ISSN 2304-0122
Ufa Mathematical Journal. Vol. 4. No 4 (2012). P. 54-67. UDC 517.9
FRACTIONAL DIFFERENTIAL EQUATIONS: CHANGE OF VARIABLES AND NONLOCAL SYMMETRIES R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
Abstract. In this paper point transformations of variables in fractional integrals and derivatives of different types are considered. In the general case, fractional integrodifferentiation of a function with respect to another function arises after such substitution. The problem of applying a point transformations group to this type of operators is considered, the corresponding prolongation formulae for infinitesimal operator of the group are constructed. Usage of prolongation formulae for finding nonlocal symmetries of equations and checking their admittance is demonstrated on a simple example of an ordinary fractional differential equation. Keywords: fractional derivative, prolongation formulae, nonlocal symmetry.
Introduction Differential equations with fractional derivatives have a wide range of applications as mathematical models of various processes with anomalous kinetics [1, 2]. Investigation of symmetry properties of such equations is an important problem. Meanwhile, unlike the classical integer-order derivatives, there exists a number of differerent definitions of fractional derivatives [3, 4, 5, 6, 7]. These definition differences leads to the fractional differential equations (FDEs) having similar form but significantly different properties. The Riemann-Liouville left-hand side fractional derivative [3] defined as β«οΈ π₯ 1 ππ π¦(π‘) πΌ (π π·π₯ π¦) (π₯) = ππ‘ (1) π Ξ(π β πΌ) ππ₯ π (π₯ β π‘)πΌβπ+1 and the Caputo left-hand side fractional derivative [4] defined as β«οΈ π₯ (οΈπΆ πΌ )οΈ 1 π¦ (π) (π‘) ππ‘ (2) π π·π₯ π¦ (π₯) = Ξ(π β πΌ) π (π₯ β π‘)πΌβπ+1 are used most often in practice (here π = [πΌ] + 1, Ξ(π₯) is the gamma-function). In general case, a solution of a differential equation with the derivative (1) may contain an integrable singularity (of the order not higher than 1βπΌ) at the point π₯ = π, while the existence of the derivative (2) implies that the solution is bounded at this point. It is known (see, for example, [4]) that if a finite limit limπ₯βπ+ π¦(π₯) = π¦(π) exists, then the derivatives (1) and (2) are connected by the relationship (οΈ πΌ )οΈ 1 π¦(π) (π π·π₯πΌ π¦) (π₯) = πΆ . (3) π π·π₯ π¦ (π₯) + Ξ(1 β πΌ) (π₯ β π)πΌ Methods of constructing the point transformation groups admitted by differential equations were developed in the papers [8, 9, 10, 11] for equations with fractional derivatives of the form (1) and (2). Prolongation of the group infinitesimal operator to the fractional integrals and derivatives was constructed. Algorithms of finding the admitted group for equations containing c Gazizov R.K., Kasatkin A.A., Lukashchuk S.Yu. 2012. β This work was supported by the Ministry of Education and Science of the Russian Federation (contract 11.G34.31.0042 with Ufa State Aviation Technical University and leading scientist prof. N. H. Ibragimov). Submitted on November 9, 2012.
54
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
55
these derivatives were developed, and some problems of group classification of ordinary differential equations and fractional-order partial differential equations were solved. However, it was found that the class of variables substitutions preserving the form of fractional derivatives is very narrow. The general form of such a point substitution for the Riemann-Liouville-type derivatives (1) is defined by the expression ππ1 + (π₯ β π) π₯Β― = , π¦Β― = π0 (π₯) + π¦π1 (π₯), π1 + π2 (π₯ β π) where π, π1 , π2 are constants, π0 (π₯), π1 (π₯) are some functions with specific form being determined by the equation under consideration. Nevertheless, the derivatives (1) and (2) are only the particular forms of fractional derivatives, though they are used most frequently. More general definition is a fractional derivative of a function with respect to another function. This type of derivative arise when general point transformation of variables is applied to any fractional derivative of a definite type. FDEs with a fractional derivative of a function with respect to another function are considered, in particular, in the process of constructing invariant solutions of fractional partial differential equations. For example, when constructing scale-invariant solution of anomalous transport equations, one obtains the ordinary differential equations with the ErdΒ΄elyi-Kober fractional derivatives [8, 12]. The existing methods of sovling such equations are very complicated and work only for a limited class of equations. Using fractional derivatives of a function with respect to another function makes it possible to expand the class of allowed variables substitutions. These variable changes can be considered as a new type of equivalence transformations (brief discussion of this problem can be found in [13]). This approach provides new possibilities for reduction of the variables number, and, in particular, for constructing invariant solutions. In this paper, application of the Lie group analysis methods to the class of FDEs containing fractional derivatives of a function with respect to another function is considered. The first necessary step is the construction of prolongation formulae to extend an infinitesimal operator of the group to the fractional integrals and derivatives of a function with respect to another function. Section 1 of this paper is devoted to this construction. Since fractional derivatives are represented by integro-differential operators (i.e. they are nonlocal), it seems natural that the equations with such derivatives should have nonlocal symmetries. One of the ways to construct such symmetries is to use non-point transformation of variables (containing fractional derivatives and integrals). Then one can determine the form of infinitesimal operators in the space extended to the corresponding nonlocal variables. Using the prolongation formulae for construction and verification of nonlocal symmetries is illustrated by a simple example. Working with fractional derivatives, verification of an operator admittance is often a non-trivial problem as demonstrated in the section 2 of the present paper. 1.
