map  shows  the  dominant  class  network.    

 

  We   may   first   notice   strong   evidences   of   residential   segregation   related   to   income.   The   poorer   spread   more   broadly   over   the   cityscape.   Low-­‐income   and   lower-­‐middle   income   groups   show   considerable   overlap,   but   low-­‐income   users   are   dominant   in   areas   farther   from   the   sea   and   the   CBD,  located  in  the  East.  Landscape  amenities  related  to  proximity  to  the  sea  are  a  clear  factor  in   defining   land   values   and   higher   income   location   (and   both   territorial   and   dynamic   segregation)   in   Rio.   Geographical   topography   adds   complexity   to   residential   location   patterns   in   Rio   –   including   the   favelas  scattered  in  the  landscape,  allowing  the  poorer  to  live  in  hills  near  richer  areas,  closer  to  the   sea  and  the  CBD.  Such  unusual  cityscape  enmeshes  the  lines  of  movement,  as  we  can  see  in  areas  in   South  Rio,  increasing  the  potential  of  encountering  the  socially  different.  Complexities  considered,   an   overall   pattern   emerges,   as   higher   income   users   are   more   likely   to   be   found   in   South   and   Southeast   Rio,   near   to   the   sea,   and   a   gradual   shift   in   users   income   levels   becomes   visible   in   trajectories  as  they  spread  farther,  towards  North.      

 

11  

We   may   render   the   analysis   of   overlapping   networks   more   precise.   Table   1   shows   that   the   richer   have  a  heavier  share  of  the  total  length  of  trajectories  performed  by  users.  R5  have  8.9%  of  users   and  11.1%  of  total  trajectories,  20%  above  the  average  length  (average-­‐related  factor  –  ARF).     Users   (n)  

(%)  

Total  Length   (km)  

(%)  

Average  Length   (km/user)  

(ARF)  

R1  

600  

23.6%  

13,696  

26.3%  

22.8  

1.1  

R2  

1,188  

46.7%  

22,606  

43.4%  

19.0  

0.9  

R3  

235  

9.2%  

3,929  

7.5%  

16.7  

0.8  

R4  

293  

11.5%  

6,091  

11.7%  

20.8  

1.0  

R5   TOTAL  

227  

8.9%  

5,784  

11.1%  

25.5  

1.2  

2,543  

100%  

52,106  

100%  

20.5  

1.0  

Table  1  –  Number  of  users  by  income  group  and  a  comparative  analysis  of  their  spatial  behaviour.  

  We   can   also   assess   how   isolated   is   the   presence   of   a   single   class   in   Rio’s   streets,   and   how   the   proportion  of  trajectories  income  groups  share  with  one  another  (table  2).  Lower  income  groups  (R1   and   R2)   are   much   more   segregated   in   their   movements   across   the   city,   with   19.2%   and   29.9%   of   their  trajectories  occurring  in  non-­‐shared  streets,  respectively.  They  also  show  the  highest  degree  of   sharing   spaces   (10.4%).   Richer   groups   (R4   and   R5)   share   more   of   their   trajectories   with   other   groups.  The  poorer  and  the  richer  (R1  and  R5)  share  only  0.8%  of  users’  trajectories.  R2  displays  a   more  socially  integrative  spatial  behaviour  –  but  also  has  a  larger  share  of  users  (46.7%).  R1  and  R2   trajectories   display   less   social   diversity   –   they   are   easily   the   dominant   group   (i.e.   their   presence   in   a   particular   space   is   above   the   average   of   its   proportion   in   the   total   number   of   actors,   all   groups   considered).  The  fact  that  R1  consists  of  23.6%  of  total  users  and  are  dominant  in  30.5%  of  streets   where  they  pass  through  suggests  they  are  more  segregated  than  other  groups  in  their  movements.       R1   R2   R3   R4   R5  

R1   19.2%  

R2   10.4%   29.9%  

R3   0.5%   1.5%   4.3%  

R4   0.5%   1.7%   0.2%   4.3%  

R5   0.8%   1.2%   0.3%   0.7%   4.6%  

                    Table  2  –  Matrix  of  the  proportion  of  streets  (regarding  the  total  number  of  streets)  appropriated  exclusively  by  a  single   income  group  (italic),  and  the  proportion  of  streets  shared  by  different  income  groups  in  their  daily  paths.  

