Feb 19, 2008 - 22. Several approaches (with outranking methods) are proposed where the categories can be defined by: - limiting profiles (Electre-Tri, Yu).
FlowSort : a sorting method for group-decision
Ph. Nemery
Multiple Criteria Sorting Workshop Université Paris Dauphine
19/02/2008
Ph. Nemery
Plan:
1. Introduction 2. Ranking with flows 3. FlowSort : sorting with flows 4. FlowSort for Group Sorting 5. Conclusions
Ph. Nemery
2
Introduction
1. Introduction
Ph. Nemery
3
Introduction
General
In multi-criteria decision aid (MCDA) we generally distinguish 4 different decision problems (Roy):
- choice - description - ranking - sorting
Ph. Nemery
ai
a1
an
4
A
Introduction
General
In multi-criteria decision aid (MCDA) we generally distinguish 4 different decision problems (Roy):
- choice - description - ranking - sorting
Ph. Nemery
Ab
ai
a1
an
5
A
Introduction
General
In multi-criteria decision aid (MCDA) we generally distinguish 4 different decision problems (Roy):
- choice - description - ranking - sorting
Ph. Nemery
ai
a1
an
6
A
Introduction
General
In multi-criteria decision aid (MCDA) we generally distinguish 4 different decision problems (Roy):
- choice - description - ranking - sorting
Ph. Nemery
ai
a1
an n
...
a1
ai
7
2
1
an al
A
Introduction
General
In multi-criteria decision aid (MCDA) we generally distinguish 4 different decision problems (Roy):
- choice - description - ranking - sorting
Ph. Nemery
ai
a1
an
8
A
Introduction
Sorting Problem
Sorting Problematic: The aim is to assign a set of alternatives A = {a1 , . . . , an } evaluated on the basis of q criteria ϕk (k = 1, . . . , q) to K predefined ordered classes or categories. The K categories are completely ordered : where C1 is “preferred” to
ai
a1
Ph. Nemery
A
CK ! . . . ! Cj ! . . . ! C1 9
Introduction
Labelize
Sorting Problem: e.g. ai
a1
A Recommend
CK ! . . . ! Cj ! . . . ! C1
Examples: - a credit demand at a bank non-thrustful clients - more information - credit worthy clients - evaluation of the innovative character of some enterprises (France) passive - reactive - pre-active - proactive enterprises Ph. Nemery
10
Plan:
2. PROMETHEE : Ranking Method based on Flows
Ph. Nemery
11
Preference Function
Promethee (I & II) methodology:
pair-wise comparison between all the actions to be ranked on the basis of the q criteria
ai
Pk (aj , ai )
ϕ1
1
aj
Ph. Nemery
ϕq
0
qk
12
pk
ϕk (aj ) − ϕk (ai )
Preference Function
Promethee (I & II) methodology: generalization
pair-wise comparison between all the actions to be ranked on the basis of the q criteria
ai
ϕ1
aj
P1 (aj , ai )
1
2
3
1
0
0
0
2
0.25
0
0
3
0.9
0.6
0
ϕq
ϕ1 (aj )
Ph. Nemery
13
ϕ1 (ai )
Preference Degree
Promethee (I & II) methodology:
pair-wise comparison between all the actions to be ranked on the basis of the q criteria
π(aj , ai ) =
ai
ϕ1
Aggregation
π(ai , aj ) =
q !
k=1 q !
k=1
aj
Ph. Nemery
Pk (aj , ai ) ∗ ωk Pk (ai , aj ) ∗ ωk
0 ≤ π(aj , ai ) + π(ai , aj ) ≤ 1
ϕq
14
Preference Matrix
Promethee (I & II) methodology:
pair-wise comparison between all the actions to be ranked on the basis of the q criteria
ai
ϕ1
0
πij
πji
0
Aggregation
aj
Ph. Nemery
ϕq
15
Aggregation
Promethee (I & II) methodology:
pair-wise comparison between all the actions to be ranked on the basis of the q criteria which are then aggregated
ai
aj
ai
aj
0
πij
πji
Aggregation
0
ai
pair-wise comparisons between the actions Ph. Nemery
n n-1
16
...
3
2
1
aj
complete ranking
Positive Flows (I)
Promethee (I & II) methodology:
a1
aj
ai
ai
ai
0
aj
!