A fractional derivative of a function with respect to another function. The prolongation formula
In the general case, an arbitrary change of variables π₯Β― = π(π₯, π¦), π¦Β― = π(π₯, π¦) does not preserve the form of the fractional differential operator. In particular, this substitution transforms the Riemann-Liouville fractional derivative (1) of the order πΌ β (0, 1) to the left-hand side derivative of the function π(π₯, π¦) with respect to the function π(π₯, π¦): β«οΈ π₯ (οΈ πΌ )οΈ 1 1 π π[π‘]π·π‘ π[π‘] ππ‘, where πΒ― : π(π₯, π¦(π₯))|π₯=Β―π = π. π π·π[π₯] π [π₯] = Ξ(1 β πΌ) π·π₯ π[π₯] ππ₯ πΒ― (π[π₯] β π[π‘])πΌ For the sake of brevity the notation π [π₯] β‘ π (π₯, π¦(π₯)) is introduced here. The definition and general properties of derivatives of a function with respect to another function are presented, for example, in [3]. Let us give some examples of transforming the Riemann-Liouville operator into other known forms of fractional differentiation operators by the change of variables.
56
R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
1) Translation with respect to π₯ π₯Β― = π₯ + π, π¦Β― = π¦ conserves the type of the operator but changes the lower limit of integration: π₯), (π π·π₯πΌ π¦) (π₯) = (πΒ―π·π₯πΌΒ― π¦Β―) (Β―
πΒ― = π + π.
2) After substitution of variables π₯Β― = π₯π , π¦Β― = π¦, the Riemann-Liouville operator is replaced by the ErdΒ΄elyi-Kober operator [3]: β«οΈ π₯Β― 1 1 π π¦Β―(π‘Β―)π‘Β―πβ1 Β― πΌ (π π·π₯ π¦) (π₯) = ππ‘, π = 1/π, πΒ― = ππ . Ξ(1 β πΌ) π₯Β―πβ1 πΒ― π₯ πΒ― (Β― π₯π β π‘Β―π )πΌ Such change of variables is often performed to find invariant solutions of the anomalous transport equations with respect to the group of scaling transformations [8]. 3) Change of variables π₯Β― = ππ₯ , π¦Β― = π¦ results in the transforming the Riemann-Liouville operator to the fractional derivative operator [3] of the Hadamard type: β«οΈ π₯Β― π₯Β― π π¦Β―(π‘Β―) ππ‘Β― πΌ (οΈ π₯Β― )οΈπΌ . (π π·π₯ π¦) (π₯) = Ξ(1 β πΌ) πΒ― π₯ ππΒ― ln Β― π‘Β― π‘
Together with the fractional derivative of a function with respect to another function, the definition of the fractional integral of order π½ > 0 of a function with respect to another function [3] is also used: β«οΈ π₯ (οΈ )οΈ 1 π¦(π‘)π β² (π‘) π½ πΌ π¦ (π₯) = ππ‘. (4) π π(π₯) Ξ(π½) π (π(π₯) β π(π‘))1βπ½ Here it is assumed [3] that π(π₯) > 0 within the interval (π, π) and the function π(π₯) has a continuous derivative π β² (π₯) which is strictly positive or negative (π β² (π₯) > 0 or π β² (π₯) < 0 for all π₯). The function π¦(π₯) is considered to be Lebesgue integrable within the interval (π, π), i.e. π¦ β πΏ1 (π, π). In what follows, for the sake of simplicity, we consider the left-hand side fractional derivative of the order πΌ β (0, 1) of the function π¦(π₯) with respect to the function π(π₯): β«οΈ π₯ (οΈ πΌ )οΈ 1 π (οΈ πΌ )οΈ 1 1 π π¦(π‘)π β² (π‘) π· π¦ (π₯) β‘ πΌ π¦ (π₯) = ππ‘. (5) π π(π₯) π π(π₯) π β² (π₯) ππ₯ Ξ(1 β πΌ) π β² (π₯) ππ₯ π (π(π₯) β π(π‘))πΌ The fractional derivative (1) for πΌ β (0, 1) is a particular case of (5) when π(π₯) = π₯. The fractional derivative (5) has two properties which are used below to deduce the prolongation formula. Property 1. The following relationship holds: πΌ π π·π(π₯)
1βπΌ πΌ π¦(π₯) + πΌπ πΌπ(π₯) π¦(π₯). (π(π₯)π¦(π₯)) = π(π₯)π π·π(π₯)
(6)
Proof. πΌ π π·π(π₯)