  Where   are   exactly   the   spaces   that   different   social   groups   share   in   their   routines?   The   superimposition   of   paths   may   be   highlighted   graphically.   Lines   in   red   show   the   most   likely   places   to   find  combinations  of  income  groups  (figure  6).    

 

12  

Figure  6  –  Spatial  relations  between  income  groups:  overlapping  pairs   R1  (low  income),  R2  (lower-­‐middle),  R3  (middle),  R4  (middle-­‐upper)  and  R5  (high  income  level).  

 

  Figure   6   shows   quite   distinct   patterns   of   co-­‐presence   between   users   of   different   income   levels,   visible   in   the   extent   of   overlapping   of   networks   of   movement.   Pairing   the   poorer   and   the   rich   (R1xR5  and  R2xR5),  maps  show  that  the  world-­‐famous  South  Rio  (Copacabana,  Ipanema,  Leblon)  is   not  merely  a  segregated  area  marked  by  the  dominating  presence  of  the  rich.  It  is  a  major  area  for   mutual  visibility.  Lower-­‐middle  and  upper  income  users  (R2xR5)  also  converge  in  São  Conrado,  Barra   and   Recreio   in   Southeast   Rio,   in   the   CBD,   and   in   Gloria,   Catete   and   Flamengo   to   the   Southeast.   Lower-­‐middle-­‐income  users  also  overlap  with  middle-­‐income  users  (R2xR3)  across  areas  like  Tijuca   (North  Rio,  near  the  CBD  on  the  East)  and  Jacarapaguá  (between  North  and  Southwest  Rio,  near  the   ocean).  Finally,  poorer  income  users  (R1xR2)  share  much  more  spaces  when  appropriating  the  city,   mostly  in  North  and  West  Rio.       Now   considering   the   relationship   between   dynamic   segregation   and   residential   segregation,   how   much  do  other  social  groups  actually  pass  through  territorially  segregated  areas?  We  assessed  this   relation  crossing  the  average  income  in  residential  areas  (census  sectors)  with  the  average  income   of   the   dominant   group   passing   through   those   areas   (table   3).   However   present   in   richer   sectors,   poorer  groups  (R1  and  R2)  strongly  concentrate  in  poorer  sectors:  72.1%  of  R1  trajectories  happen   in   low-­‐middle   income   sectors   (S2).   Middle-­‐income   users   are   well   distributed   in   sectors   S2-­‐S5,  

 

13  

 

showing   potential   for   encountering   socially   different   actors.   Richer   users   (R4   and   R5)   still   appropriate   rich   sectors   (S5):   58.58%   of   R5   trajectories   happen   in   S5   areas.   These   areas   are   also   very  attractive  to  R4  users,  consisting  of  46.7%  of  the  streets  they  move  through.  In  turn,  middle-­‐ income  and  middle-­‐upper  income  sectors  (S3  and  S4)  are  open  to  more  diverse  income  groups.      

Residential  Sectors  

 

Dominant  presence  of  class  networks   R1  

R2  

R3  

R4  

R5  

S1  

9.1%  

3.9%  

3.6%  

1.7%  

5.2%  

S2  

72.1%  

52.4%  

28.0%  

18.2%  

17.2%  

S3  

13.5%  

30.1%  

29.3%  

15.9%  

7.4%  

S4  

2.0%  

8.4%  

20.5%  

17.5%  

11.4%  

S5    

3.3%   100%  

5.2%   100%  

18.7%   100%  

46.7%   100%  

58.8%   100%  

  Table  3  –  Proportion  of  presence  of  income  groups  in  residential  sectors,  considering  local  average  income.    

  Finally,   where   do   class   networks   converge   more   intensely?   What   are   the   streets  with   more   social   diversity,  where  ‘the  other’  is  more  likely  to  be  seen?  We  measured  social  diversity  in  the  streetsi,   i.e.  the   level   of   superimposition  of   networks,   through   Shannon   information   entropy,   calculated   as   the  participation  of  each  class  over  the  total  number  of  actors  (spaces  with  the  presence  in  equal   shares   of   all   income   groups   contain   the   highest   entropy),   and   associated   different   entropy   levels   with  colours  from  blue  to  red  (figure  7).     𝑃! 𝑙𝑜𝑔! 𝑃!  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =   −  

!

where  P  is  the  participation  over  the  total  and  i  is  the  income  level  

 

  Figure  7  –  Entropy  map  showing  in  red  the  spaces  with  the  highest  convergence  of  different  income  groups.  

