ﻣﺠﻠﻪ داﻧﺸﻜﺪه ﺑﻬﺪاﺷﺖ و اﻧﺴﺘﻴﺘﻮ ﺗﺤﻘﻴﻘﺎت ﺑﻬﺪاﺷﺘﻲ دوره ،11ﺷﻤﺎره ، 2ﺑﻬﺎر ،1392ﺻﻔﺤﻪ75-86
ﻓﺎﻃﻤﻪ ﻣﻨﺼﻮري :داﻧﺸﺠﻮي دوره ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ،ﮔﺮوه ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪاﺷﺖ ﻣﺤﻴﻂ ،داﻧﺸﻜﺪه ﺑﻬﺪاﺷﺖ ،داﻧﺸﮕﺎه ﻋﻠﻮم ﭘﺰﺷﻜﻲ ﻛﺮﻣﺎن ،ﻛﺮﻣﺎن ،اﻳﺮان ﻧﺮﮔﺲ ﺧﺎﻧﺠﺎﻧﻲ :اﺳﺘﺎدﻳﺎر ،ﮔﺮوه اﭘﻴﺪﻣﻴﻮﻟﻮژي و ﻋﻀﻮ ﭘﻴﻮﺳﺘﻪ ﮔﺮوه ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪاﺷﺖ ﻣﺤﻴﻂ ،داﻧﺸﻜﺪه ﺑﻬﺪاﺷﺖ ،داﻧﺸﮕﺎه ﻋﻠـﻮم ﭘﺰﺷـﻜﻲ ﻛﺮﻣـﺎن ،ﻛﺮﻣـﺎن ،اﻳـﺮان- ﻧﻮﻳﺴﻨﺪة راﺑﻂ
[email protected]: ﻻﻟﻪ راﻧﻨﺪه ﻛﻼﻧﻜﺶ :داﻧﺸﺠﻮي دوره ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ،ﮔﺮوه ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪاﺷﺖ ﻣﺤﻴﻂ ،داﻧﺸﻜﺪه ﺑﻬﺪاﺷﺖ ،داﻧﺸﮕﺎه ﻋﻠﻮم ﭘﺰﺷﻜﻲ ﻛﺮﻣﺎن ،ﻛﺮﻣﺎن ،اﻳﺮان رﺿﺎ ﭘﻮرﻣﻮﺳﻲ :ﻣﺮﺑﻲ ،ﺑﺨﺶ آﻣﺎر ،داﻧﺸﻜﺪه رﻳﺎﺿﻲ و ﻛﺎﻣﭙﻴﻮﺗﺮ ،داﻧﺸﮕﺎه ﺷﻬﻴﺪ ﺑﺎ ﻫﻨﺮ ،ﻛﺮﻣﺎن ،اﻳﺮان ﺗﺎرﻳﺦ درﻳﺎﻓﺖ1391/1/14 :
ﺗﺎرﻳﺦ ﭘﺬﻳﺮش1391/11/25 :
ﭼﻜﻴﺪه زﻣﻴﻨﻪ و ﻫﺪف :آﻟﻮدﮔﻲ ﻫﻮا ﻳﻜﻲ از ﻋﻤﺪه ﺗﺮﻳﻦ ﻣﺸﻜﻼت ﺷﻬﺮ ﻫﺎي ﺑﺰرگ در ﻛﺸﻮر ﻫﺎي در ﺣﺎل ﺗﻮﺳﻌﻪ اﺳﺖ و ﻣﻲ ﺗﻮاﻧﺪ ﻋﻮارض ﻣﻨﻔﻲ ﺑﺴﻴﺎري ﺑﺮ ﺳﻼﻣﺖ اﻧﺴﺎﻧﻬﺎ داﺷﺘﻪ ﺑﺎﺷﺪ .ﻟﺬا ﻣﻄﺎﻟﻌﻪ ﺗﻐﻴﻴﺮات اﻳﻦ آﻻﻳﻨﺪه ﻫﺎ ﻣﻲ ﺗﻮاﻧﺪ ﻛﻤﻚ ﻣﻬﻤﻲ ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﻳﺰي و ﻣﻘﺎﺑﻠﻪ ﺑﺎ آﻧﻬﺎ ﺑﺎﺷﺪ .ﻫﺪف از اﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ ﺗﻐﻴﻴﺮات آﻻﻳﻨﺪه ﻫﺎ در ﻫﻮاي ﺷﻬﺮ ﻛﺮﻣﺎن ﺑﻮد. روش ﻛﺎر :در اﻳﻦ ﻣﻄﺎﻟﻌﻪ اﻛﻮﻟﻮژﻳﻚ اﻃﻼﻋﺎت ﻫﻔﺖ آﻻﻳﻨﺪه ي ﻣﻬﻢ ﺷﻬﺮ ﻛﺮﻣﺎن ﺷﺎﻣﻞ NO, CO, NO2, NOx, PM10, SO2, O3از اﺑﺘﺪاي ﺳﺎل 1385ﺗﺎ آﺧﺮ ﺷﻬﺮﻳﻮر 1389از ﺳﺎزﻣﺎن ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ زﻳﺴﺖ ﻛﺮﻣﺎن اﺳﺘﻌﻼم ﺷﺪ .ﺳﭙﺲ اﻃﻼﻋﺎت ﺑﺼﻮرت ﻣﺘﻮﺳﻂ در ﻣﺎه ﻣﺤﺎﺳﺒﻪ و ﺑﻪ ﻛﻤﻚ روﺷﻬﺎي آﻣﺎري ،اﻟﮕﻮﻫﺎي ﺳﺮي زﻣﺎﻧﻲ ﺗﻚ ﻣﺘﻐﻴﺮه ﺑﺮاي ﻫﺮ آﻻﻳﻨﺪه ﺑﺮازش و ﻣﻘﺎدﻳﺮ آن ﭘﻴﺶ ﺑﻴﻨﻲ ﺷﺪ. ﻧﺘﺎﻳﺞ :آﻻﻳﻨﺪه ﻫﺎ در ﻫﻮاي ﻛﺮﻣﺎن روﻧﺪ ﺗﻘﺮﻳﺒﺎً ﺛﺎﺑﺘﻲ داﺷﺘﻨﺪ ،ﺑﻪ ﺟﺰ ﻣﻮﻧﻮاﻛﺴﻴﺪ ﻛﺮﺑﻦ ﻛﻪ ﺑﻪ ﻃﻮر ﻣﻌﻨﻲ داري در ﺣﺎل ﻛﺎﻫﺶ و ﮔﺮد و ﻏﺒﺎر ﻛﻪ روﻧﺪ اﻓﺰاﻳﺸﻲ داﺷﺖ .ﻫﻤﻪ آﻻﻳﻨﺪه ﻫﺎ اﻟﮕﻮي ﻓﺼﻠﻲ داﺷﺘﻨﺪ .اﻟﮕﻮ ﻫﺎي ﺳﺮي زﻣﺎﻧﻲ ﺑﺎ روﻧﺪ ﻓﺼﻠﻲ 6 ،12 ،12 ،12 ،8 ،3 ،12ﻣﺎه ﺑﻪ ﺗﺮﺗﻴﺐ ﺑﺮاي آﻻﻳﻨﺪه ﻫﺎي NO, CO, NO2, NOx, PM10, SO2, O3ﺑﺮازش ﺷﺪ. ﻧﺘﻴﺠﻪ ﮔﻴﺮي :ﻣﻴﺰان ﺗﻮﻟﻴﺪ ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ در ﻛﺮﻣﺎن رو ﺑﻪ ﻛﺎﻫﺶ اﺳﺖ و ﻳﻚ ﻋﻠﺖ اﺣﺘﻤﺎﻟﻲ آن ﻃﺮح ﺟﻤﻊ آوري ﺧﻮد رو ﻫﺎي ﻓﺮﺳﻮده ﻣﻲ ﺗﻮاﻧﺪ ﺑﺎﺷﺪ .اﻣﺎ ﻣﻴﺰان ﮔﺮد و ﻏﺒﺎر رو ﺑﻪ اﻓﺰاﻳﺶ و در ﺑﻌﻀﻲ ﻓﺼﻮل ﺳﺎل در ﺣﺪ ﻏﻴﺮ ﺑﻬﺪاﺷﺘﻲ اﺳﺖ وﻟﺬا ﺑﺎﻳﺪ ﺗﺪاﺑﻴﺮ ﻻزم ﺑﺮاي ﻣﻘﺎﺑﻠﻪ ﺑﺎ آن ﺑﻜﺎر ﮔﺮﻓﺘﻪ ﺷﻮد. واژﮔﺎن ﻛﻠﻴﺪي :آﻟﻮدﮔﻲ ﻫﻮا ،ذرات ﻣﻌﻠﻖ ،ﻛﺮﻣﺎن ،ﺳﺮي زﻣﺎﻧﻲ ،دي اﻛﺴﻴﺪ ﮔﻮﮔﺮد ،ازن ،اﻛﺴﻴﺪﻫﺎي ﻧﻴﺘﺮوژن ،ﻣﻮﻧﻮ اﻛﺴﻴﺪ ﻛﺮﺑﻦ.
ﻣﻘﺪﻣﻪ آﻟﻮدﮔﻲ ﻫﻮا ﻳﻜﻲ از ﻣﺸﻜﻼت ﺷﻬﺮﻫﺎي ﺑﺰرگ و
ﻧﻴﺘﺮوژن و PM10و ﻣﺮگ و ﻣﻴﺮ ﺗﻨﻔﺴﻲ و ﻗﻠﺒﻲ ،ﻋﻔﻮﻧﺖ ﻫﺎي
ﺻﻨﻌﺘﻲ ﺟﻬﺎن اﺳﺖ و ﺑﻪ ﻃﻮر ﺟﺪي ﺳﻼﻣﺖ ﺳﺎﻛﻨﺎن اﻳﻦ
رﻳﻮي و ﺑﻴﻤﺎريﻫﺎي ﺣﺎد ﻧﻴﺎزﻣﻨﺪ ﺑﺴﺘﺮي ﺑﻴﻤﺎرﺳﺘﺎﻧﻲ ،ارﺗﺒﺎط
ﺷﻬﺮﻫﺎ را ﺗﻬﺪﻳﺪ ﻣﻴﻜﻨﺪ ) .(Masjedi et al. 2001ﺑﻬﺘﺮﻳﻦ
وﺟﻮد دارد ) Liang et al. 2009; Hosseinpour et al.
ﻣﺜﺎل آن ﻣﻪ ﻟﻨﺪن در ﺳﺎل 1952ﺑﻮد ﻛﻪ ﺟﺎن ﺗﻌﺪاد زﻳﺎدي از
.(2005; Ghorbani and Younesian 2010ﺑﻪ ﻋﻨﻮان
اﻓﺮاد را ﮔﺮﻓﺖ ) .(Anderson 2009ﻣﻄﺎﻟﻌﺎت ﺑﺴﻴﺎري ﻧﺸﺎن
ﻣﺜﺎل ﻣﻄﺎﻟﻌﻪ اي در ﻫﻨﺪوﺳﺘﺎن ﻧﺸﺎن داد ﻛﻪ ﺑﻪ ازا اﻓﺰاﻳﺶ ﻫﺮ
داده ﻛﻪ ﺑﻴﻦ دي ﺳﻮﻟﻔﻴﺪ ﻛﺮﺑﻦ ،ﻣﻮﻧﻮ اﻛﺴﻴﺪ ﻛﺮﺑﻦ ،دي اﻛﺴﻴﺪ
3
10µg/mذرات ﻣﻌﻠﻖ PM10ﻣﺮگ و ﻣﻴﺮ ﻛﻠﻲ 0/15درﺻﺪ
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﺷﻬﺮ ﻛﺮﻣﺎن ﺑﺎ ﻣﺪل ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ
/ 76ﻓﺎﻃﻤﻪ ﻣﻨﺼﻮري و ﻫﻤﻜﺎران
اﻓﺰاﻳﺶ 0/84در ﺻﺪ در ﻛﻞ ﻣﺮگ و ﻣﻴﺮ اﺗﻔﺎق اﻓﺘﺎده اﺳﺖ.