β«οΈ π₯ 1 1 π π(π‘)π¦(π‘)π β² (π‘) (π(π₯)π¦(π₯)) β‘ ππ‘ = Ξ(1 β πΌ) π β² (π₯) ππ₯ π [π(π₯) β π(π‘)]πΌ [οΈβ«οΈ π₯ ]οΈ β«οΈ π₯ 1 1 π π(π₯)π¦(π‘)π β² (π‘) 1βπΌ β² = ππ‘ β [π(π₯) β π(π‘)] π¦(π‘)π (π‘)ππ‘ = Ξ(1 β πΌ) π β² (π₯) ππ₯ π [π(π₯) β π(π‘)]πΌ π β«οΈ π₯ β«οΈ π₯ 1 π¦(π‘)π β² (π‘) 1 π(π₯) π π¦(π‘)π β² (π‘) ππ‘ + ππ‘β = Ξ(1 β πΌ) π [π(π₯) β π(π‘)]πΌ Ξ(1 β πΌ) π β² (π₯) ππ₯ π [π(π₯) β π(π‘)]πΌ β«οΈ π₯ 1βπΌ π¦(π‘)π β² (π‘) 1βπΌ πΌ π¦(π₯) + π(π₯)π π·π(π₯) π¦(π₯). β ππ‘ β‘ πΌπ πΌπ(π₯) Ξ(1 β πΌ) π [π(π₯) β π(π‘)]πΌ
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
Property 2. If lim π¦(π‘) (π(π‘) β π(π)) = 0, then the following equality holds: π‘βπ+ β«οΈ π₯ π·π‘ [π¦(π‘)(π(π‘) β π(π))] 1 πΌ ππ‘. π π·π(π₯) (π¦(π₯)(π(π₯) β π(π))) = Ξ(1 β πΌ) π [π(π₯) β π(π‘)]πΌ
57
(7)
Proof. The proof consists of integration by parts and differentiation of the resulting integral with a variable upper limit: β«οΈ π₯ 1 1 π π¦(π‘)(π(π‘) β π(π)) β² πΌ π (π‘)ππ‘ = π π·π(π₯) [π¦(π₯)(π(π₯) β π(π))] = β² Ξ(1 β πΌ) π (π₯) ππ₯ π (π(π₯) β π(π‘))βπΌ βπ₯ [οΈ 1 π (π(π₯) β π(π‘))1βπΌ ββ 1 β π¦(π‘)[π(π‘) β π(π)] = β + Ξ(1 β πΌ) π β² (π₯) ππ₯ 1βπΌ π ]οΈ β«οΈ π₯ 1βπΌ (π(π₯) β π(π‘)) π·π‘ [π¦(π‘)(π(π‘) β π(π))] + ππ‘ = 1βπΌ π β«οΈ π₯ 1 1 π = π·π‘ [π¦(π‘)(π(π‘) β π(π))] (π(π₯) β π(π‘))1βπΌ ππ‘ = β² (1 β πΌ)Ξ(1 β πΌ) π (π₯) π ππ₯ β«οΈ π₯ 1 π·π‘ [π¦(π‘)(π(π‘) β π(π))] = ππ‘. Ξ(1 β πΌ) π [π(π₯) β π(π‘)]πΌ Proposition 1. Let us consider a one-parameter group of point transformations in the infinitesimal form: π₯Β― = π₯ + ππ[π₯] + π(π), π¦Β―(Β― π₯) = π¦(π₯) + ππ[π₯] + π(π). Assume that the function π¦(π₯) β πΏ1 (π, π) has a continuous derivative π¦ β² (π₯) for π₯ β (π, π), the functions π[π₯] = π(π₯, π¦(π₯)) and π[π₯] = π(π₯, π¦(π₯)) are sufficiently smooth at every point π₯ β (π, π), π(π₯) is a monotonous positive twice differentiable function. Then the infinitesimal transformation of the fractional integral (4) for π½ = 1 β πΌ can be presented in the form (οΈ )οΈ (οΈ )οΈ 1βπΌ 1βπΌ πΌ π¦ Β― (π₯) = πΌ π¦ (π₯) + πππΌβ1 [π₯] + π(π), π π(Β― π π(π₯) π₯) where ππΌβ1 is determined by the prolongation formula (οΈ πΌ )οΈ 1βπΌ ππΌβ1 [π₯] = π πΌπ(π₯) (π β ππ¦ β² )(π₯) + π[π₯]π β² (π₯) π π·π(π₯) π¦ (π₯).
(8)
Proof. Let us write the fractional integration operator in the new variables π₯Β―, π¦Β―: β«οΈ π₯Β― β«οΈ π₯+ππ[π₯] (οΈ )οΈ 1 π¦Β―(Β― π )π β² (Β― π )πΒ― π 1 π¦Β―(Β― π )π β² (Β― π )πΒ― π 1βπΌ πΌ π¦ Β― (Β― π₯ ) β‘ = + π(π). π π(Β― π₯) Ξ(1 β πΌ) π [π(Β― π₯) β π(Β― π )]πΌ Ξ(1 β πΌ) π [π(π₯ + ππ[π₯]) β π(Β― π )]πΌ (9) To make the substitution of the function π¦Β―(Β― π ), a certain substitution of the integration variable πΒ― is necessary. The most natural type of the substitution πΒ― = π + ππ[π ] allows one to turn easily from π¦Β―(Β― π ) to π¦(π ) (Β― π¦ (Β― π ) = π¦(π ) + ππ[π ] + π(π)). However, after this substitution the lower limit of integration becomes a function of the parameter π, which complicates further transformations significantly and requires imposing additional restrictions on the type of the function π[π₯] [9]. The substitution of variables πΒ― = π‘ + πβ(π₯, π‘), where π β² (π₯) π(π‘) β π(π) β(π₯, π‘) = π[π₯] Β· (10) π(π₯) β π(π) π β² (π‘)
58
R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