πij
an
πij = φ+ (ai )
j
aj
πji
0
n n-1
...
ai Ph. Nemery
17
3
aj
2
1
φ (.) − +
Negative Flows (I)
Promethee (I & II) methodology:
a1
ai
ai
aj
ai
0
πij
aj
πji
0
an
n n-1
!
...
ai
πji = φ− (ai )
j
Ph. Nemery
aj
18
3
aj
2
1
φ− (.)
Net Flows (II)
Promethee (I & II) methodology:
ai
aj
ai
0
πij
aj
πji
0
φ(ai ) = φ (ai ) − φ (ai ) −
+
n n-1
...
3
2
φ(.)
ai
aj
Ranking methods for valued preference relations: A characterization of a method based on leaving and entering flows D. Bouyssou and P. Perny (1991, EJOR) Ph. Nemery
1
19
Plan:
3. FlowSort: a Sorting method based on flows
Ph. Nemery
20
Introduction
Sorting Problem: well-known methods Doumpos, Zopounidis
Several methods have been proposed since several decades: 1. Statistical & Econometric techniques Discriminant Analysis Logit & Probit Analysis 2. Non-Parametric Techniques Neural Networks Machine Learning Fuzzy Sets Rough Sets 3. MCDA Methods UTADIS AHP Outranking Methods Ph. Nemery
21
Introduction
Sorting Problem: well-known outranking methods
Several approaches (with outranking methods) are proposed where the categories can be defined by: - limiting profiles (Electre-Tri, Yu) K categories --> K±1 limiting profiles
R = {r1 , . . . , rK+1 }
∀i = 1, . . . , q : ϕi ; wi
- central profiles (Doumpos & al) K categories --> at least K central profiles
rK+1
r1
r2
rK ai
C1
Ph. Nemery
22
Introduction
Sorting Problem: well-known outranking methods
Several approaches (with outranking methods) are proposed where the categories can be defined by: - limiting profiles (Electre-Tri, Yu) K categories --> K±1 limiting profiles
R = {r1 , . . . , rK+1 }
∀i = 1, . . . , q : ϕi ; wi
- central profiles (Doumpos & al) K categories --> at least K central profiles
rK+1
r1
r2
rK ai
C1
Ph. Nemery
23
Introduction
Sorting Problem: well-known outranking methods
Several approaches (with outranking methods) are proposed where the categories can be defined by: - limiting profiles (Electre-Tri, Yu) K categories --> K±1 limiting profiles
R = {r1 , . . . , rK+1 }
∀i = 1, . . . , q : ϕi ; wi
- central profiles (Doumpos & al) K categories --> at least K central profiles
rK+1
r1
r2
rK ai
ϕ1
C1 ϕq Ph. Nemery
23
Introduction
FlowSort:
We will tackle the sorting problematic where the categories are either defined by limiting profiles or central profiles, by a ranking approach. Let us note: : the set of reference profiles - ai ∈ A : an action to be sorted : the set of reference profiles & the action to sort we will apply a ranking method on the set Ri use of the Promethee I & II methodology for the sorting problematic
Ph. Nemery
24
Main hypothesis
FlowSort:
Since the reference profiles define completely ordered categories, we will impose the following conditions: ∀k > 0, ∀j : ϕj (ri+k ) ≤ ϕj (ri )
rK+1
r1
r2
rK
⇓
C1
π(ri , ri+k ) > 0 & π(ri+k , ri ) = 0 Ph. Nemery
25
ϕ1
ϕq
Proposition
FlowSort:
Proposition: Under the condition of the dominance of the reference profiles, the order of the flows of the reference profiles is invariant with respect to any action to assign.
Ph. Nemery
rK+1 rK ... rj ... r2 ! ! !+ ! ! ! + ∀k > 0 & ∀i : φRi (ri+k ) ≤ φRi (ri ) ai ai ai ai ai ai + ! ! ! ! ! ! φRi (.) rK+1 rK rj r 2 r1 !"#$ !"#$ C1 ! φ− (.) ! ! ! r1 r2 r3 ai 26 ! φnet (.) ! ! ! !