ﻛﺮد ﻛﻪ رﻫﻨﻤﻮد ﺳﺎﻟﻴﺎﻧﻪ و 24ﺳﺎﻋﺘﻪ را ﺑﺮاي PM10ﺑﻪ ﺗﺮﺗﻴﺐ
) (Rajarathnam et al. 2011ﻣﻄﺎﻟﻌﺎﺗﻲ از آﻣﺮﻳﻜﺎي
ﻛﻤﺘﺮ از 20 µg /m3و 50 µg /m3ﭘﻴﺸﻨﻬﺎد داد و ﻫﻤﻴﻦ
ﻫﺮ
ﻃﻮر رﻫﻨﻤﻮد 24ﺳﺎﻋﺘﻪ دي اﻛﺴﻴﺪ ﺳﻮﻟﻔﻮر ﺑﻪ 20 µg /m3
ﻫﻢ
ﺷﻤﺎﻟﻲ
ﻧﺸﺎن
داده
اﺳﺖ
ﻛﻪ
اﻓﺰاﻳﺶ
10 µg/m2از ذرات ﻣﻌﻠﻖ PM10ﻫﻤﺮاه ﺑﺎ اﻓﺰاﻳﺶ ﻣﺮگ و ﻣﻴﺮ ﺣﺪود 0/3ﺗﺎ 0/5در ﺻﺪ ﺑﻮده اﺳﺖ ) Samet et al. .(2000
ﻛﺎﻫﺶ ﻳﺎﻓﺘﻪ ﺑﻮد ).(Anderson 2009 ﻣﻄﺎﻟﻌﺎت ﺳﺮي زﻣﺎﻧﻲ ﺑﺮاي ﺑﺮرﺳﻲ آﻟﻮدﮔﻲ ﻫﻮاي ﺑﺴﻴﺎري از ﺷﻬﺮ ﻫﺎ ﺑﻜﺎر رﻓﺘﻪ اﺳﺖ ) ;Zhang et al. 2011
ﻫﻮا ﻧﻴﺰ ﻣﺎﻧﻨﺪ ﺳﺎﻳﺮ ﻣﻨﺎﺑﻊ ﻣﺤﻴﻂ زﻳﺴﺖ داراي ﻇﺮﻓﻴﺖ
.(López-Villarrubia et al. 2010ﻣﺤﻘﻘﺎن از ﺳﺮي
ﻣﺤﺪود اﺳﺖ و ﺗﺤﻤﻞ ﺗﺨﻠﻴﻪ ﻣﻮاد زاﻳﺪ و ﺳﻤﻲ ﻣﺨﺘﻠﻒ را در
ﻫﺎي زﻣﺎﻧﻲ ﺗﻚ ﻣﺘﻐﻴﺮه ﺑﺮاي ﭘﻴﺶ ﺑﻴﻨﻲ ﺑﺮ اﺳﺎس آﻣﺎر ﻣﻮﺟﻮد
ﺣﺪي ﻛﻪ اﻣﺮوزه ﺑﺸﺮ ﺑﻪ آن ﺗﺤﻤﻴﻞ ﻛﺮده اﺳﺖ ﻧﺪارد .ﺗﻐﻴﻴﺮ در
از ﻣﻘﺎدﻳﺮ آﻻﻳﻨﺪه ﻫﺎ در ﮔﺬﺷﺘﻪ اﺳﺘﻔﺎده ﻛﺮده اﻧﺪ و ﻃﺒﻖ اﻳﻦ
وﻳﮋﮔﻲ ﻫﺎي ﻓﻴﺰﻳﻜﻲ و ﺷﻴﻤﻴﺎﻳﻲ ﻋﻨﺎﺻﺮ ﺗﺸﻜﻴﻞ دﻫﻨﺪه ﻫﻮا،
ﻣﺪل ﻫﺎ ﺗﻮاﻧﺴﺘﻪ اﻧﺪ ﭘﻴﺶ ﺑﻴﻨﻲ ﻫﺎﻳﻲ از ﻣﻘﺎدﻳﺮ آﻻﻳﻨﺪه ﻫﺎ اﻧﺠﺎم
آﻟﻮدﮔﻲ ﻫﻮا اﻃﻼق ﻣﻲ ﺷﻮد ﻛﻪ ﻣﻲ ﺗﻮاﻧﺪ ﻣﻨﺒﻊ ﻃﺒﻴﻌﻲ و ﻳﺎ
دﻫﻨﺪ ).(Sharma et al. 2009
ﻣﺼﻨﻮﻋﻲ داﺷﺘﻪ ﺑﺎﺷﺪ ) Nasrollhi and Ghaffari .(Goolak 2010
اﻣﺎ ﻣﻄﺎﻟﻌﺎت ﻣﻌﺪودي از آﺳﻴﺎ در اﻳﻦ ﻣﻮرد وﺟﻮد دارد و ﺑﻪ ﺧﺎﻃﺮ ﻛﻤﺒﻮد ﻣﻄﺎﻟﻌﺎت از آﺳﻴﺎ ﺑﺴﻴﺎري از ﻛﺸﻮر ﻫﺎ ﺻﺮﻓﺎ
ﺳﺎزﻣﺎن ﺑﻬﺪاﺷﺖ ﺟﻬﺎﻧﻲ ﺑﻪ ﺻﻮرت دوره اي ﺷﻮاﻫﺪي
از دﺳﺘﻮر اﻟﻌﻤﻞ ﺳﺎزﻣﺎن ﺟﻬﺎﻧﻲ ﺑﻬﺪاﺷﺖ ﺗﺒﻌﻴﺖ ﻣﻲ ﻛﻨﻨﺪ .در
از آﻻﻳﻨﺪه ﻫﺎي ﻫﻮا و ﺳﻼﻣﺖ را ﻣﺮور ﻣﻴﻜﻨﺪ و رﻫﻨﻤﻮد ﻫﺎﻳﻲ
ﺻﻮرﺗﻲ ﻛﻪ ﻛﺸﻮر ﻫﺎي آﺳﻴﺎﻳﻲ از ﻧﻈﺮ ﻧﻮع آﻟﻮدﮔﻲ و
را ﭘﻴﺸﻨﻬﺎد ﻣﻴﺪﻫﺪ ﻛﻪ ﺟﻬﺖ ﺣﻔﺎﻇﺖ ﺳﻼﻣﺖ ﻋﻤﻮﻣﻲ ﻣﻮرد
ﺧﺼﻮﺻﻴﺎت ﺟﻤﻌﻴﺘﻲ ﻣﺘﻔﺎوت ﻫﺴﺘﻨﺪ و ﻣﻘﺎدﻳﺮ ﺑﺎﻻﻳﻲ از
ﻣﻼﺣﻈﻪ ﻗﺮار ﮔﻴﺮد .در ﺳﺎل 1970ﺳﺎزﻣﺎن ﺑﻬﺪاﺷﺖ ﺟﻬﺎﻧﻲ
آﻻﻳﻨﺪه ﻫﺎ در ﻛﺸﻮر ﻫﺎي آﺳﻴﺎﻳﻲ ﮔﺰارش ﺷﺪه اﺳﺖ
ﻧﺘﻴﺠﻪ ﮔﺮﻓﺘﻪ ﺑﻮد ﻛﻪ ﺳﻄﺢ ﻣﻮاﺟﻬﻪ ﺑﻠﻨﺪ ﻣﺪت ﺑﺎ ذرات ﻣﻌﻠﻖ ﻛﻪ
).(Rajarathnam et al. 2011
ﻓﺮاﺗﺮ از آن ﺑﺮاي ﺳﻼﻣﺖ اﻧﺴﺎن ﻣﻀﺮ ﻫﺴﺘﻨﺪ در ﺣﺪود
ﻣﻄﺎﻟﻌﺎت آﻟﻮدﮔﻲ ﻫﻮاي اﻧﺠﺎم ﺷﺪه در ﻛﺸﻮر ﻣﺎ ﻧﻴﺰ
150 µg/m3اﺳﺖ و ﺑﻌﺪ از اﺿﺎﻓﻪ ﻛﺮدن ﻳﻚ ﻓﺎﻛﺘﻮر
ﻣﺤﺪود ﺑﻮده ) Khosravi Dehkordi and Modarres
ﺳﻼﻣﺖ ﻣﻌﺎدل 2ﭘﻴﺸﻨﻬﺎد ﻛﺮد ﻛﻪ اﻳﻦ آﺳﺘﺎﻧﻪ ﺑﺎﻳﺪ ﺣﺪود
(2007; Nasrollahi and Ghaffari Goolak 2010
60µg/m3ﺗﺎ 90 µg/m3ﺑﺎﺷﺪ ).(Anderson 2009
و اﻛﺜﺮا ﺑﻪ ﻣﻄﺎﻟﻌﻪ اﺛﺮ آﻟﻮدﮔﻲ ﻫﻮا ﺑﺮ ﺳﻼﻣﺖ اﻧﺴﺎن ﭘﺮداﺧﺘﻪ
در ﺳﺎل 1987ﺑﺎ اﺳﺘﻔﺎده از اﻳﻦ اﺻﻮل ﺳﺎزﻣﺎن
اﻧﺪ .در اﻳﻦ ﻣﻄﺎﻟﻌﻪ آﻟﻮدﮔﻲ ﻫﻮاي ﺷﻬﺮ ﻛﺮﻣﺎن ﺑﺮاي اوﻟﻴﻦ ﺑﺎر
ﺑﻬﺪاﺷﺖ ﺟﻬﺎﻧﻲ اوﻟﻴﻦ رﻫﻨﻤﻮدش را ﺑﺮاي ذرات ﻫﻮاي آزاد،
ﻣﺪل ﺳﺎزي و ﻣﻮرد ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ ﻗﺮار ﻣﻲ ﮔﻴﺮد .ﻛﺮﻣﺎن
دي اﻛﺴﻴﺪ ﺳﻮﻟﻔﻮر ،ﻧﻴﺘﺮوژن دي اﻛﺴﺎﻳﺪ و ازن ﻣﻨﺘﺸﺮ ﻛﺮد.