 

 

 

14  

There   is   a   small   network   of   socially   convergent   streets,   an   interesting   superimposition   of   trajectories   of   users   of   all   income   groups   around   South   Rio   and   the   CBD   (on   the   East).   Spaces   of   social   convergence   are   to   be   found   in   denser,   busier   areas   like   the   CBD   and   South   Rio,   or   major   centralities  like  Tijuca  and  Jacarepaguá,  a  little  to  the  North.  These  are  the  most  likely  spaces  to  find   socially  different  actors.     6.  Conclusion:  on  social  difference,  spatial  behaviour  and  segregated  networks   Considering   our   hypothesis   that   similarities   in   patterns   of   mobility   would   lead   to   increases   in   the   density   of   encounters   between   similar   social   actors,   a   number   of   inferences   can   be   drawn.   Lower   income  groups  (R1  and  R2)  have  more  exclusivity  (or  are  more  isolated)  in  their  appropriation  of  the   street   network.   Their   overlapping   level   is   the   highest   among   groups.   On   the   other   hand,   higher   income  groups  show  relatively  little  overlapping.  As  for  the  implied  idea  that  different  patterns  of   mobility  lead  to  little  opportunities  for  co-­‐presence,  this  seems  to  be  the  case  between  poorer  (R1)   and  richer  users  (R5).  R5  and  R1  are  also  the  income  groups  which  display  the  longer  trajectories,   suggesting   on   one   hand   the   weight   of   income,   and   on   the   other   hand   the   weight   of   segregated   residential   locations.   In   its   turn,   lower-­‐middle   and   middle   income   users   (R2   and   R3)   have   a   potentially   key   social   role,   overlapping   more   than   any   other   group   above   or   below   their   income   grade.       Our   proxy   to   the   actual   scenario   of   dynamic   segregation/integration   in   Rio   operated   through   a   number   of   analytical   reductions:   (i)   we   inferred   residential   location   as   the   origin   of   trajectories   assessing   spatial   and   temporal   repetition   in   users’   first   tweet   in   the   morning;   (ii)   we   attributed   income   levels   to   Twitter   users   as   the   average   income   in   the   census   sectors   inferred   as   residential   location;   (iii)   we   reconstructed   users’   trajectories   linking   tweet   georeferences   and   timestamps   through  a  logic  of  shortest  path  as  a  predictor  for  actual  movement  and  trajectory  in  urban  space;   (iv)   our   mapping   of   segregated   networks   involves   a   reduction   of   the   actual   networks,   bringing   to   visualisation   only   the   dominant   income   group   in   every   street   (dominance   assumed   as   the   proportion   of   each   group   in   the   total   number   of   users,   plus   at   least  one   user);   (v)   our   measurement   of  the  relationship  between  dynamic  segregation  and  territorial  segregation  is  based  on  the  average   income   in   residential   location   and   the   dominant   income   group   passing   through   the   sector.   In   its   turn,   (vi)   our   analysis   of   social   diversity   on   the   streets   through   Shannon   entropy   used   the   actual   number  of  users.     As  a  proxy  to  the  scenario  of  segregated  networks,  this  experiment  can  only  show  trends  of  dynamic   segregation   and   potential   encounters   within   the   trajectories   of   a   limited   number   of   users.   Unlike   previous   approaches   –   e.g.   Schnell   and   Yoav’s   (2001;   2005)   index   of   location   of   individuals   and   activities,  based  on  measures  of  aggregation  and  isolation  –  our  approach  [references  omitted  for   purposes   of   blind   review]   is   geared   to   trace   movement,   relate   it   conceptually   and   empirically   to   patterns   of   appropriation   according   to   social   differentiation   (in   this   case,   based   on   income)   and   assess   their   role   in   segregation   in   actual   trajectories   of   actors   in   urban   space   –   measured   as   overlapping  levels.       However,   our   findings   do   not   imply   that   residential   or   territorial   forms   of   segregation   cease   to   matter.   Rather   the   opposite,   residential   locations   have   a   key   role   in   structuring   networks   of   movement  and  circumstances  of  encounter  –  along  with  geography  itself,  shaping  complex  patterns   of   location   in   the   case   of   Rio   de   Janeiro.   In   this   sense,   our   approach   is   intended   to   shed   light   on   the   complexity  of  segregation  captured  as  a  highly  dynamic  micro-­‐segregation  that  occurs  at  the  level  of   the   trajectories   of   our   bodies   and   spaces.   It   suggests   that   the   probability   of   encounter   is   impregnated   with   spatiality,   interacting   actively   with   the   structure   of   the   street   network   to   generate  potentials  of  convergence  and  co-­‐presence  of  social  groups.  The  odds  of  finding  ‘the  other’   seem  distributed  according  to  the  spatial  and  temporal  frames  of  action  of  different  groups  within  a  