is more optimal. Here π‘ is a new variable of integration. Such a substitution preserves the integration limits because π‘ = π transforms to πΒ― = π, and π‘ = π₯ transforms to πΒ― = π₯ + ππ[π₯]. Carrying out this substitution in (9) we obtain )οΈβ β«οΈ π₯ (οΈ (οΈ )οΈ 1 πΒ― π ββ 1βπΌ βπΌ β² Β― (π₯) = π¦Β―(Β― π ) Β· [π(π₯ + ππ[π₯]) β π(Β― π )] Β· π (Β― π) ππ‘ + π(π). π πΌπ(Β― π₯) π¦ Ξ(1 β πΌ) π ππ‘ βπΒ―=π‘+πβ(π₯,π‘) (11) Let us consider transformation of every subintegral factor in detail. To express π¦Β―(Β― π ) via π‘ it is necessary to substitute in π¦(π ) + ππ[π ] + π(π) the argument π , which is transformed exactly into πΒ― during the substitution. It is known that the inverse infinitesimal substitution has the form π = πΒ― β ππ[Β― π ] + π(π). Expressing πΒ― via π‘ determined earlier, we obtain π = π‘ + πβ(π₯, π‘) β ππ[π‘] + π(π). As a result we have π¦Β―(Β― π )|πΒ―=π‘+πβ(π₯,π‘) = (π¦(π ) + ππ[π ] + π(π))|π =π‘+πβ(π₯,π‘)βππ[π‘]+π(π) = (10)
= π¦(π‘ + πβ(π₯, π‘) β ππ[π‘]) + ππ[π‘] + π(π) = π¦(π‘) + ππ¦ β² (π‘)(β(π₯, π‘) β π[π‘]) + ππ[π‘] + π(π) = π[π₯]π β² (π₯) π(π‘) β π(π) β² (10) Β· π¦ (π‘) + π(π). (12) = π¦(π‘) + ππ[π‘] β ππ[π‘]π¦ β² (π‘) + π π(π₯) β π(π) π β² (π‘) Then, (π(π₯ + ππ[π₯]) β π(Β― π ))|πΒ―=π‘+πβ(π₯,π‘) = π(π₯) + ππ[π₯]π β² (π₯) β π(π‘) β πβ(π₯, π‘)π β² (π‘) + π(π) = (οΈ )οΈ π(π‘) β π(π) π β² (π₯) β² β² = π(π₯) β π(π‘) + π π[π₯]π (π₯) β π[π₯] π (π‘) + π(π) = π(π₯) β π(π) π β² (π‘) (οΈ )οΈ π[π₯]π β² (π₯) = (π(π₯) β π(π‘)) 1 + π + π(π), π(π₯) β π(π) whence βπΌ β
[π(π₯ + ππ[π₯]) β π(Β― π )]
βπΌ
β πΒ―=π‘+πβ(π₯,π‘)
= (π(π₯) β π(π‘))
)οΈ (οΈ π[π₯]π β² (π₯) + π(π). 1 β πΌπ π(π₯) β π(π)
(13)
Finally, (οΈ )οΈβ πΒ― π ββ (10) β² π (Β― π) = (π β² (π‘) + ππ β²β² (π‘)β(π₯, π‘))(1 + πβπ‘ (π₯, π‘)) + π(π) = β ππ‘ πΒ―=π‘+πβ(π₯,π‘) (οΈ )οΈ π[π₯]π β² (π₯) π(π‘) β π(π) π π(π‘) β π(π) (10) β² β²β² β² = π (π‘) + π π (π‘) + π (π‘) + π(π) = π(π₯) β π(π) π β² (π‘) ππ‘ π β² (π‘) (οΈ )οΈ π[π₯]π β² (π₯) β² = π (π‘) 1 + π + π(π). (14) π(π₯) β π(π) Substituting (12),(13),(14) into (11), we obtain )οΈβ β«οΈ π₯ (οΈ (οΈ )οΈ 1 πΒ― π ββ 1βπΌ βπΌ β² Β― (Β― π₯) = π¦Β―(Β― π ) [π(π₯ + ππ[π₯]) β π(Β― π )] π (Β― π) ππ‘ + π(π) = π πΌπ(Β― π₯) π¦ Ξ(1 β πΌ) π ππ‘ βπΒ―=π‘+πβ(π₯,π‘) )οΈ β«οΈ π₯ (οΈ 1 π[π₯]π β² (π₯) π(π‘) β π(π) β² β² = π¦(π‘) + ππ[π‘] β ππ[π‘]π¦ (π‘) + π π¦ (π‘) Γ Ξ(1 β πΌ) π π(π₯) β π(π) π β² (π‘) (οΈ )οΈ (οΈ )οΈ π[π₯]π β² (π₯) π[π₯]π β² (π₯) βπΌ β² Γ (π(π₯) β π(π‘)) 1 β πΌπ π (π‘) 1 + π ππ‘ + π(π) = π(π₯) β π(π) π(π₯) β π(π)
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
59
β«οΈ π₯ β«οΈ π₯ 1 π¦(π‘)π β² (π‘)ππ‘ π β² (π‘)ππ‘ π = + Γ Ξ(1 β πΌ) π (π(π₯) β π(π‘))πΌ Ξ(1 β πΌ) π (π(π₯) β π(π‘))πΌ [οΈ ]οΈ)οΈ (οΈ π(π‘) β π(π) β² π[π₯]π β² (π₯) β² π¦ (π‘) + (1 β πΌ)π¦(π‘) + π(π) = Γ π[π‘] β π[π‘]π¦ (π‘) + π(π₯) β π(π) π β² (π‘) (οΈ )οΈ 1βπΌ 1βπΌ = π πΌπ(π₯) π¦ (π₯) + ππ πΌπ(π₯) (π β ππ¦ β² ) (π₯)+ β«οΈ π₯ ππ[π₯]π β² (π₯) ((π(π‘) β π(π))π¦ β² (π‘) + (1 β πΌ)π¦(π‘)π β² (π‘) + ππ‘ + π(π). Ξ(1 β πΌ)(π(π₯) β π(π)) π (π(π₯) β π(π‘))πΌ Let us use properties 1 and 2 to transform the last integral: 1 Ξ(1 β πΌ)
β«οΈ π
π₯
1 ... = Ξ(1 β πΌ)
π₯
β«οΈ π
π·π‘ [π¦(π‘)(π(π‘) β π(π))] β πΌπ¦(π‘)π β² (π‘) (7) ππ‘ = (π(π₯) β π(π‘))πΌ (6)
(7)
1βπΌ 1βπΌ πΌ πΌ πΌ π¦(π₯) β πΌπ πΌπ(π₯) π¦(π₯) = (π(π₯)π¦(π₯)) β π(π)π π·π(π₯) = π π·π(π₯) [π¦(π₯)(π(π₯) β π(π))] β πΌπ πΌπ(π₯) π¦(π₯) = π π·π(π₯) (6)
1βπΌ 1βπΌ πΌ πΌ = π(π₯)π π·π(π₯) π¦(π₯) + πΌπ πΌπ(π₯) π¦(π₯) β π(π)π π·π(π₯) π¦(π₯) β πΌπ πΌπ(π₯) π¦(π₯) = (οΈ πΌ )οΈ = (π(π₯) β π(π)) π π·π(π₯) π¦ (π₯).