از ﺷﻬﺮﻫﺎي ﻛﻮﻳﺮي ﺟﻨﻮب ﺷﺮق اﻳﺮان ﺑﻮده ،ﺟﻤﻌﻴﺖ آن در
رﻫﻨﻤﻮد ﻫﺎ ﺑﺮاي ذرات ﻣﻌﻠﻖ و دي اﻛﺴﻴﺪ ﺳﻮﻟﻔﻮر ﻣﺸﺎﺑﻪ ﻫﻢ
ﺳﺮﺷﻤﺎري 677650 ،1385ﻧﻔﺮ ﺑﻮده اﺳﺖ و ﻋﻼوه ﺑﺮ آﻟﻮدﮔﻲ
ﺑﻮد ﻛﻪ ﺑﺮاي ﺗﻤﺎس ﻫﺎي ﻃﻮﻻﻧﻲ ﻣﺪت )ﺳﺎﻟﻴﺎﻧﻪ( ﺗﻘﺮﻳﺒﺎ
ﻫﻮا در ﻓﺼﻮﻟﻲ ﺑﺎ ﻃﻮﻓﺎﻧﻬﺎي ﺷﻦ و اﻓﺰاﻳﺶ ﮔﺮد و ﻏﺒﺎر ﻫﻮا
50 µg /m3ﭘﻴﺸﻨﻬﺎد ﺷﺪه ﺑﻮد ،در ﺣﺎﻟﻲ ﻛﻪ رﻫﻨﻤﻮد 24ﺳﺎﻋﺘﻪ
ﻧﻴﺰ روﺑﺮو ﻣﻲ ﺷﻮد .آب و ﻫﻮاي آن ﮔﺮم و ﺧﺸﻚ اﺳﺖ.
ﺑﺮاي ﻫﺮ دو ﺗﻘﺮﻳﺒﺎ 125 µg /m3اﺳﺖ .رﻫﻨﻤﻮد ﻫﺎي 24
ﺑﻪ ﺧﺎﻃﺮ اﻫﻤﻴﺖ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮا ﭘﻴﺶ ﺑﻴﻨﻲ و ﻣﻄﺎﻟﻌﻪ
ﺳﺎﻋﺘﻪ ﺑﺮاي ذرات ﺗﻨﻔﺴﻲ 70 µg /m3 PM10ﺑﻮد .در ﻃﻲ
ﺗﻐﻴﻴﺮات آﻧﻬﺎ از اﻫﻤﻴﺖ ﺑﺴﻴﺎري ﺑﺮﺧﻮردار اﺳﺖ .ﻣﺪل ﺳﺎزي
ﻛﻤﺘﺮ از 20ﺳﺎل اﺧﻴﺮ ﺳﺎزﻣﺎن ﺑﻬﺪاﺷﺖ ﺟﻬﺎﻧﻲ ﻳﻚ رﻫﻨﻤﻮد
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
اﻓﺰاﻳﺶ داﺷﺘﻪ و ﺑﻪ ازاء اﻓﺰاﻳﺶ ﻫﺮ 10 µg/m3در NO2
ﺟﺪاﮔﺎﻧﻪ اي را ﺑﺮاي ذرات ﻣﻌﻠﻖ و دي اﻛﺴﻴﺪ ﺳﻮﻟﻔﻮر ﻣﻨﺘﺸﺮ
ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﺷﻬﺮ 77 /....
آﻟﻮدﮔﻲ ﻫﻮا ﺑﻪ ﺷﻨﺎﺳﺎﻳﻲ ﺗﻐﻴﻴﺮات زﻣﺎﻧﻲ اﻳﻦ آﻻﻳﻨﺪه ﻫﺎ ﺑﺮاي
ﻧﻤﻮدار ﻫﺎي )Autocorrelation Function (ACF
ﺑﺮﻧﺎﻣﻪ رﻳﺰي ﺑﻬﺘﺮ و ﻛﻨﺘﺮل آﻻﻳﻨﺪه ﻫﺎ ﻛﻤﻚ ﺧﻮاﻫﺪ ﻛﺮد.
و )Partial Autocorrelation Function (PACF
روش ﻛﺎر
.(1976
در اﻳﻦ ﭘﮋوﻫﺶ داده ﻫﺎي آﻟﻮدﮔﻲ ﻫﻮا از اﺑﺘﺪاي ﺳﺎل
ﺑﺮ اﺳﺎس ACFو PACFﻣﻘﺎدﻳﺮ pو qﺣﺪس زده
1385ﺗﺎ آﺧﺮ ﺷﻬﺮﻳﻮر 1389از ﺳﺎزﻣﺎن ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ زﻳﺴﺖ
ﻣﻲ ﺷﻮد و اﻟﮕﻮي ﻓﺼﻠﻲ را ﻫﻢ ﺑﺎﻳﺪ ﻣﺸﺨﺺ ﻛﺮد .ﺑﺎﻗﻴﻤﺎﻧﺪه
ﻛﺮﻣﺎن درﻳﺎﻓﺖ ﮔﺮدﻳﺪ .ﺳﺎزﻣﺎن ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ زﻳﺴﺖ ﻛﺮﻣﺎن
ﻫﺎي ﻣﺪل و داده ﻫﺎي واﻗﻌﻲ ﺑﺎﻳﺪ اﻳﻦ ﺧﺼﻮﺻﻴﺎت را داﺷﺘﻪ
از اﺑﺘﺪاي 1385ﺷﺮوع ﺑﻪ اﻧﺪازه ﮔﻴﺮي آﻻﻳﻨﺪه ﻫﺎ ﻧﻤﻮده اﺳﺖ.
ﺑﺎﺷﻨﺪ ﻛﻪ ﻣﻴﺎﻧﮕﻴﻦ آﻧﻬﺎ ﺻﻔﺮ ﺑﺎﺷﺪ ،وارﻳﺎﻧﺲ ﺛﺎﺑﺖ ﺑﺎﺷﺪ ،ﺑﺮاي
اﻳﻦ ﺳﺎزﻣﺎن 7آﻻﻳﻨﺪه NO2, CO, NO2, NOx, PM10,
ﻫﻤﻪ ﺗﺎﺧﻴﺮ ﻫﺎ ﻫﻤﺒﺴﺘﮕﻲ وﺟﻮد ﻧﺪاﺷﺘﻪ ﺑﺎﺷﺪ و ﺗﻮزﻳﻌﺸﺎن
SO2, O3را ﺑﻪ ﻃﻮر روزاﻧﻪ ﺗﻮﺳﻂ ﺗﻨﻬﺎ اﻳﺴﺘﮕﺎه ﺛﺎﺑﺖ داﺧﻞ
ﻧﺮﻣﺎل ﺑﺎﺷﺪ .ﻟﺬا ﻣﺪل ﺑﺎﻳﺪ آﻧﻘﺪر ﺗﻐﻴﻴﺮ ﻛﻨﺪ ﺗﺎ ﺑﻪ ﻣﺪل ﻣﻄﻠﻮب
ﺷﻬﺮي ﺧﻮد واﻗﻊ در ﻣﻴﺪان ﺷﻬﺪا اﻧﺪازه ﮔﻴﺮي ﻣﻴﻨﻤﺎﻳﺪ.
ﺑﺮﺳﻴﻢ ) .(Lumbreras et al. 2009در ﺻﻮرﺗﻲ ﻛﻪ اﻟﮕﻮي
داده ﻫﺎي آﻟﻮدﮔﻲ ﻫﻮا اﺑﺘﺪا ﺑﺼﻮرت ﻣﺘﻮﺳﻂ ﻣﺎﻫﺎﻧﻪ در
ﻓﺼﻠﻲ
ﻧ ﻴﺰ
ﻣﻮﺟﻮد
ﺑﺎﺷﺪ،
ﻣﺪل
ﺑﺼﻮرت
آﻣﺪﻧﺪ .ﺳﭙﺲ ﺑﺎ ﻧﺮم اﻓﺰار MiniTabو ﺑﺎ اﺳﺘﻔﺎده از ﻣﺪﻟﻬﺎي
SARIMA(p,d,q)(P,D,Q)Tدر ﻣﻲ آﻳﺪ ﻛﻪ در آن T
ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ ﺗﻚ ﻣﺘﻐﻴﺮه ﺳﻌﻲ ﺷﺪ ﻛﻪ ﺑﺮاي ﻫﺮ آﻻﻳﻨﺪه در
ﻣﻌﺮف اﻟﮕﻮي ﻓﺼﻠﻲ اﺳﺖ .ﺑﺮاي ﺳﺎﺧﺘﻦ ﻣﺪل ﻫﺎي Box-
ﻫﻮاي ﻛﺮﻣﺎن ﺑﻬﺘﺮﻳﻦ ﻣﺪل ﭘﻴﺸﻨﻬﺎد ﺷﻮد ﺗﺎ از روي آن ﺑﺘﻮان
Jenkinsﻣﺮاﺣﻠﻲ ﺑﺎﻳﺪ ﻃﻲ ﺷﻮد ﻛﻪ ﺷﺎﻣﻞ :ﺷﻨﺎﺳﺎﻳﻲ ،ﺗﺨﻤﻴﻦ،
ﻋﻼوه ﺑﺮ ﺗﺤﻠﻴﻞ داده ﻫﺎ ،ﻣﻘﺎدﻳﺮ آﺗﻲ را ﻧﻴﺰ ﭘﻴﺶ ﺑﻴﻨﻲ ﻧﻤﻮد.
ﭼﻚ ﻛﺮدن و در ﻧﻬﺎﻳﺖ ﭘﻴﺶ ﺑﻴﻨﻲ اﺳﺖ .اﻳﻦ ﻣﺮاﺣﻞ آﻧﻘﺪر
ﺳﺮي زﻣﺎﻧﻲ ﻣﺠﻤﻮﻋﻪ ﻣﺸﺎﻫﺪاﺗﻲ اﺳﺖ ﻛﻪ ﺑﺮ ﺣﺴﺐ زﻣﺎن ﻳﺎ
ﺗﻜﺮار ﻣﻲ ﺷﻮد ﺗﺎ ﻧﻬﺎﻳﺘﺎ ﺑﺘﻮان ﺑﻪ ﺑﻬﺘﺮﻳﻦ ﻣﺪل رﺳﻴﺪ ) Duenas
ﻣﺮﺗﺒﻪ ﺗﻜﺮار ﻣﺮﺗﺐ ﺷﺪه اﻧﺪ .ﺧﺎﻧﻮاده اﺻﻠﻲ اﻟﮕﻮﻫﺎي ﺳﺮي
.(et al. 2005ﻣﺪﻟﻬﺎي آرﻳﻤﺎ ﻧﻪ ﺗﻨﻬﺎ ﭘﻴﺶ ﺑﻴﻨﻲ ﻣﻲ ﻛﻨﻨﺪ ﺑﻠﻜﻪ
زﻣﺎﻧﻲ ﻳﻌﻨﻲ اﻟﮕﻮي Auto Regressive Integrated
ﺣﺘﻲ داﻣﻨﻪ اﻃﻤﻴﻨﺎن ﻫﻢ ﺑﺮاي ﭘﻴﺶ ﺑﻴﻨﻲ اراﺋﻪ ﻣﻲ دﻫﻨﺪ.