 

15  

city.   These   frames   have   a   stronger   potential   for   allowing   cohesion   in   social   networks   sharing   mobility  patterns  and  similarities  in  income  as  resources  to  access  places  and  social  situations.  The   paths  of  Twitter  users,  mapped  in  space-­‐time,  suggest  greater  compatibility  between  certain  users  –   and,   by   extension,   greater   potential  for   interaction.   On   the   other   hand,   incompatibilities   between   patterns   of   mobility   materialise   as   differences   in   urban   trajectories   in   daily   life,   leading   to   the   reduction  of  spatial  opportunities  of  encounter.  This  approach  consists  of  a  form  of  bringing  to  the   forefront   the   elusive   spatiality   of   segregation   contained   in   bodily   movement,   closer   to   Freeman’s   (1978)  seminal  definition  of  social  segregation  as  ‘restrictions  on  interaction’.     Acknowledgements:   A   previous   version   of   this   paper   was   presented   at   the   International   Conference   on   Location-­‐Based   Social   Media   Data   [ICLSM   2015].   We   would   like   to   thank   the   referees   for   their   invaluable   input.    

  References   Alonso,  W.  (1964)  Location  and  Land  Use:  Toward  a  General  Theory  of  Land  Rent.  Cambridge,  MA:  Harvard  University   Press.   Batty,  M.  (2013)  The  New  Science  of  Cities.  Cambridge,  MA:  The  MIT  Press.   Bettencourt,  L.M.A.  (2013)  The  origins  of  scaling  in  cities.  Science,  340,  1348-­‐1441.   Boettcher,  A.  &  Lee,  D.  (2012)  EventRadar:  A  real-­‐time  local  event  detection  scheme  using  Twitter  stream.  In  Proceedings   of  the  IEEE  International  Conference  on  Green  Computing  and  Communications,  Besançon,  France,  358–67.   Briggs,  X.  (2005)  “Social  capital  and  segregation  in  the  United  States”  In  L.  Varady  (ed.),  Desegregating  the  city.  Albany,  NY:   Suny  Press.   Burgess,  E.W.  (1928)  Residential  Segregation  in  American  Cities.  Annals  of  the  American  Academy  of  Political  and  Social   Science,  140,  105–115.   Dixon,  J.,  Tredoux,  C.,  &  Clack,  B.  (2005)  On  the  micro-­‐ecology  of  racial  division:  A  neglected  dimension  of  segregation.   South  African  Journal  of  Psychology,  35(3),  395–411.   Duncan,  D.  and  B.  Duncan  (1955)  A  methodological  analysis  of  segregation  indexes.  American  Sociological  Review  20,  210– 217.   Fischer,  C.  &  Y.  Shavit  (1995)  National  differences  in  network  density:  Israel  and  the  United  States.  Social  Networks,  17.2,   129–45.   Freeman,  L.  (1978)  Segregation  in  social  networks.  Sociological  Methods  &  Research,  6.4,  411–429.   Giddens,  A.  (1984)  The  Constitution  of  Society.  Cambridge:  Polity  Press.   