r1 ! ! ai
Assignment Rules
FlowSort:
Computation of the leaving, entering and net flows for every action of Ri φ+ Ri (ai )
! 1 = π(ai , x) |Ri | − 1
φ+ Ri (rj )
x∈Ri
! 1 = π(rj , x) |Ri | − 1 x∈Ri
! 1 − π(x, ai ) φRi (ai ) = |Ri | − 1
! 1 π(x, rj ) φ− Ri (rj ) = |Ri | − 1
− φRi (ai ) = φ+ (a ) − φ Ri i Ri (ai )
− φRi (rj ) = φ+ (r ) − φ Ri j Ri (rj )
x∈Ri
x∈Ri
Ph. Nemery
+ + r . . . r . .h.) r2 Cφ+ (ai ) = Ch , ifrK+1 φ+ (r ) < φ (a ) ≤ φ h+1 Ri K Ri ij Ri (r ! ! ! ! ! ! h+1 ai ai ai ai ai ai h+2 h K+2 2 1 ! ! ! ! ! ! φ+ Ri (.) rrj r 2 r1 K+1 rK rrh+1 h
!
∀j
!
ai
!
! φ− (.)
r1 ! ! ai
Assignment Rules
FlowSort:
Computation of the leaving, entering and net flows for every action of Ri φ+ Ri (ai )
! 1 = π(ai , x) |Ri | − 1
φ+ Ri (rj )
x∈Ri
! 1 = π(rj , x) |Ri | − 1 x∈Ri
! 1 − π(x, ai ) φRi (ai ) = |Ri | − 1
! 1 π(x, rj ) φ− Ri (rj ) = |Ri | − 1
− φRi (ai ) = φ+ (a ) − φ Ri i Ri (ai )
− φRi (rj ) = φ+ (r ) − φ Ri j Ri (rj )
x∈Ri
x∈Ri
rK+1 rK . . . + rj ... r2 + + ! ) π(p, d) ⇒ P1 (d, p) > P1 (p, d) ⇒ g1 (d) > g1 (p) − q 2
φRic) (rh−1 d∈ C1 : π(c, p) < π(p, ⇒ )P1 (c, p)
"1 (p, d) ⇒ c ∈ C2 : π(d, p) > π(p, d) ⇒ P1 (d, p) > P g1 (d) > g1 (p) − q Ch−1
69
! j=1 Motivation de la Classification Ordinale Multicritère Rappels+Propriétés π(r , a ) = w P (r , a ) k i j j k i j i k j i j k w P (a , r ) π(a , r ) = i k j j i k Electre-Tri : introduction FlowSort ?=? UTADIS P (r , a ) = f (g (r ) − g (a )) ∀j = 1, ..., q j=1 j P k (ai , r ) =jf (g k (a )j− g i (r )) ∀j = 1, ...,Comparaison UTADIS : introduction U,E,F j=1 q j i k j i j k P (r , a ) = f (g (r ) − g (a )) ∀j = 1, ..., q j. k r˜ i j k j i FlowSort Extensions r ˜ r ˜ . . . r ˜ . . r ˜ K+1 K j 2 1 r ˜ r ˜ . . . r ˜ . . . r ˜ r ˜ Extension d’ Electre-Tri Future ? 1 rK+1 et a I !r2)) j ∀j ! ) = !f (g ! i (r !j!k = i1, ! ...,!q! ! j 2!k 3 I! k!ai)K P (a , r (a − g ! ! ! ! j i i k jClassification k IClustering Classification Ordinale: cas général j r3 iI ai etj ai& r2 Multicritère aπ(r a a a a a ai , ) = w P (r , a ) i k ii a i a j i ja k i (r ,ia )a= ia P aigj (ai )) ∀j = 1, ..., q i i f (ga j i(rk ) − i i i ij k i i 2 pj3 = q ∗ 2; ∀j = 1, ..., q, j=1 j !