) ،Moving Average (ARIMAﻛﻪ ﺑﺎ ﻣﺮﺗﺒﻪ ﻫﺎي p
).(Lumbreras et al. 2009
)اﺗﻮرﮔﺮﺳﻴﻮن() d ،در ﺟﻪ ﺗﻤﺎﻳﺰ( و ) qﺗﺮﺗﻴﺐ ﻣﻴﺎﻧﮕﻴﻨﻬﺎي
ﺑﺮاي ﺗﻌﻴﻴﻦ ﻣﻨﺎﺳﺐ ﺑﻮدن ) ،( Goodness of fitﻣﺪل
ﻣﺘﺤﺮك( ﺗﻌﻴﻴﻦ ﻣﻲ ﺷﻮد ،در اﻟﮕﻮ ﺳﺎزي از وﺿﻌﻴﺖ ﻫﺎي
ﺳﺮي زﻣﺎﻧﻲ از (AIC) Akaike Information
دﻧﻴﺎي واﻗﻌﻲ از اﻫﻤﻴﺖ زﻳﺎدي ﺑﺮﺧﻮردار اﺳﺖ .اﻳﻦ ﺧﺎﻧﻮاده
Criterionﻳﺎ ﺿﺮﻳﺐ آﻛﺎﻳﻲ اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد .ﺿﺮﻳﺐ آﻛﺎﻳﻲ
ﻛﻪ ﺑﻪ اﻟﮕﻮي ﺑﺎﻛﺲ-ﺟﻨﻜﻴﻨﺲ ﻧﻴﺰ ﻣﻌﺮوف اﺳﺖ ،ﺗﻮﺳﻂ
ﻳﻚ ﻣﻌﻴﺎر ﻣﺴﺘﻘﻞ و ﻋﻴﻨﻲ ﺑﺮاي اﻧﺘﺨﺎب ﻣﻨﺎﺳﺐ ﺗﺮﻳﻦ ﻣﺪل
ﺳﻴﺴﺘﻢ ﻫﺎي آﻣﺎري ﻧﻈﻴﺮ MiniTabﺑﻪ ﺳﻬﻮﻟﺖ ﻗﺎﺑﻞ ﺑﺮرﺳﻲ
اﺳﺖ .در اﻳﻦ روش ﻣﻨﺎﺳﺐ ﺑﻮدن ﻣﺪل ﺑﺮ اﺳﺎس ﻣﺠﻤﻮع
اﺳﺖ .در ﺑﺴﻴﺎري از زﻣﻴﻨﻪ ﻫﺎﻳﻲ ﻛﻪ ﺳﺮي زﻣﺎﻧﻲ ﻣﻮرد اﺳﺘﻔﺎده
ﻣﺮﺑﻌﺎت ﺑﺎﻗﻴﻤﺎﻧﺪه اﺳﺖ؛ و ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻌﺪاد ﭘﺎراﻣﺘﺮ ﻫﺎي
ﻗﺮار ﻣﻲ ﮔﻴﺮد ،ﮔﺮاﻳﺸﻬﺎي دوره اي ﻣﻌﻤﻮل اﺳﺖ .در ﭼﻨﻴﻦ
ﻣﺴﺘﻘﻞ ﻛﺎﻫﺶ ﻣﻲ ﻳﺎﺑﺪ (Ingrisch et al. 2009) .اﮔﺮ ﭼﻪ
ﻣﻮاردي ﺟﻬﺖ ﺗﺤﻠﻴﻞ داده ﻫﺎ از ﻣﺪل ﻫﺎي ﻓﺼﻠﻲ ﺿﺮﺑﻲ
وﻗﺘﻲ ﻛﻪ ﺗﻌﺪاد ﭘﺎراﻣﺘﺮ ﻫﺎي ﻣﺴﺘﻘﻞ اﻓﺰاﻳﺶ ﻣﻲ ﻳﺎﺑﺪ ﻣﺪل
) ARIMA(p,d,q)(P,D,Qاﺳﺘﻔﺎده ﻣﻲ ﺷﻮد ﻛﻪ در آن
اﻧﻌﻄﺎف ﭘﺬﻳﺮ ﺗﺮ ﻣﻲ ﺷﻮد ،اﻣﺎ از آﻧﺠﺎ ﻛﻪ ﻫﻤﻮاره ﻣﻨﻄﻘﻲ ﺗﺮ
p,d,qﻣﺮﺗﺒﻪ ﻫﺎي ﻏﻴﺮ ﻓﺼﻠﻲ و P,D,Qﻣﺮﺗﺒﻪ ﻫﺎي ﻓﺼﻠﻲ
اﺳﺖ ﻛﻪ ﻣﺪل ﺳﺎده ﺗﺮ و ﻧﻪ ﭘﻴﭽﻴﺪه ﺗﺮ اﻧﺘﺨﺎب ﺷﻮد ،اﻳﻦ
اﺳﺖ .در ﺗﺤﻠﻴﻞ ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ ﺷﻨﺎﺳﺎﻳﻲ اﻟﮕﻮ ﻳﻌﻨﻲ ﺗﻌﻴﻴﻦ
ﻣﻮﺿﻮع ﻋﻤﻮﻣﺎ ﻣﻮرد ﻗﺒﻮل اﺳﺖ ﻛﻪ ﺑﻬﺘﺮﻳﻦ ﻣﺪل ﻣﺪﻟﻲ اﺳﺖ
ﻣﻘﺎدﻳﺮ ﻣﺮﺗﺒﻪ ﻫﺎي ﻓﺼﻠﻲ و ﻏﻴﺮ ﻓﺼﻠﻲ ﺑﺮ اﺳﺎس رﻓﺘﺎر
ﻛﻪ ﻫﻢ ﺑﻪ ﻣﻴﺰان ﻛﺎﻓﻲ ﭘﻴﺶ ﺑﻴﻨﻲ ﻛﻨﺪ و ﻫﻢ از ﺗﻌﺪاد ﻛﻤﺘﺮ
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
ﻣﻲ ﺑﺎﺷﺪ ) Hamilton 1994; Box and Jenkins
/ 78ﻓﺎﻃﻤﻪ ﻣﻨﺼﻮري و ﻫﻤﻜﺎران
ﭘﺎراﻣﺘﺮ اﺳﺘﻔﺎده ﻛﺮده ﺑﺎﺷﺪ .ﻳﻜﻲ از راﻫﻬﺎي رﺳﻴﺪن ﺑﻪ ﭼﻨﻴﻦ ﻣﺪﻟﻲ اﺳﺘﻔﺎده از AICاﺳﺖWagemakers and ) .
ARIMAﭘﻴﺸﻨﻬﺎد ﺷﺪ ﻛﻪ ﺗﻤﺎم ﭘﺎراﻣﺘﺮﻫﺎي آن در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ دار ﺑﻮدﻧﺪ) .ﺷﻜﻞ .(1 b
از ﻣﻘﺎدﻳﺮ ACF, PACFدر ﺳﻄﺢ ﻣﻌﻨﻲ داري 0/05ﻣﺪل
و ﺷﻴﺐ ﺧﻂ ﻧﺰدﻳﻚ ﺑﻪ ﺻﻔﺮ و ﻏﻴﺮ ﻣﻌﻨﻲ دار داﺷﺖ .ﺗﺠﺰﻳﻪ
ﻫﺎي ﻣﻨﺎﺳﺐ اوﻟﻴﻪ ﺷﻨﺎﺳﺎﻳﻲ ﺷﺪ و ﭘﺲ از ﺳﺎﺧﺘﻦ ﻣﺪل ،ﺑﺎ
داده ﻫﺎ ﻣﺪل ARIMA (0،1،1) (1،1،1) 6را ﭘﻴﺸﻨﻬﺎد ﻛﺮد
ﺿﺮﻳﺐ آﻛﺎﻳﻲ ﺑﻬﺘﺮﻳﻦ ﻣﺪل اﻧﺘﺨﺎب ﺷﺪ.
ﻛﻪ ﺗﻤﺎم ﭘﺎراﻣﺘﺮﻫﺎي آن در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ دار ﺑﻮدﻧﺪ. )ﺷﻜﻞ .(1 c روﻧﺪ NO2ﻫﻢ در ﻃﻮل ﻣﺪت ﺗﻘﺮﻳﺒﺎ ﺛﺎﺑﺖ ﺑﻮد و ﺷﻴﺐ
ﻧﺘﺎﻳﺞ ﻣﻴﺎﻧﮕﻴﻦ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﻛﺮﻣﺎن در دوره ﻣﻮرد
ﺧﻂ ﻧﺰدﻳﻚ ﺑﻪ ﺻﻔﺮ و ﻏﻴﺮ ﻣﻌﻨﻲ دار داﺷﺖ .ﺑﺎ ﺗﺠﺰﻳﻪ ﻣﺪل
ﺑﺮرﺳﻲ در ﺟﺪول 1آﻣﺪه اﺳﺖ .در اﻳﻦ ﻣﻄﺎﻟﻌﻪ اﻧﺪازه ﮔﻴﺮي 7
ﻣﺸﺨﺺ ﮔﺮدﻳﺪ ﻛﻪ اﻟﮕﻮي ﻓﺼﻠﻲ 12ﻣﺎﻫﻪ اي در اﻳﻦ داده ﻫﺎ
آﻻﻳﻨﺪه ﻫﻮاي ﻛﺮﻣﺎن ﺑﺎ روش ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ ﻣﻮرد ﺑﺮرﺳﻲ
وﺟﻮد دارد و ﻣﺪل ARIMA (0،0،0) (0،1،1)12ﭘﻴﺸﻨﻬﺎد
ﻗﺮار ﮔﺮﻓﺖ .اﻳﻦ آﻻﻳﻨﺪه ﻫﺎ ﺷﺎﻣﻞ CO, NO, NO2, NOx,
ﺷﺪ ﻛﻪ ﺗﻤﺎم ﭘﺎراﻣﺘﺮﻫﺎي آن در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ دار ﺑﻮدﻧﺪ.
O3, SO2و ﮔﺮد و ﻏﺒﺎر ) (PM10ﺑﻮدﻧﺪ .ﻣﺪﻟﻬﺎي ﭘﻴﺶ ﺑﻴﻨﻲ
)ﺷﻜﻞ .(1 d
آرﻳﻤﺎ ﺑﺮاي ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﻛﺮﻣﺎن ﺑﺮاي ﻫﺮ
روﻧﺪ NOxﻫﻢ در ﻃﻮل اﻳﻦ ﻣﺪت ﺛﺎﺑﺖ ﺑﻮد .ﺑﺎ ﺗﺤﻠﻴﻞ داده ﻫﺎ
ﻛﺪام ﺟﺪاﮔﺎﻧﻪ ﺳﺎﺧﺘﻪ ﺷﺪ.