Giddens,  A.  (1993)  Sociology.  Cambridge:  Polity  Press,.   Glaeser,  E.  (2010)  The  triumph  of  the  city:  how  our  greatest  invention  makes  us  richer,  smarter,  greener,  healthier  and   happier.  New  York:  Penguim.   Gonzales,  M.,  Hidalgo,  C.  &  Barabási,  A-­‐L.  (2008)  Understanding  individual  human  mobility  patterns.  Nature,  453,  479-­‐482.   Gordon,  P.;  Ikeda,  S.  (2011)  Does  density  matter?  In  D.  Andersson;  A.  Andersson;  Mellander,  C.  (eds.)  Handbook  of   Creative  Cities.  [S.l.]  Cheltenham:  Edward  Elgar  Pub.   Graham,  M.  &  Stephens,  M.  (2012)  A  Geography  of  Twitter.  WWW  document,  http://www.oii.ox.ac.uk/vis/?id=4fe09570.   Grosseti,  M.  (2007)  Are  French  networks  different?  Social  Networks,  29.3,  391–404.   Guest,  A.  M.  &  J.  A.  Weed.  (1976)  Ethnic  Residential  Segregation:  Patterns  of  Change.  American  Journal  of  Sociology,  81,   1088–1111.   Hägerstrand,  T.  (1970)  What  about  people  in  regional  science?  Papers  of  the  Regional  Science  Association,  24.1,  6–21.   Hansen,  W.G.  (1959)  “How  acessibility  shapes  land  use.”  Journal  of  the  American  Institute  of  Planners,  25,  Issue  2.   Hillier,  B.  (2012)  The  genetic  code  for  cities:  Is  it  simpler  than  we  think?  In  J.  Portugali,  H.  Meyer,  E.  Stolk  &  E.  Tan  (Eds.)   Complexity  theories  of  cities  have  come  of  age.  London:  Springer,  67-­‐89.   Holanda,  F.  (2000)  Class  footprints  in  the  landscape.  Urban  Design  International,  5,  189-­‐198.   Jacobs,  J.  (1961)  Death  and  Life  of  Great  American  Cities.  New  York:  Random  House.   Jacobs,  J.  (1969)  The  Economy  of  Cities.  New  York:  Random  House.   Lee,  R.,  D.  Ruan  and  G.  Lai  (2005)  Social  structure  and  support  networks  in  Beijing  and  Hong  Kong.  Social  Networks,  27.3,   249–74.   Lee,  J.  &  Kwan,  M-­‐P.  (2011)  Visualisation  of  socio-­‐spatial  isolation  based  on  human  activity  patterns  and  social  networks  in   space-­‐time.  Tijdschrift  voor  Economische  en  Sociale  Geografie,  102.4,  468–485.   Lee,  K.  H.,  Lippman,  A.,  &  Pentland,  A.  (2011)  The  Impacts  of  Just-­‐In-­‐Time  Social  Networks  on  People’s  Choices  in  the  Real   World.  The  Third  International  Conference  on  Social  Computing.   Li,  W.,  Serdyukov,  P.,  Vries,  A.  P.,  Eickhoff,  C.,  &  Larson,  M.  (2011)  The  where  in  the  tweet.  In  Proceedings  of  the  Twentieth   ACM  International  Conference  on  Information  and  Knowledge  Management,  Glasgow,  Scotland.   Liben-­‐Nowell,  D.,  Novak,  J.,  Kumar,  R.,  Raghavan,  V.  &  Tomkins,  A.  (2005)  Geographic  routing  in  social  networks.  PNAS,   102.33,  11623–11628.     Lynch,  K.  (1960)  The  image  of  the  city.  Cambridge:  The  M.I.T.  Press.  

 