This finally results in (οΈ )οΈ (οΈ )οΈ (οΈ (οΈ πΌ )οΈ )οΈ 1βπΌ 1βπΌ 1βπΌ β² β² πΌ π¦ Β― (Β― π₯ ) = πΌ π¦ (π₯) + π πΌ (π β ππ¦ ) (π₯) + π[π₯]π (π₯) π π(Β― π π(π₯) π π(π₯) π π·π(π₯) π¦ (π₯) + π(π), π₯) which proves the proposition. Proposition 2. In the conditions of proposition 1 the infinitesimal transformation of the fractional derivative (5) of the order πΌ β (0, 1) has the form πΌ Β― π π·π(Β― π₯) π¦
(οΈ
)οΈ
ππΌ [π₯] =
πΌ π π·π(π₯) (π
(Β― π₯) =
πΌ π π·π(π₯) π¦
(οΈ
)οΈ
(π₯) + πππΌ [π₯] + π(π),
where β²
β²
β ππ¦ )(π₯) + π[π₯]π (π₯)
(οΈ
πΌ+1 π π·π(π₯) π¦
)οΈ
(π₯).
Proof. By the definition, we have (οΈ
)οΈ πΌ Β― (Β― π₯) β‘ π π·π(Β― π₯) π¦
1 π (οΈ 1βπΌ )οΈ Β― (Β― π₯). π πΌπ(Β― π₯) π¦ π β² (Β― π₯) πΒ― π₯
Using the infinitesimal expansions π = πΒ― π₯
(οΈ
πΒ― π₯ ππ₯
)οΈβ1
π π = (1 β ππ·π₯ π[π₯] + π(π)) , ππ₯ ππ₯
1 1 = β² β² π (Β― π₯) π (π₯) (οΈ
)οΈ
1βπΌ Β― π πΌπ(Β― π₯) π¦
(Β― π₯) =
(οΈ
(οΈ )οΈ π β²β² (π₯) 1 β ππ[π₯] β² + π(π) , π (π₯) 1βπΌ π πΌπ(π₯) π¦
)οΈ
(π₯) + πππΌβ1 [π₯] + π(π),
(15)
60
R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
we obtain (οΈ )οΈ )οΈ (οΈ πΌ )οΈ 1 π β²β² π (οΈ 1βπΌ Β― (Β― π₯) = β² 1 β ππ β² + π(π) (1 β ππ·π₯ π + π(π)) π¦ + πππΌβ1 + π(π) = π π·π(Β― π πΌπ π₯) π¦ π π ππ₯ (οΈ )οΈ β² (οΈ )οΈ 1 π·π₯ (ππ ) 1βπΌ = β² 1βπ π· ( πΌ π¦) + ππ· π + π(π) = π₯ π π₯ πΌβ1 π π πβ² (οΈ )οΈ 1 π π·π₯ (ππ β² ) (8) 1βπΌ 1βπΌ = β² π·π₯ (π πΌπ π¦) + β² π·π₯ ππΌβ1 β π·π₯ (π πΌπ π¦) + π(π) = β² π π π )οΈ (οΈ π (8) = π π·ππΌ π¦ + β² π·π₯ (π πΌπ1βπΌ (π β ππ¦ β² )) + π·π₯ (ππ β² π π·ππΌ π¦) β π·π₯ (ππ β² )π π·ππΌ π¦ + π(π) = π (οΈ )οΈ 1 πΌ β² πΌ 1βπΌ = π π·π π¦ + π π·π₯ (π πΌπ (π β ππ¦ )) + ππ·π₯ (π π·π π¦) + π(π) = πβ² )οΈ (οΈ = π π·ππΌ π¦ + π π π·ππΌ (π β ππ¦ β² ) + ππ β² π π·ππΌ+1 π¦ + π(π). Here we omit the argument π₯ for all functions for the sake of brevity. Remark 1. When π(π₯) = π₯ (15) transforms into the prolongation formula for the RiemannLiouville type derivative obtained earlier [9], and in case of integer πΌ, it coincides with the known classical prolongation formulae for integer-order derivatives [14]. Remark 2. Unlike integer-order derivatives, it is impossible to expand brackets in the righthand side of (15) in the general case, because the fractional derivative of separate summands π and ππ¦ β² may not exist. An example of an operator with such coefficients is π1 from section 3. Remark 3. One can show that the formulae (8) and (15) are valid for fractional integrals and derivatives of an arbitrary order, respectively. 2.