ﻣﺸﺨﺺ ﮔﺮدﻳﺪ ﻛﻪ اﻟﮕﻮي ﻓﺼﻠﻲ 12ﻣﺎﻫﻪ اي در اﻳﻦ داده ﻫﺎ
روﻧﺪ ﮔﺎز ﻣﻮﻧﻮاﻛﺴﻴﺪ ﻛﺮﺑﻦ در ﻃﻮل اﻳﻦ 4ﺳﺎل و ﻧﻴﻢ
وﺟﻮد دارد .ﻧﻬﺎﻳﺘﺎ ﻣﺪل(0،0،0) (0،0،1)12
ARIMA
ﺑﺎ ﻛﺎﻫﺶ ﻫﻤﺮاه ﺑﻮد .اﻳﻦ ﻛﺎﻫﺶ در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ دار
ﭘﻴﺸﻨﻬﺎد ﺷﺪ ﻛﻪ ﺗﻤﺎم ﭘﺎراﻣﺘﺮﻫﺎي آن در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ
ﺑﻮده و ﺑﺼﻮرت
دار ﺑﻮدﻧﺪ .ﺑﻪ ﻧﻈﺮ ﻣﻲ رﺳﺪ ﻛﻪ در ﻛﺮﻣﺎن ﻣﻘﺪار NOxدر
y =2/056 – 0/02 ×tﺑﻮد .ﺑﺎ ﺗﺠﺰﻳﻪ ﻣﺪل ﻣﺸﺨﺺ ﮔﺮدﻳﺪ ﻛﻪ
ﺣﻮاﻟﻲ ﻣﺎﻫﻬﺎي 12و ) 11ﻧﻮاﻣﺒﺮ و دﺳﺎﻣﺒﺮ( از ﺑﻘﻴﻪ ﺑﻴﺸﺘﺮ
دوره ﺗﻨﺎوب 12ﻣﺎﻫﻪ اي در اﻳﻦ اﻃﻼﻋﺎت وﺟﻮد دارد و
اﺳﺖ) .ﺷﻜﻞ .(1 e
اﻓﺰاﻳﺶ ﻣﻮﻧﻮ اﻛﺴﻴﺪ ﻛﺮﺑﻦ در ﻛﺮﻣﺎن ﻫﻤﺰﻣﺎن ﺑﺎ ﻣﺎﻫﻬﺎي
روﻧﺪ O3در ﻃﻮل اﻳﻦ ﻣﺪت ﺗﻘﺮﻳﺒﺎ ﺛﺎﺑﺖ ﺑﻮد و ﺷﻴﺐ ﺧﻂ
زﻣﺴﺘﺎن ﺑﻮده اﺳﺖ و ﻧﻬﺎﻳﺘﺎ ﺑﺮ اﺳﺎس ﻣﻘﺎدﻳﺮ ACFو PACF
ﻧﺰدﻳﻚ ﺑﻪ ﺻﻔﺮ و ﻏﻴﺮ ﻣﻌﻨﻲ دار ﺑﻮد .ﺳﭙﺲ ﺑﺎ ﺗﺤﻠﻴﻞ داده ﻫﺎ
داده ﻫﺎ اﻟﮕﻮي ﻓﺼﻠﻲ ﺿﺮﺑﻲ ARIMA (0،1،1) (1،0،2)12
ﻣﺸﺨﺺ ﮔﺮدﻳﺪ ﻛﻪ اﻟﮕﻮي ﻓﺼﻠﻲ 12ﻣﺎﻫﻪ اي در اﻳﻦ داده ﻫﺎ
ﭘﻴﺸﻨﻬﺎد ﺷﺪ ﻛﻪ ﺗﻤﺎم ﭘﺎراﻣﺘﺮﻫﺎي آن در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ
وﺟﻮد دارد .درﻧﻬﺎﻳﺖ ﻣﺪل ARIMA (1،1،1) (1،0،1)12
دار ﺑﻮدﻧﺪ و ﻧﻤﻮدار ACFو PACFﺑﺎﻗﻴﻤﺎﻧﺪه ﻫﺎ ﻫﻢ ﻣﻨﺎﺳﺐ
ﭘﻴﺸﻨﻬﺎد ﺷﺪ .در اﻟﮕﻮي ﻓﺼﻠﻲ ﺗﻘﺮﻳﺒﺎ 12ﻣﺎﻫﻪ دﻳﺪه ﺷﺪه ،ﺑﻪ
ﺑﻮدن اﻳﻦ ﻣﺪل را ﺗﺎﻳﻴﺪ ﻛﺮد )ﺷﻜﻞ .(1 a
ﻧﻈﺮ ﻣﻲ رﺳﺪ ﻛﻪ ﻣﻴﺰان ازن در ﻫﻮاي ﻛﺮﻣﺎن در ﺣﻮاﻟﻲ ﻣﺎه 6و
روﻧﺪ ﮔﺮد و ﻏﺒﺎر در ﻃﻮل اﻳﻦ 4ﺳﺎل و ﻧﻴﻢ اﻓﺰاﻳﺸﻲ
7ﻳﻌﻨﻲ ژوﺋﻦ و ژوﺋﻴﻪ )ﻣﺎﻫﻬﺎي ﮔﺮم( اﻓﺰاﻳﺶ دارد ﻛﻪ ﺗﻤﺎم
ﺑﺼﻮرت y =117/1 + 0/313×tداﺷﺖ .ﺑﺎ ﺗﺠﺰﻳﻪ ﻣﺪل
ﭘﺎراﻣﺘﺮﻫﺎي آن در ﺳﻄﺢ 0/05=αﻣﻌﻨﻲ دار ﺑﻮدﻧﺪ) .ﺷﻜﻞ (1 f
ﻣﺸﺨﺺ ﮔﺮدﻳﺪ ﻛﻪ اﻟﮕﻮي ﻓﺼﻠﻲ ﺣﺪوداً 8ﻣﺎﻫﻪ اي در اﻳﻦ
روﻧﺪ SO2در ﻃﻮل اﻳﻦ 4ﺳﺎل و ﻧﻴﻢ ﺗﻘﺮﻳﺒﺎ ﺛﺎﺑﺖ ﺑﻮد و ﺷﻴﺐ
اﻃﻼﻋﺎت وﺟﻮد دارد ،داده ﻫﺎي ﺧﺎم ﻧﺸﺎن داد ﻛﻪ ﻣﻴﺰان ﮔﺮد و
ﺧﻂ ﻧﺰدﻳﻚ ﺑﻪ ﺻﻔﺮ و ﻏﻴﺮ ﻣﻌﻨﻲ دار ﺑﻮد .در اﻳﻦ داده ﻫﺎ
ﻏﺒﺎر در ﻣﺎه ﭘﻨﺠﻢ )ﻣﻪ( و دﻫﻢ )اﻛﺘﺒﺮ( ﻳﻌﻨﻲ اواﺳﻂ ﺑﻬﺎر و ﭘﺎﻳﻴﺰ
وارﻳﺎﻧﺲ ﻫﺎ ﺗﻐﻴﻴﺮات ﻣﻌﻨﻲ داري داﺷﺖ و ﺑﺎ Box-Cox
ﺑﻴﺸﺘﺮ از ﺑﻘﻴﻪ ﻣﺎﻫﻬﺎ ﺑﻮده اﺳﺖ .ﻧﻬﺎﻳﺘﺎ ﻣﺪل (0،1،1) (0،1،1)8
Transformationﺑﺼﻮرت ﺛﺎﺑﺖ در آﻣﺪ .ﺳﭙﺲ اﻟﮕﻮي
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
(Farrell 2004در اﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺑﺮاي رﺳﻴﺪن ﺑﻪ ﻣﺪل ﻧﻬﺎﻳﻲ
روﻧﺪ NOدر ﻃﻮل اﻳﻦ 4ﺳﺎل و ﻧﻴﻢ ﺗﻘﺮﻳﺒﺎ ﺛﺎﺑﺖ ﺑﻮد
ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﺷﻬﺮ 79 /....
ﻓﺼﻠﻲ ﺗﻘﺮﻳﺒﺎً 3ﻣﺎﻫﻪاي ARIMA (0،1،0) (1،0،1)3ﭘﻴﺸﻨﻬﺎد ﺷﺪ )ﺷﻜﻞ .(1 g
ازن در اﺳﺘﺮاﺗﻮﺳﻔﺮ ﻳﻚ ﻣﺤﺎﻓﻆ اﺳﺖ اﻣﺎ در ﺗﺮوﭘﻮﺳﻔﺮ ﻳﻚ آﻟﻮده ﻛﻨﻨﺪه اﺳﺖ و از واﻛﻨﺶ ﺷﻴﻤﻴﺎﻳﻲ ﺑﻴﻦ NO2و اﻋﻼم ﺳﺎزﻣﺎن ﺑﻬﺪاﺷﺖ ﺟﻬﺎﻧﻲ در 2006ﻣﻘﺪار 100 µg/m³
ﺑﺤﺚ ﻣﺪﻟﻬﺎي ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ در ﺑﺴﻴﺎري از ﻣﻄﺎﻟﻌﺎت ﻋﻠﻮم
ازن ﺑﺮاي ﺣﺪاﻛﺜﺮ ﻣﻴﺎﻧﮕﻴﻦ روزاﻧﻪ 8ﺳﺎﻋﺘﻪ ﻣﺠﺎز ﻣﻲ ﺑﺎﺷﺪ .از
ﻣﺤﻴﻄﻲ اﺳﺘﻔﺎده ﺷﺪه و ﻧﺘﺎﻳﺞ ﻣﻄﻠﻮﺑﻲ داﺷﺘﻪ اﺳﺖ ) Kumar
اﻳﻦ ﻣﻘﺪار ﺑﻴﺸﺘﺮ ﺑﺴﺘﻪ ﺑﻪ ﺣﺴﺎﺳﻴﺖ ﻓﺮد ﻣﻲ ﺗﻮاﻧﺪ ﻋﻮارﺿﻲ
.(and De Ridde 2010ﻣﻄﺎﻟﻌﺎت ﻧﺸﺎن داده ﻛﻪ ﻫﻴﭻ ﻣﺪل
اﻳﺠﺎد ﻛﻨﺪ .ﺑﻨﺎﻳﺮاﻳﻦ ﻛﻨﺘﺮل ازن ﻫﻢ ﻣﺜﻞ ﺳﺎﻳﺮ آﻻﻳﻨﺪه ﻫﺎ
ﺧﻄﻲ ﺳﺎده اي ﺑﺮاي آﻻﻳﻨﺪه ﻫﺎي ﻫﻮا وﺟﻮد ﻧﺪارد و ﻣﻌﻤﻮﻻ
ﻻزم اﺳﺖ)Francisco-
ﺑﺮاي ﻣﺪﻟﺴﺎزي اﻳﻦ آﻻﻳﻨﺪه ﻫﺎ از ﻣﺪﻟﻬﺎي ﭘﻴﭽﻴﺪه ﺗﺮ و از ﺟﻤﻠﻪ
.(Fernandez 2011
Quintela-del-Rio and
ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد ) Kumar and De
در ﺣﺎﻟﻴﻜﻪ NO2ﻳﻚ ﻣﻨﺒﻊ ﺑﺮاي ﺗﻮﻟﻴﺪ ازن اﺳﺖ،
.(Ridder 2010وﻗﺘﻲ ﻛﻪ ﻫﺪف ﻣﻄﺎﻟﻌﻪ ﭘﻴﺶ ﺑﻴﻨﻲ اﺳﺖ و
ﻧﻴﺘﺮوژن اﻛﺴﺎﻳﺪ ) (NOازن را ﺗﺨﺮﻳﺐ ﻣﻲ ﻛﻨﺪ و ﺑﺮاي ﻫﻤﻴﻦ
ﻣﺘﻐﻴﺮ ﻣﻮرد ﺑﺮرﺳﻲ ﺗﺤﺖ ﺗﺎﺛﻴﺮ ﻋﻮاﻣﻞ ﻣﺘﻌﺪد ﻣﻲ ﺑﺎﺷﺪ و رواﺑﻂ
اﺳﺖ ﻛﻪ ﻣﻘﺎدﻳﺮ ازن در ﺷﻬﺮ ﻫﺎ ﺑﻪ اﻧﺪازه روﺳﺘﺎﻫﺎ ﺑﺎﻻ ﻧﻴﺴﺖ،
ﺑﻪ ﺧﻮﺑﻲ ﺷﻨﺎﺧﺘﻪ ﺷﺪه ﻧﻴﺴﺘﻨﺪ ،ﻣﺜﻞ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮا ،روﺷﻬﺎي
زﻳﺮا NOﺗﻮﺳﻂ اﺗﻮﻣﺒﻴﻠﻬﺎ ﺗﻮﻟﻴﺪ ﻣﻲ ﺷﻮد .اﻟﺒﺘﻪ ﻋﻮاﻣﻞ دﻳﮕﺮ