P (a , r ) = f (g (a ) − g (r )) ∀j = 1, ..., q
P (r , a ) = f (g (r ) − g (a )) ∀j = 1, ..., q
r I a et a I r ! qaj g∗et(a 2; ∀j = 1,= ...,1,q,..., q rj3k= Pj (rk , ai ) = f (gj p(r )I − i j aii))I r∀j 2 FlowSort et UTADIS identiques ? q,q Pj (a:i , des rk ) =méthodes f (gjg(a ) − g (r )) ∀j = 1, ..., p = q ∗ 2; ∀j = 1, ..., i j k (a ) = g (r ) + q ; ∀j = 1, ..., q j ! 3 j [ ] [ ] jj [g i](aj) = r3 I ai et ai I r2 g[ j2;(r ) +=qj1,! ; ..., ∀j q, = 1, ..., q i] q ∗ [ ] pj [ = ] 3∀j
j j r1 rh rK+1 ∈) − = , 3..., r= rj∀r r)hg= r(r gjk(a g{r )+ qj1,; }. ∀jq= 1, ..., q 1K+1 K+1 d 1(r iR ji )) P (r , a ) = f (g (a ∀j ..., j k i j ! [ ] [ ] [ ] pj = qj ∗ 2; ∀j = 1, ..., q, ∀r ∈R = g{r(r rK+1 }. = 1, ..., q 1 , ..., g (a ) = ) + q ; ∀j a&b : j i j 3 j a b c d [ ]r [ ] ! 15 rK+1 rh [ ] a&b : 1 r3 I ai et ai I r2
g2 (a) =∈gr2R (b)=et{rg11,(a) < g1 (b) b ∀r ..., r }. K+1 r r K+1 h 1 5 10 10 15 (a)q∀r=∈ g2R (b)=et g (a) < g 10 gj (ai ) = gj (r3 ) + qj ; ∀j g =11,g2..., 1, ..., r 1 (b) {r }. 1 K+1 a&b : pj = qj ∗ 2; ∀j = 1, ..., q, : et1g (a)1< g (b) Or :a&b 5 c 2= 2(b) g22 (a) g g 2 1 1 Or : ∀r ∈ R = {r1 , ..., rK+1 }. g2 (a) = g2 (b) et g1 (a) < g1 (b) a ga&b j (ai ): = gj (r3 ) + qj ; ∀j = 1, ..., b q∈ C2 : π(b, p) > π(p, b) ⇒ P1 (b, p) > P1 (p, b) ⇒ g1 (b) > g1 (p) − q g (a) 1= g (b) 2et g (a) < g (b) Orb :∈ C2 : π(b, p) > π(p, b) ⇒ P1 (b, p) > P1 (p, b) ⇒ g1 (b) > g1 (p) − q
2 1 1 a ∈ C1 Or : π(a, : p) < π(p, a) ⇒ P1 (a, p) < P1 (p, a) ⇒ g1 (a) < g1 (p) − q ∀r ∈ R = {r1 , ..., rK+1 }. ac&d ∈ C:1 : π(a, p) < π(p, a) ⇒ P1 (a, p) < P1 (p, a) ⇒ g1 (a) < g1 (p) − q C2 b ∈c&d C 12 : : π(b, p) > π(p, b) ⇒ P1 (b, p) > P1 (p, b) ⇒ g1 (b) > g1 (p) − q a&b : ! ! g2 (c) ! =bgC∈ g2p) (.) Or : g1 (c) g1π(p, (d) b) ⇒ P1 (b, p) > P1 (p, b) ⇒ g1 (b) > g1 (p) − q C!2 et :! π(b, 2 (d) g2 (a) = g2 (b) et g1 (a) < g1 (b) a ∈g2C :=2π(a, p)et g1 (p) − q 1 (p,gb) Or : 2 r a r2 = r et g1 (c) < g1 (d) Org= :2 (d) g2 (c) g211(d) et g⇒ < g1 !π(p,! g (.) 1 P (d, p) > P (p, d) ⇒ g (d) > g (p) − q d) ⇒ c&d : 2 1 1 1 1 r a r r 3 p) i> P12(p, b) ⇒ g11 (b) > g1 (p) b ∈ C2 : π(b, p) > π(p, b) ⇒ P1 (b, − q c ∈ C : π(d, p) > π(p, d) ⇒ P (d, p) > P (p, d) ⇒ g (d) > 2 p) < π(p, c) ⇒ P (c, p) 1 1 g (c) < g 1 (p) −gq1 (p) − q Or : d ∈ C : π(c, < P (p, c) ⇒ Or : 1 1 1 1 1 g (c) = g (d) et g (c) < g (d) 2 1 a 2∈ C1 : π(a, p) < π(p, a) ⇒1 P1 (a,dp) a)p) ⇒> π(p, d)d)⇒⇒P1P(d, p)p)>>PP11(p, − qq φc+∈cC∈2 C: 2π(d, : π(d, π(p, (p,d) d) ⇒ ⇒ gg11(d) (d) > g1 (p) − 1 (d, g2 (c)Or = :g2 (d) et g1 (c) < g1 (d) d ∈dC∈1 C: 1π(c, p) p) π(p, d) ⇒ P1 (d, p) > P g1 (d) > g1 (p) − q Ch−1
69