Nonlocal symmetries
Nonlocal symmetries of differential equations with integer-order derivatives have been known for a long time [15] and provide possibilities to construct additional invariant solutions and conservation laws in a number of cases. Meanwhile, it should be mentioned that there exists no constructive algorithm of finding such symmetries. Several heuristic approaches are known that allow one to construct particular types of nonlocal symmetries. One of them is the introduction of nonlocal variables and extension of the transformation action to these variables. This approach can be successfully applied for equations with fractional-order derivatives. In this case the prolongation formulae (8), (15) constructed in the previous section can be used both for construction of nonlocal symmetries and for verification of their admittance by the equation. Let us demonstrate it by a simple example. We consider the equation πΌ+1 π¦ 0 π·π₯
= 0,
πΌ β (0, 1),
(16)
πΌβ1
which has the well-known general solution π¦ = π₯ (π1 π₯ + π2 ) (π1 , π2 are arbitrary constants). According to the definition of the fractional derivative, the equation (16) can be written in the form π·π₯2 (0 πΌπ₯1βπΌ π¦) = 0, where β«οΈ π₯ (οΈ 1βπΌ )οΈ 1 π¦(π‘) π¦ (π₯) = ππ‘ 0 πΌπ₯ Ξ(1 β πΌ) 0 (π₯ β π‘)πΌ is the left sided integral of the fractional order 1 β πΌ. Upon the nonlocal substitution π§ = 0 πΌπ₯1βπΌ π¦, the equation (16) is written in the form π§ β²β² = 0,
(17)
which admits the known eight-parameter group [9] determined by the infinitesimal operators π π π π π1 = , π2 = , π3 = π₯ , π4 = π§ , ππ₯ ππ§ ππ₯ ππ₯
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
61
π π π π π π , π6 = π§ , π7 = π₯2 + π₯π§ , π8 = π₯π§ + π§2 . ππ§ ππ§ ππ₯ ππ₯ ππ₯ ππ§ By virtue of the identity 0 π·π₯1βπΌ 0 πΌπ₯1βπΌ π¦ = π¦ it is possible to reverse the nonlocal substitution: π5 = π₯
π¦ = 0 π·π₯1βπΌ π§. Applying the prolongation formula (15) with π(π₯) = π₯, we can construct the prolongation of each operator to the fractional derivative 0 π·π₯1βπΌ π§: π1βπΌ = 0 π·π₯1βπΌ (π β ππ§ β² ) + π 0 π·π₯2βπΌ π§.
(18)
We omit the lower indices 0 and π₯ in the operators of fractional differentiation and integration for the sake of simplicity . The known relationship between the Riemann-Liouville and the Caputo derivatives (3) can be written in this case as π (0)π₯βπ½ , π½ β (0, 1). (19) π·π½ π β‘ π·πΌ 1βπ½ π = πΌ 1βπ½ π β² + Ξ(1 β π½) Differentiating (19), we have the relation π·
π½+1
π (0)π₯βπ½β1 π =π· π + . Ξ(βπ½) π½ β²
(20)
The relations (19) and (20) allow one to write πΌ πΌ π§ β² = π·1βπΌ π§ β
π§(0)π₯πΌβ1 , Ξ(πΌ)
π·1βπΌ π§ β² = π·2βπΌ π§ β
π§(0)π₯πΌβ2 Ξ(πΌ β 1)
(21)
when π½ = 1 β πΌ. Since the value π§(0) exists, then the fractional derivative 0 π·π₯1βπΌ π§ β² also exists. The Leibniz rule for the fractional differentiation of the product of two functions (see [3]) also appears useful for construction of the prolongations: β (οΈ )οΈ βοΈ π½ π½ π· (π π) = π·π½βπ π π·π π. (22) π π=0 (οΈ )οΈ Here π½π are binomial coefficients, π·π½βπ π = πΌ πβπ½ π when π > π½. In particular, π·π½ (π₯π ) = π₯π·π½ (π ) + π½π·π½β1 (π ),
(23)
π·π½ (π₯2 π ) = π₯2 π·π½ (π ) + 2π½π₯π·π½β1 (π ) + π½(π½ β 1)π·π½β2 (π ). The fractional derivative of the power function has the form [3] π· πΌ π₯πΎ =
Ξ(πΎ + 1) π₯πΎβπΌ , Ξ(πΎ β πΌ + 1)
πΎ > β1,
πΌ β R.
Prolongation of the operator π1 : Here π = 1, π = 0 and (21)
π1βπΌ = βπ·1βπΌ (π§ β² ) + π·2βπΌ π§ =
π§(0)π₯πΌβ2 . Ξ(πΌ β 1)
Prolongation of the operator π2 : (25)
π1βπΌ = π·1βπΌ (1) =
π₯πΌβ1 . Ξ(πΌ)
Prolongation of the operator π5 : (25)
π1βπΌ = π·1βπΌ (π₯) =
π₯πΌ . Ξ(πΌ + 1)
Prolongation of the operator π6 : π1βπΌ = π·1βπΌ (π§).