ﺳﺮي ﻫﺎي زﻣﺎﻧﻲ ﺗﻚ ﻣﺘﻐﻴﺮه ﺑﻬﺘﺮ از ﻣﺪﻟﻬﺎي دﻳﮕﺮ ﻣﻲ ﺗﻮاﻧﻨﺪ
از ﺟﻤﻠﻪ ﺗﻌﺪاد ﺳﺎﻋﺘﻬﺎي ﻣﻮاﺟﻬﻪ ﺑﺎ ﻧﻮر ﺧﻮرﺷﻴﺪ ،دﻣﺎ ،ﺑﺎد و
ﻛﺎر ﭘﻴﺶ ﺑﻴﻨﻲ را اﻧﺠﺎم دﻫﻨﺪ) Kumar and De Ridder
ارﺗﻔﺎع وﺟﻮد دارد ﻛﻪ ﺗﻮﻟﻴﺪ ازن را ﺗﺤﺖ ﺗﺎﺛﻴﺮ ﻗﺮار ﻣﻲ دﻫﺪ
.(2010در اﻳﻦ ﻣﺪﻟﻬﺎ ﺑﺮ اﺳﺎس داده ﻫﺎي ﻗﺒﻠﻲ ﻣﺤﺎﺳﺒﺎﺗﻲ
) Quintela-del-Rio and Francisco-Fernandez
اﻧﺠﺎم ﻣﻲ ﺷﻮد و داده ﻫﺎﻳﻲ ﺑﺎ داﻣﻨﻪ اﻃﻤﻴﻨﺎن ﺑﺮاي آﻳﻨﺪه ﭘﻴﺶ
.(2011
ﺑﻴﻨﻲ ﻣﻲ ﺷﻮد .ﻣﺪل ﺳﺮي زﻣﺎﻧﻲ ﺑﺮاي ﺳﺎﻟﻴﺎن زﻳﺎدي ﺑﺎ ﻣﻮﻓﻘﻴﺖ
در ﻃﺒﻴﻌﺖ ازن از ﺷﻮﻛﻬﺎي اﻟﻜﺘﺮﻳﻜﻲ ﻧﺎﺷﻲ از ﻃﻮﻓﺎنﻫﺎ
ﺑﺮاي ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮا ﺑﻜﺎر رﻓﺘﻪ اﺳﺖ
در ﻻﻳﻪ ﻫﺎي ﺑﺎﻻي اﺗﻤﺴﻔﺮ ﻳﺎ ﺑﺨﺎﻃﺮ ﺗﺎﺛﻴﺮ اﺷﻌﻪ ﻣﺎورا ﺑﻨﻔﺶ
).(Lumbreras et al. 2009
روي ﻣﻮﻟﻜﻮﻟﻬﺎي اﻛﺴﻴﮋن ﺗﻮﻟﻴﺪ ﻣﻲ ﺷﻮﻧﺪ .ﺗﻮﻟﻴﺪ ﺑﻌﻀﻲ از ﻣﻮاد
ﻣﻄﺎﻟﻌﺎت ﻧﺸﺎن داده اﺳﺖ ﻛﻪ ازن در روزﻫﺎي ﮔﺮم ﻛﻪ
ﺷﻴﻤﻴﺎﻳﻲ از ﺟﻤﻠﻪ ﻛﻠﺮوﻓﻠﻮروﻛﺮﺑﻨﻬﺎ ﺗﻮﺳﻂ اﻧﺴﺎن ﺑﺎﻋﺚ
ﺗﺎﺑﺶ ﻧﻮر آﻓﺘﺎب زﻳﺎد اﺳﺖ و ﺑﺎد ﻛﻢ اﺳﺖ و ﻓﺸﺎر ﺳﻄﺤﻲ
ﺗﺨﺮﻳﺐ ازن ﻣﻲ ﺷﻮد .ﺑﺮ اﺳﺎس ﻗﺮاردادﻫﺎي ﺑﻴﻦ اﻟﻤﻠﻠﻲ ﺗﻮﻟﻴﺪ
ﺑﺎﻻﺳﺖ ،اﻓﺰاﻳﺶ ﻣﻲ ﻳﺎﺑﺪ ) .(Duenas et al. 2005ﻣﻌﻤﻮﻻ
اﻳﻦ ﻣﻮاد ﺑﺎﻳﺪ ﻛﺎﻫﺶ ﻳﺎﺑﺪ ) Quintela-del-Rio and
ﻣﻘﺪار ازن در ﺗﺎﺑﺴﺘﺎن ﺑﻴﺸﺘﺮ اﺳﺖ )(Duenas et al. 2005
.(Francisco-Fernandez 2011
و در ﻣﻄﺎﻟﻌﻪ ﻣﺎ ﻫﻢ ﻫﻤﻴﻦ ﻧﺘﻴﺠﻪ ﮔﺮﻓﺘﻪ ﺷﺪ .ﻣﺪﻟﻬﺎي
ذرات ﻣﻌﻠﻖ ﻧﻴﺰ ﻳﻜﻲ از آﻻﻳﻨﺪه ﻫﺎي ﻣﻬﻢ ﻫﻮا در ﺷﻬﺮﻫﺎ
ARIMAدر ﻣﻄﺎﻟﻌﺎت دﻳﮕﺮ ﺑﺮاي ﺑﺮرﺳﻲ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮا
ﻣﺤﺴﻮب ﻣﻲ ﺷﻮﻧﺪ ) .(Goyal et al. 2006ﻣﻄﺎﻟﻌﺎت ﻣﺘﻌﺪد
از ﺟﻤﻠﻪ ازن ﺑﻜﺎر ﮔﺮﻓﺘﻪ ﺷﺪه اﻧﺪ .از ﺟﻤﻠﻪ در ﻣﻄﺎﻟﻌﻪ اي در
ﻧﺸﺎن داده ﻛﻪ آﻻﻳﻨﺪهﻫﺎي PM10ﻓﺼﻠﻲ اﺳﺖ )(Liu 2009
اﺳﭙﺎﻧﻴﺎ ﻣﺪل ARIMA (1،0،0) (1،0،1)24ﺑﺮاي ﭘﻴﺸﮕﻮﺋﻲ
و در ﻣﻄﺎﻟﻌﻪ ﻣﺎ ﻫﻢ ﺣﺪاﻗﻞ دو ﭘﻴﻚ ﺳﺎﻟﻴﺎﻧﻪ ﺑﺮاي اﻳﻦ ذرات
ازن ﻣﻨﺎﻃﻖ ﺷﻬﺮي و ﻣﺪلARIMA (2،1،1) (0،1،1)24
ﻣﺸﺎﻫﺪه ﺷﺪ .ذرات ﻣﻌﻠﻖ ﻋﻼوه ﺑﺮ ﻛﺎﻫﺶ دﻳﺪ و رﺳﻮب در
ﺑﺮاي ﭘﻴﺸﮕﻮﺋﻲ ازن ﻣﻨﺎﻃﻖ روﺳﺘﺎﺋﻲ ﺑﻜﺎر ﮔﺮﻓﺘﻪ ﺷﺪ
ﻣﺤﻞﻫﺎي ﻣﺨﺘﻠﻒ از ﻃﺮﻳﻖ اﺳﺘﻨﺸﺎق ﻣﻲ ﺗﻮاﻧﻨﺪ ﺳﻼﻣﺖ اﻧﺴﺎن
).(Duenas et al. 2005
را ﺑﻪ ﺧﻄﺮ اﻧﺪازﻧﺪ .ﻣﻄﺎﻟﻌﺎت ﻣﺘﻌﺪدي اﺛﺮات ﻣﻀﺮ ﺑﺮ ﺳﻼﻣﺖ اﻧﺴﺎن در اﺛﺮ ذرات ﻣﻌﻠﻖ را ﮔﺰارش ﻛﺮده اﺳﺖ
) Goyal
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
ﻫﻴﺪرو ﻛﺮﺑﻨﻬﺎ و ﻧﻮر ﺧﻮرﺷﻴﺪ اﻳﺠﺎد ﻣﻲ ﺷﻮد .ﺑﺮ اﺳﺎس آﺧﺮﻳﻦ
/ 80ﻓﺎﻃﻤﻪ ﻣﻨﺼﻮري و ﻫﻤﻜﺎران
) اﺳﺘﺎﻧﺪارد وﺿﻌﻴﺖ 24ﺳﺎﻋﺘﻪ آﻻﻳﻨﺪه ﻫﺎ ﺑﺮ ﻃﺒﻖ اﺳﺘﺎﻧﺪارد
اﻛﺴﻴﺪ ﻫﺎي ﻧﻴﺘﺮوژن اﺳﺖ .واﻛﻨﺸﻬﺎي ﻓﺘﻮ ﺷﻴﻤﻴﺎﻳﻲ ﺑﺎ اﻓﺰاﻳﺶ
24ﺳﺎﻋﺘﻪ AQIﺑﺪﻳﻦ ﺗﺮﺗﻴﺐ ﺗﻌﺮﻳﻒ ﻣﻴﮕﺮدد :وﺿﻌﻴﺖ
اﺷﻌﻪ ﺷﺮوع ﻣﻲ ﺷﻮد و ﺑﺎﻋﺚ اﻓﺰاﻳﺶ O3, HNO3و SO4-²
ﺧﻮب ﻫﻮا ﺑﺮاي ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ ) ، (0 -3/4 PPMﺑﺮاي
ﻣﻲ ﺷﻮﻧﺪ ،ﺑﺨﺼﻮص HNO3ﻛﻪ ﻣﺤﻠﻮل در آب اﺳﺖ و
ذرات ﻣﻌﻠﻖ ﻛﻮﭼﻜﺘﺮ از 10ﻣﻴﻜﺮون) ،(0-39 µg/m3
ﻣﻲ ﺗﻮاﻧﺪ روي ﺳﻄﻮح ﻧﺸﺴﺖ ﻛﻨﺪ ) .(Liu 2009در ﻣﻄﺎﻟﻌﻪ
وﺿﻌﻴﺖ ﻣﺘﻮﺳﻂ ﻫﻮا ﺑﺮاي ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ) -3/5PPM
Liuو ﺑﻌﻀﻲ ﻣﻄﺎﻟﻌﺎت دﻳﮕﺮ ) (Liu 2009ﺑﻴﻦ ﻣﻘﺎدﻳﺮ
،(6/8ﺑﺮاي ذرات ﻣﻌﻠﻖ ﻛﻮﭼﻜﺘﺮ از 10ﻣﻴﻜﺮون)µ g/m3
اﻛﺴﻴﺪ ﻫﺎي ﻧﻴﺘﺮوژن و ذرات ﻣﻌﻠﻖ ﻫﻤﺒﺴﺘﮕﻲ ﻣﻌﻨﻲ داري دﻳﺪه
،( 99 - 40وﺿﻌﻴﺖ ﻏﻴﺮ ﺑﻬﺪاﺷﺘﻲ ﺑﺮاي ﮔﺮوه ﻫﺎي ﺣﺴﺎس
ﺷﺪ .ﺧﻮﺷﺒﺨﺘﺎﻧﻪ در ﻣﺪل ﺳﺮي زﻣﺎﻧﻲ ﻧﻴﺎزي ﺑﻪ ﻓﺮض اﺳﺘﻘﻼل
در ﻣﻮرد ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ) (10/3-6/9 PPMوﺑﺮاي ذرات
آﻻﻳﻨﺪه ﻫﺎ ﻧﻴﺴﺖ و ﻣﻲ ﺗﻮان از آن ﺑﺮاي ﭘﻴﺸﮕﻮﺋﻲ آﻻﻳﻨﺪه
ﻣﻌﻠﻖ ﻛﻮﭼﻜﺘﺮ از 10ﻣﻴﻜﺮون) ،(100- 199µg/m3وﺿﻌﻴﺖ
ﻫﺎﻳﻲ ﻛﻪ ﻫﻤﺒﺴﺘﮕﻲ دارﻧﺪ ﻧﻴﺰ اﺳﺘﻔﺎده ﻛﺮد ).(Liu 2009
وﺧﻴﻢ ﺑﺮاي ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺑﻴﺸﺘﺮ از ) (10/4 PPMو
از ﻛﺎﺳﺘﻲ ﻫﺎي اﻳﻦ ﻣﻄﺎﻟﻌﺎت وﺟﻮد روزﻫﺎﻳﻲ ﺑﻮد ﻛﻪ در آن
ﺑﺎﻻﺧﺮه وﺿﻌﻴﺖ وﺧﻴﻢ ﺑﺮاي ذرات ﻣﻌﻠﻖ ﻛﻮﭼﻜﺘﺮ از 10
ﻣﻴﺰان آﻻﻳﻨﺪه ﻫﺎ ﺑﻪ ﻋﻠﺖ ﺧﺮاﺑﻲ دﺳﺘﮕﺎه اﻧﺪازه ﮔﻴﺮي ﻧﺸﺪه ﺑﻮد
ﻣﻴﻜﺮون ﺑﻴﺸﺘﺮ از) (200 g/mµ 3ﻣﻲ ﺑﺎﺷﺪ .ﺑﺮاي آﻻﻳﻨﺪه ﻫﺎ
و اﺳﺘﻔﺎده از ﻣﻴﺎﻧﮕﻴﻦ ﻣﺎﻫﺎﻧﻪ ﺗﺎ ﺣﺪي اﻳﻦ ﻣﺸﻜﻞ را ﻣﺮﺗﻔﻊ ﻛﺮد.