16  

Lonkila,  M.  (2010)  The  importance  of  work-­‐related  social  ties  in  post-­‐soviet  Russia:  the  role  of  co-­‐workers  in  the  personal   networks  in  St.  Petersburg  and  Helsinki.  Connections,  30.1,  46–56.   Maloutas,  T.  (2004)  Segregation  and  residential  mobility  spatially  entrapped  social  mobility  and  its  impact  on  segregation   in  Athens.  European  Urban  and  Regional  Studies,  11.3,  195–211.   Marques,  E.  C.  (2012)  Social  Networks,  Segregation  and  Poverty  in  São  Paulo.  International  Journal  of  Urban  and  Regional   Research,  36.6,  958-­‐979.   Massey,  D.S.  &  Denton,  N.A.  (1988)  The  Dimensions  of  Residential  Segregation.  Social  Forces,  67.  2,  281–315.   Pancs,  R.  &  Vriend,  N.  (2007)  Schelling's  spatial  proximity  model  of  segregation  revisited.  Journal  of  Public  Economics,  91,   1–24.   Park,  R.E.  (1916)  The  City:  Suggestions  for  the  Investigation  of  Human  Behaviour  in  the  Urban  Environment.  American   Journal  of  Sociology,  577–612;  reprinted  in  Park,  R.E.  (1957)  Human  Communities:  The  City  and  Human  Ecology.   Glencoe:  Free  Press.   Pred,  A.R.  (1981)  (ed.)  Space  and  time  in  geography:  Essays  dedicated  to  Torsten  Hägerstrand.  Lund  Studies  in  Geography,   Series  B,  48.  Lund:  Gleerup.   Quillian,  L.  (2002)  Why  Is  Black–White  Residential  Segregation  So  Persistent?  Evidence  on  Three  Theories  from  Migration   Data.  Social  Science  Research,  31,  197–229.   Sassen,  S.  (2001)  The  Global  City.  2  ed.  Princeton:  University  Press  [1991].   Schelling,  T.C.,  1969.  Models  of  segregation.  American  Economic  Review,  59,  488–493.   Schnell,  I.,  &  Yoav,  B.  (2001)  The  Socio-­‐Spatial  Isolation  of  Agents  in  Everyday  Life  Spaces  as  an  Aspect  of  Segregation,   Annals  of  the  Association  of  American  Geographers,  91.4,  622-­‐633.   Schnell,  I.,  &  Yoav,  B.  (2005)  Globalisation  and  the  structure  of  urban  social  space:  the  lesson  from  Tel  Aviv.  Urban  Studies,   42.  13,  2489–2510.   Selim,  G.  (2015)  The  landscape  of  differences:  Contact  and  segregation  in  the  everyday  encounters.  Cities,  46,  16-­‐25.   Ribeiro,  S.,  Davis,  C.,  Oliveira,  D.,  Meira,  W.,  Gonçalves,  T.,  &  Pappa,  G.  (2012)  Traffic  Observatory:  A  system  to  detect  and   locate  traffic  events  and  conditions  using  Twitter.  In  Proceedings  of  the  Fifth  International  Workshop  on  Location-­‐ Based  Social  Networks,  Redondo  Beach,  California:  5–11.   Sakaki,  T.,  Okazaki,  M.,  &  Matsuo,  Y.  (2010)  Earthquake  shakes  Twitter  users:  real-­‐time  event  detection  by  social  sensors.   In  Proceedings  of  the  Nineteenth  International  Conference  on  the  World  Wide  Web,  Raleigh,  North  Carolina:  851–60.   Steiger,  E.,  Albuquerque,  J.P.  &  Zipf,  A.  (2015)  An  Advanced  Systematic  Literature  Review  on  Spatiotemporal  Analyses  of   Twitter  Data.  Transactions  in  GIS  (online  version  before  publication).   Simmel,  G.  (1997)  Simmel  on  Culture.  In  D.  Frisby  and  M.  Featherston  (eds.),  Sage  Publications,  London.   Steiger  Takhteyev,  Y.,  Gruzd,  A.,  &  Wellman,  B.  (2012)  Geography  of  Twitter  networks.  Social  Networks  34:  73–81.   Tauber,  K.T.  &  Tauber,  A.F.  (1964)  The  Negro  as  an  Immigrant  Group:  Recent  Trends  in  Racial  and  Ethnic  Segregation  in   Chicago.  American  Journal  of  Sociology,  69.4,  374–382.   Urry,  J.  (2002)  Mobility  and  proximity.  Sociology,  36.2,  255–274.   Veloso,  A.  &  Ferraz,  F.  (2011)  Dengue  surveillance  based  on  a  computational  model  of  spatio-­‐temporal  locality  of  Twitter.   In  Proceedings  of  the  Third  International  Conference  on  Web  Science,  Koblenz,  Germany.   Wasserman,  S.  &  Faust,  K.  (1994)  Social  Network  Analysis:  Methods  and  Applications.  Cambridge:  Cambridge  University   Press,.   Weber,  A.  (1909)  Theory  of  the  Location  of  Industries.  Chicago:  University  of  Chicago  Press.   Zielinski,  A.,  &  Middleton,  S.  (2013)  Social  media  text  mining  and  network  analysis  for  decision  support  in  natural  crisis   management.  In  Proceedings  of  the  Tenth  International  Conference  on  Information  Systems  for  Crisis  Response  and   Management,  Baden-­‐Baden,  Germany.    

 

17