(24)
(25)
62
R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
Prolongation of the operator π3 : π1βπΌ = βπ·1βπΌ (π₯π§ β² ) + π₯π·2βπΌ (π§). The assumption that the finite value π§(0) exists entails that (π₯π§)|π₯=0 = 0. Then, due to (19) we have π·1βπΌ (π₯π§)β² = π·2βπΌ (π₯π§) and substituting π₯π§ β² as (π₯π§)β² β π§, we obtain (23)
π1βπΌ = βπ·2βπΌ (π₯π§) + π·1βπΌ π§ + π₯π·2βπΌ (π§) = (πΌ β 1)π·1βπΌ π§. Prolongation of the operator π4 : π1βπΌ = βπ·1βπΌ (π§π§ β² ) + π§π·2βπΌ (π§). Applying the equation (17), the Leibniz rule (22) and the representations (21) it is possible to eliminate nonlinearity under the operator of fractional differentiation: )οΈ β (οΈ βοΈ 1βπΌ (22) (17) (21) π1βπΌ = β π·π (π§) π·1βπΌβπ π§ β² +π§π·2βπΌ (π§) = βπ§π·1βπΌ π§ β² β(1βπΌ)π§ β² πΌ πΌ π§ β² +π§π·2βπΌ (π§) = π π=0 (οΈ )οΈ π§π§(0)π₯πΌβ2 π§ β² π§(0)π₯πΌβ1 π§π§(0)π₯πΌβ2 π§(0)π₯πΌβ1 (21) 1βπΌ β² = β(1βπΌ)π§ π· π§ β + = (πΌβ1)π§ β² π·1βπΌ π§β + . Ξ(πΌ) Ξ(πΌ β 1) Ξ(πΌ β 1) Ξ(πΌ β 1) The presented form of the coefficient of the prolonged operator is not the only one possible. In particular, we can eliminate the variable π§ β² by applying the representation of the fractional derivative π·1βπΌ π§ to the equation (17): )οΈ β (οΈ πΌβ1 βοΈ (1 β πΌ)π§ β² π₯πΌ 1βπΌ (17),(25) π§π₯ 1βπΌ (22) + , π· π§ = π·π (π§) π·1βπΌβπ 1 = Ξ(πΌ) Ξ(πΌ + 1) π π=0 whence, due to relation Ξ(πΌ + 1) = πΌΞ(πΌ) we have π§ (1 β πΌ)π§ β² = Ξ(πΌ + 1)π₯βπΌ π·1βπΌ π§ β πΌ . π₯ As a result we find (οΈ )οΈ (οΈ π§ )οΈ π§(0)π₯πΌβ1 π§π§(0)π₯πΌβ2 βπΌ 1βπΌ 1βπΌ π1βπΌ = β Ξ(πΌ + 1)π₯ π· π§ β πΌ π· π§β + = π₯ Ξ(πΌ) Ξ(πΌ β 1) (οΈ )οΈ 1 πΌ (π·1βπΌ π§)2 πΌπ§π·1βπΌ π§ π§(0)Ξ(πΌ + 1)π·1βπΌ π§ = βΞ(πΌ + 1) + + + β π§π§(0)π₯πΌβ2 = π₯πΌ π₯ π₯Ξ(πΌ) Ξ(πΌ β 1) Ξ(πΌ) (π·1βπΌ π§)2 πΌ(π§ + π§(0))π·1βπΌ π§ π§π§(0)π₯πΌβ2 = βΞ(πΌ + 1) + β . π₯πΌ π₯ Ξ(πΌ) Prolongation of the operator π7 : π1βπΌ = π·1βπΌ (π₯π§ β π₯2 π§ β² ) + π₯2 π·2βπΌ π§. Acting similarly to the procedure of the operator π3 prolongation, we find π1βπΌ = π·1βπΌ (π₯π§) β π·1βπΌ π·(π₯2 π§) + π·1βπΌ (2π₯π§) + π₯2 π·2βπΌ π§ = = 3π·1βπΌ (π₯π§) β π·2βπΌ (π₯2 π§) + π₯2 π·2βπΌ π§
(23),(24)
=
3π₯π·1βπΌ π§ + (3 β 3πΌ)πΌ πΌ π§ β (4 β 2πΌ)π₯π·1βπΌ π§β
β (2 β πΌ)(1 β πΌ)πΌ πΌ π§ = (2πΌ β 1)π₯π·1βπΌ π§ + (1 β πΌ2 )π·πΌ π§. Prolongation of the operator π8 : π1βπΌ = π·1βπΌ (π§ 2 β π₯π§π§ β² ) + π₯π§π·2βπΌ π§. Applying the Leibniz rule (22), due to the equation (17) we find )οΈ β (οΈ βοΈ 1βπΌ (17) 1βπΌ 2 (22) π· (π§ ) = π·π π§ π·1βπΌβπ π§ = π§π·1βπΌ π§ + (1 β πΌ)π§ β² πΌ πΌ π§. π π=0
(26)
(27)
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
63
Similarly, applying the Leibniz rule for π₯π§ Β· π§ β² and taking into account that due to the equation (17) π·3 (π₯π§) = 0, we have β π·1βπΌ (π₯π§π§ β² )
(22),(17)
(21)