وﺿﻌﻴﺖ ذرات ﻣﻌﻠﻖ در ﻛﺮﻣﺎن در ﺑﺴﻴﺎري از ﻣﺎﻫﻬﺎي ﺳﺎل ﺑﺎﻻﺗﺮ از 100 µg/m3و ﻏﻴﺮ ﺑﻬﺪاﺷﺘﻲ اﺳﺖ و ﻣﻄﺎﻟﻌﻪ ﺣﺎﺿﺮ
ﻧﺘﻴﺠﻪ ﮔﻴﺮي
ﻧﺸﺎن داد ﻛﻪ ﮔﺮد و ﺧﺎك در ﻫﻮاي ﻛﺮﻣﺎن رو ﺑﻪ اﻓﺰاﻳﺶ اﺳﺖ.
ﺧﻮﺷﺒﺨﺘﺎﻧﻪ ﻣﻴﺰان ﺗﻮﻟﻴﺪ ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ در ﻛﺮﻣﺎن رو ﺑﻪ
در ﻣﻄﺎﻟﻌﻪ ﻣﺎ ﻣﻘﺪار ﻣﻮﻧﻮﻛﺴﻴﺪ ﻛﺮﺑﻦ در زﻣﺴﺘﺎﻧﻬﺎ ﺑﻴﺸﺘﺮ ﺑﻮد
ﻛﺎﻫﺶ اﺳﺖ ،و در ﺣﺎل ﺣﺎﺿﺮ ﻋﻤﺪه ﺗﺮﻳﻦ ﻣﺸﻜﻞ آﻟﻮدﮔﻲ
ﻛﻪ ﺑﻪ اﺣﺘﻤﺎل زﻳﺎد ﺑﻪ ﺧﺎﻃﺮ اﺳﺘﻔﺎده از وﺳﺎﺋﻞ ﮔﺮم ﻛﻨﻨﺪه در
ﻫﻮا در ﻛﺮﻣﺎن ذرات ﻣﻌﻠﻖ اﺳﺖ و ﻣﺪل ﺑﺪﺳﺖ آﻣﺪه ﻧﻴﺰ ﻧﺸﺎن
زﻣﺴﺘﺎن اﺳﺖ .ﻣﻄﺎﻟﻌﻪ Lauو ﻫﻤﻜﺎران ﻫﻢ ﻧﺸﺎن داد ﻛﻪ ﻣﻮﻧﻮ
ﻣﻲ دﻫﺪ ﻛﻪ ﻋﻼوه ﺑﺮ اﻓﺰاﻳﺶ در ﻣﻘﺎﻃﻊ زﻣﺎﻧﻲ ﺧﺎص ،روﻧﺪ
اﻛﺴﻴﺪ ﻛﺮﺑﻦ در ﺗﺎﺑﺴﺘﺎن ﻛﻤﺘﺮ اﺳﺖ و در ﻓﺼﻞ زﻣﺴﺘﺎن و در
ﻛﻠﻲ آن ﻧﻴﺰ رو ﺑﻪ اﻓﺰاﻳﺶ اﺳﺖ .ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﺛﺮات ﻣﻨﻔﻲ اﻳﻦ
ﻣﻜﺎﻧﻬﺎي ﺑﺎ ﺗﺮاﻓﻴﻚ ﺑﺎﻻ ﺑﻴﺸﺘﺮ اﺳﺖ .ﻣﻮﻧﻮ اﻛﺴﻴﺪ ﻛﺮﺑﻦ ﻳﻚ
آﻻﻳﻨﺪه ﻫﺎ ﺑﺮ ﺳﻼﻣﺖ ﻻزم اﺳﺖ ﺑﺮﻧﺎﻣﻪ رﻳﺰي ﻣﻨﺎﺳﺐ ﺑﺮاي
آﻟﻮده ﻛﻨﻨﺪه اﺻﻠﻲ ﺷﻬﺮ ﻫﺎي ﺑﺰرگ اﺳﺖ و ﻣﻲ ﺗﻮاﻧﺪ ﺑﺮ
ﻣﻘﺎﺑﻠﻪ ﺑﺎ آن ﺑﺨﺼﻮص در ﻓﺼﻮل ﺧﺎص ﺻﻮرت ﮔﻴﺮد .درﺧﺖ
ﺳﻼﻣﺖ اﻧﺴﺎن ﺗﺎﺛﻴﺮات ﻣﻨﻔﻲ ﻣﺘﻌﺪد داﺷﺘﻪ ﺑﺎﺷﺪ) Lau et al.
ﻛﺎري در اﻃﺮاف ﺷﻬﺮ ﻛﺮﻣﺎن و ﺑﺨﺼﻮص اﺳﺘﻔﺎده از درﺧﺘﺎن
.(2009در ﻣﺪل ﻣﺎ ﻣﻮﻧﻮ اﻛﺴﻴﺪ ﻛﺮﺑﻦ ﻳﻚ ﺳﻴﺮ ﻧﺰوﻟﻲ ﻫﻢ در
ﻛﻮﻳﺮي ﻛﻪ ﺑﺎ آب و ﻫﻮاي ﻣﻨﻄﻘﻪ ﺳﺎزﮔﺎري دارﻧﺪ ﻣﻲ ﺗﻮاﻧﺪ از
ﻃﻮل اﻳﻦ ﭼﻨﺪ ﺳﺎل ﻧﺸﺎن داد ﻛﻪ ﻳﻚ ﺗﻮﺟﻴﻪ آن اﺟﺮاي ﻃﺮح
ﺟﻤﻠﻪ اﻳﻦ اﻗﺪاﻣﺎت ﺑﺎﺷﺪ.
ﺗﻌﻮﻳﺾ ﺧﻮدروﻫﺎي ﻓﺮﺳﻮده ﻣﻲ ﺑﺎﺷﺪ. در ﺑﻌﻀﻲ از ﻣﻄﺎﻟﻌﺎت ) (Liu 2009ﻣﻘﺪار ازن و اﻛﺴﻴﺪ ﻫﺎي ﻧﻴﺘﺮوژن ﺑﺎ PM10ﻫﻤﺒﺴﺘﮕﻲ داﺷﺘﻨﺪ ﻛﻪ اﺣﺘﻤﺎﻻ ﺑﻪ ﺧﺎﻃﺮ واﻛﻨﺸﻬﺎي ﻓﺘﻮ ﺷﻴﻤﻴﺎﻳﻲ اﺳﺖ ﻛﻪ ﺑﺎ اﻓﺰاﻳﺶ اﺷﻌﻪ ﺷﺮوع ﻣﻲ ﺷﻮد .اﻛﺴﻴﺪ ﻫﺎي ﻧﻴﺘﺮوژن ﻣﻲ ﺗﻮاﻧﻨﺪ در ﺷﺮاﻳﻂ ﻣﺮﻃﻮب ﺑﻪ ﺻﻮرت ذرات در آﻳﻨﺪ و ﺑﺎﻋﺚ اﻓﺰاﻳﺶ PM10 ﺷﻮﻧﺪ ) .(Liu 2009ﻳﻚ ﻓﺮﺿﻴﻪ در ﻣﻮرد ﻫﻤﺒﺴﺘﮕﻲ ﺑﻴﻦ
ﺗﺸﻜﺮ و ﻗﺪر داﻧﻲ ﻧﻮﻳﺴﻨﺪﮔﺎن اﻳﻦ ﻣﻘﺎﻟﻪ از ﺳﺎزﻣﺎن ﺣﻔﺎﻇﺖ ﻣﺤﻴﻂ زﻳﺴﺖ ﻛﺮﻣﺎن و ﺑﺨﺼﻮص ﺧﺎﻧﻢ ﻣﻬﻨﺪس ﺑﺎﺑﻜﻲ ﺑﻪ ﺧﺎﻃﺮ ﺣﺴﻦ ﻫﻤﻜﺎري ﺷﺎن ﻛﻤﺎل ﺗﺸﻜﺮ را دارﻧﺪ .اﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺗﻮﺳﻂ ﻛﻤﻴﺘﻪ ﺗﺤﻘﻴﻘﺎﺗﻲ ﭘﺰﺷﻜﻲ ﻣﺤﻴﻄﻲ داﻧﺸﻜﺪه ﺑﻬﺪاﺷﺖ ﺗﺼﻮﻳﺐ و ﺗﻮﺳﻂ ﻣﻌﺎوﻧﺖ ﭘﮋوﻫﺸﻲ داﻧﺸﮕﺎه ﻋﻠﻮم ﭘﺰﺷﻜﻲ ﻛﺮﻣﺎن ﺗﺎﻣﻴﻦ اﻋﺘﺒﺎر ﺷﺪ.
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
.(et al. 2006ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﺳﺘﺎﻧﺪارد 24ﺳﺎﻋﺘﻪ AQI
اﻛﺴﻴﺪ ﻫﺎي ﻧﻴﺘﺮوژن ﺑﺎ PM10ﺑﻪ ﺧﺎﻃﺮ واﻛﻨﺸﻬﺎي ﺷﻴﻤﻴﺎﻳﻲ
81 /.... ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﺷﻬﺮ
ا
ا
١/٥٢ ١٢٥/٦٩ ٠/٠١٧٣ ٠/٠٢٥٩ ٠/٠٣٧٦ ٠/٠١٥٦٥ ٠/٠٠٩٦
١/٤٨ ١٢٣/٥٧ ٠/٠١٢٢ ٠/٠٢٣٨ ٠/٠٣٣٣ ٠/٠١٤١٥ ٠/٠٠٨٢
٠/٢٩٣١ ٥٤/٣٨ ٠/٠٠٢٦ ٠/٠٠١٥ ٠/٠١٠٢ ٠/٠٠٤٤٥ ٠/٠٠٠٤
٢/٩ ٢٣٤/٠١ ٠/٠٦٨٣ ٠/٠ ٨ ٠/١١٨١ ٠/٠٣١٧ ٠/٠٢٥٣٥
CO (ppm) PM10 (µg/m³) NO (ppm) NO2 (ppm) NOx (ppm) O3 (ppm) SO2 (ppm)
)واﺣﺪ زﻣﺎن در ﻣﺤﻮر اﻓﻘﻲ. ﭘﻴﺶ ﺑﻴﻨﻲ ﺗﻐﻴﻴﺮات آﻻﻳﻨﺪه ﻫﺎ در ﻫﻮاي ﻛﺮﻣﺎن ﻃﺒﻖ اﻟﮕﻮي ﺳﺮي زﻣﺎﻧﻲ ﭘﻴﺸﻨﻬﺎد ﺷﺪه:1 ﺷﻜﻞ (. ﻣﻲ ﺑﺎﺷﺪ1389 ﺗﺎ ﺷﻬﺮﻳﻮر1385 ﻣﺎه اﺳﺖ و از ﻓﺮوردﻳﻦ
Time Series Plot for CO (with forecasts and their 95% confidence limits) 4 3
CO
2 1 0 -1 -2 1
6
12
18
24
30
36 42 Time
48
54
60
66
72
(a) CO
Time Series Plot for Dust (with forecasts and their 95% confidence limits)
300
200 Dust
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
وﺿﻌﻴﺖ آﻻﻳﻨﺪه ﻫﺎي ﺷﻬﺮ ﻛﺮﻣﺎن در دوره ﻣﻮرد ﺑﺮرﺳﻲ-1 ﺟﺪول
100
0
-100 1
5
10
15
20
25
30 35 Time
40
45
50
55
60
(b) PM10
Time Series Plot for NO (with forecasts and their 95% confidence limits) 0.20 0.15
NO
0.10 0.05 0.00 -0.05 -0.10 1
6
12
18
24
30
36 42 Time
48
54
60
66
72
( c) NO
Time Series Plot for NO2 (with forecasts and their 95% confidence limits) 0.08 0.07 0.06
NO2
0.05 0.04 0.03 0.02 0.01 0.00 -0.01 1
6
12
18
24
30
36 42 Time
48
54
60
66
72
(d) NO2
Time Series Plot for NOx (with forecasts and their 95% confidence limits) 0.125 0.100 0.075 NOx
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
ﻓﺎﻃﻤﻪ ﻣﻨﺼﻮري و ﻫﻤﻜﺎران/ 82
0.050 0.025 0.000
1
6
12
18
24
30
36 42 Time
48
54
60
66
72
(e) NOx
83 /.... ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﺷﻬﺮ
Time Series Plot for O3 (with forecasts and their 95% confidence limits)
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
0.04
0.03
O3
0.02
0.01
0.00
-0.01 1
6
12
18
24
30
36 42 Time
48
54
60
66
72
(f) O3
Time Series Plot for SO2 (with forecasts and their 95% confidence limits) 0.10
SO2
0.05
0.00
-0.05
-0.10 1
5
10
15
20
25
30 Time
35
40
45
50
55
(g) SO2
References Anderson, H.R., 2009. Air pollution and mortality: A history. Atmospheric Environment, 43, pp. 142-152. Box, GEP. and Jenkins, G.M., 1976. Time series analysis: forecasting and control, San Francisco, Holden Day Pulications. Duenas, C., Fernandez, M.C., Canete, S., Carretero,Liger E, 2005. Stocastic model to forecast ground level ozone concentration at
urban and rural areas. Chemosphere, 61(10), pp. 1379-1389. Ghorbani, M. and Younesian, M., 1389. Research Projects in Air pollution Epidemiology. Iranian Epidemiology Journal. 5, pp. 44-52 [In Persian]. Goyal, P., Chan, A.T. and Jaiswal, N., 2006. Statistical models for the prediction of respirable suspended particulate matter in
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
ﻓﺎﻃﻤﻪ ﻣﻨﺼﻮري و ﻫﻤﻜﺎران/ 84
urban cities. Atmospheric Environment, 40, pp. 2068-2077. Hamilton, JD., 1994. Time series analysis, Princeton Publications, USA. Hosseinpour, A.R., Forouzanfar, M.H., Yunesian, M., Asghari, F., Holakouie Naieni, K. and Farhood, D., 2005. Air pollution and hospitalization due to angina pectoris in Tehran, Iran: A time-series study. Environmental Research, 99, pp. 126-131 [In Persian]. Ingrisch, M., Sourbron, S., Reiser, M.F. and Peller, M., 2009. Model selection in dynamic contrast enhanced MRI: The Akaike Information Criterion. In Dössel, O. and Schlegel, WC. (Eds.) IFMBE Proceedings 25/IV Khosravi Dehkordi, A. and Modarres, R., 1386. Time Series analysis of the daily air pollution in Isfahan from the Petrolium Industry. Mohit shenasi. 33, pp. 33-42 [In Persian]. Kumar, U. and De Ridder, K., 2010. GARCH modelling in association with FFT-ARIMA to forecast ozone episodes. Atmospheric Environment, 44, pp. 4252-4265. Lau, J.C., Hung, W.T., Yuen, D.D. and Cheung, C.S., 2009. Long memory characteristics of urban roadside air quality. Transportation Research Part D, 14, pp. 353359. Liang, W., Wei, H. and Kuo, H., 2009. Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental Research, 109, pp. 51-58. Liu, P.G., 2009. Simulation of the daily average PM10 concentrations at Ta-Liao with Box–Jenkins time series models and
multivariate analysis. Atmospheric Environment, 43, pp. 2104-2113. López-Villarrubia, E., Ballester, F., Iñiguez, C. and Peral, N., 2010. Air pollution and mortality in the Canary Islands:a time-series analysis. Environmental Health, 9. Lumbreras, J., Garcia-Martos, C., Mira, J. and Borge, R., 2009. Computation of uncertainty for atmospheric emission projections from key pollutant sources in Spain. Atmospheric Environment, 43, pp. 1557-1564. Masjedi, M.R., Jamaati, H.R., Dokoohki, P., Ahmadzadeh, Z., Alinejad Taheri, S., Bigdeli, M., Agin, K., Ghavam, S.M., Rostiman, A. and Izadi S., 2001. The correlation between air pollution and acute respiratory and cardiac attacks. Pazhoohesh dar pezeshki, 25, pp. 25-33 [In Persian]. Nasrollhi, Z. and Ghaffari Goolak, M., 2010. Air pollution and its effective factors. Faslnameh Pazhoohesh Eghtesadi, 3, pp. 375-395 [In Persian]. Quintela-del-Rio, A. and Francisco-Fernandez, M., 2011. Nonparametric functional data estimation applied to ozone data: Prediction and extreme value analysis. Chemosphere, 82, pp. 800-808. Rajarathnam, U., Sehgal M., Nairy S., Patnayak R.C., Chhabra S.K., Kilnani, K.V., R and Committee., HHR, 2011. Time Series study on air pollution and mortality in Dehli. Res Rep Health Eff Inst, Mar, pp. 47-74. Samet, J.M., Dominici, F., Zeger, S.L., Schwartz, J. and Dockery, D.W., 2000. The national morbidity, mortality and air pollution study. Part 1: Methods and Methodologic Issues. Research Report 94 Cambridge, MA, Health Effects institute.
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
85 /.... ﺑﺮرﺳﻲ و ﭘﻴﺶ ﺑﻴﻨﻲ وﺿﻊ آﻻﻳﻨﺪه ﻫﺎي ﻫﻮاي ﺷﻬﺮ
Sharma, P., Chandra, A. and Kaushik, S.C., 2009. Forecasts using Box–Jenkins models for the ambient air quality data of Delhi City. Environ Monit Assess, 157, pp. 105–112. Wagemakers, E. and Farrell, S., 2004. AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 11, pp. 192-196.
Zhang, F., Wang, W., Lv, J., Krafft, T. and Xu, J., 2011. Time-series studies on air pollution and daily outpatient visits for allergic rhinitis in Beijing, China. Science of the Total Environment, 409, pp. 2486–2492.
Downloaded from sjsph.tums.ac.ir at 22:26 IRST on Wednesday February 8th 2017
Scientific Journal of School of Public Health and Institute of Public Health Research Vol. 11, No. 2, Summer 2013
/86
Forecasting air pollutant situation using the time series models in Kerman, Iran Mansouri, F., MS.c. Student, Dept of Environmental Health Engineering, Faculty of Kerman Medical University, Kerman, Iran
Public Health,
Khanjani, N., Ph.D. Assistant Professor, Department of Epidemiology and Department of Environmental Health, Faculty of Public Health, Kerman Medical University, Kerman, Iran - Corresponding author:
[email protected]
Rananadeh Kalankesh, L., MS.c. Student, Department of Environmental Health Engineering, Faculty of Public Health, Kerman Medical University, Kerman, Iran Pourmousa, R., MS.c. Lecturer, Department of Statistics, School of Mathematics and Statistics, Shahid Bahonar University, Kerman, Iran
Received: Apr 3, 2012
Accepted: Feb 14, 2013
ABSTRACT Background and Aim: Air pollution, one of the most important problems in big cities in developing countries, can have several negative health effects on humans. Therefore, studying air pollutants can help in developing programs for air pollution control. The aim of this study was to determine and predict the changes of air pollutants in the City of Kerman, Iran. Materials and Methods: In this ecological study, data about seven important air pollutants in Kerman, including carbon monoxide (CO), nitrogen oxides (NO, NO2 and NOx), particulate matter (PM10), sulfur dioxide (SO2) and ozone (O3) , between March 2006 and September 2010 was obtained from the Kerman Province Environmental Protection Agency. Monthly averages were calculated for all the pollutants and, using univariate time series models, predictions were made for changes in each pollutant. Results: All of the air pollutants had a steady trend in Kerman, except CO and PM10, the former having a decreasing, and that latter an increasing, trend. All of the pollutants had a seasonal pattern. Time series models with a 12-, 3-, 8-, 12-, 12-, 12- and 6-month seasonal patterns were fit for O3, SO2, PM10, NOx, NO2, CO and NO, respectively. Conclusion: The production of ambient CO is decreasing in Kerman, a probable reason being discontinuing use of old automobiles. However, PM10 is increasing and in some seasons it is above standard; therefore, strategies should be adopted to control this problem. Key words: Air pollution, particulate matter, PM10, Kerman, Time Series, Sulfur dioxide, Ozone, Nitrogen oxides, Carbon monoxide