βπ₯π§π·1βπΌ (π§ β² ) β (1 β πΌ)(π§ + π₯π§ β² )πΌ πΌ π§ β² β (1 β πΌ)(βπΌ)π§ β² πΌ πΌ+1 π§ β² = [οΈ ]οΈ [οΈ ]οΈ π§(0)π₯πΌβ2 π§(0)π₯πΌβ1 π§(0)π₯πΌ (21) 2βπΌ β² 1βπΌ β² πΌ = βπ₯π§π· π§+π₯π§ β(1βπΌ)(π§+π₯π§ ) π· π§ β +πΌ(1βπΌ)π§ πΌ π§ β = Ξ(πΌ β 1) Ξ(πΌ) Ξ(πΌ + 1) [οΈ ]οΈ π§π§(0)π₯πΌβ1 π§π§(0)π₯πΌβ1 π§ β² π§(0)π₯πΌ 2βπΌ 1βπΌ β² 1βπΌ = βπ₯π§π· π§+ β(1βπΌ) π§π· π§ β + π₯π§ π· π§ β + Ξ(πΌ β 1) (πΌ β 1)Ξ(πΌ β 1) (πΌ β 1)Ξ(πΌ β 1) [οΈ ]οΈ π§ β² π§(0)π₯πΌ β² πΌ + πΌ(1 β πΌ) π§ πΌ π§ β = πΌ(πΌ β 1)Ξ(πΌ β 1) = βπ₯π§π·2βπΌ π§ β (1 β πΌ)π§π·1βπΌ π§ β (1 β πΌ)π₯π§ β² π·1βπΌ π§ + πΌ(1 β πΌ)π§ β² πΌ πΌ π§. (28) =
Substituting (27) and (28) into (26) we obtain π1βπΌ = πΌπ§π·1βπΌ π§ + (1 β πΌ2 )π§ β² πΌ πΌ π§ β (1 β πΌ)π₯π§ β² π·1βπΌ π§. As a result, the prolonged operators take the form πΌβ2 π Λ 1 = π + π§(0)π₯ , π (1βπΌ) ππ₯ Ξ(πΌ β 1) ππ§ πΌβ1 π Λ2 = π + π₯ π , (1βπΌ) ππ§ Ξ(πΌ) ππ§ Λ 3 = π₯ π + (πΌ β 1)π§ (1βπΌ) π , π ππ₯ (οΈ ππ§ (1βπΌ) )οΈ β² πΌβ1 πΌβ2 π π§ π§(0)π₯ π§π§(0)π₯ π β² (1βπΌ) Λ4 = π§ π + (πΌ β 1)π§ π§ β + , ππ₯ Ξ(πΌ β 1) Ξ(πΌ β 1) ππ§ (1βπΌ) π₯πΌ π Λ5 = π₯ π + , π ππ§ Ξ(πΌ + 1) ππ§ (1βπΌ) Λ 6 = π§ π + π§ (1βπΌ) π , π ππ§ ππ§ (1βπΌ) [οΈ ]οΈ π Λ 7 = π₯2 π + π₯π§ π + (2πΌ β 1)π₯π§ (1βπΌ) + (1 β πΌ2 )π§ (βπΌ) π , ππ₯ ππ§ ππ§ (1βπΌ) ]οΈ π [οΈ Λ 8 = π₯π§ π + π§ 2 π + πΌπ§π§ (1βπΌ) β (1 β πΌ)π₯π§ β² π§ (1βπΌ) + (1 β πΌ2 )π§ β² π§ (βπΌ) π , ππ₯ ππ§ ππ§ (1βπΌ) where π§ (1βπΌ) β‘ 0 π·π₯1βπΌ π§. Whence, after the reverse substitution of the variables π§ = 0 πΌπ₯1βπΌ π¦, we find symmetries of the equation (16):
π π¦ (πΌβ1) (0)π₯πΌβ2 π + , ππ₯ Ξ(πΌ β 1) ππ¦ π π π = π₯πΌβ1 , π3 = π₯ + (πΌ β 1)π¦ , ππ¦ ππ₯ ππ¦ (οΈ )οΈ (πΌ) (πΌβ1) π¦ π¦ (0)π₯πΌβ1 π¦ (πΌβ1) π¦ (πΌβ1) (0)π₯πΌβ2 π (πΌβ1) π (πΌ) =π¦ + (πΌ β 1)π¦π¦ β + , ππ₯ Ξ(πΌ β 1) Ξ(πΌ β 1) ππ¦ π π = π₯πΌ , π6 = π¦ , ππ¦ ππ¦ π π = π₯2 + [(2πΌ β 1)π₯π¦ + (1 β πΌ2 )πΌπ¦] , ππ₯ ππ¦ π π + [πΌπ¦π¦ (πΌβ1) β (1 β πΌ)π₯π¦π¦ (πΌ) + (1 β πΌ2 )π¦ (πΌ) πΌπ¦] . = π₯π¦ (πΌβ1) ππ₯ ππ¦
π1 = π2 π4 π5 π7 π8
64
R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
Here π¦ (πΌβ1) β‘ 0 πΌπ₯1βπΌ π¦, πΌπ¦ β‘ 0 πΌπ₯ π¦. The symmetries π2 , π3 , π5 , π6 are local, other symmetries are nonlocal. Let us note that the initial value π¦ (πΌβ1) (0) contained in the operators π1 and π4 is a natural initial condition for the formulation of the Cauchy problem for fractional differential equations. Let us show that the coefficients of the operators π1 . . . π8 satisfy the definite equation ππΌ+1 |π·πΌ+1 π¦=0 = 0, which takes the form β π·πΌ+1 (π β ππ¦ β² )βπ·πΌ+1 π¦=0 = 0 for the equation (16). Operators π2 ,π5 ,π6 . The verification is trivial. For π6 , we have β π·πΌ+1 (π¦)βπ·πΌ+1 π¦=0 = 0. For π2 , we have π β ππ¦ β² = π₯πΌ . By virtue of (25) we obtain π·πΌ+1 π₯πΌ = 0, because the gamma-function has poles of the first order at the points π₯ = 0, π₯ = βπ, π β R. Likewise for π5 : π·πΌ+1 π₯πΌβ1 = 0. Operator π1 : ππΌ+1 = π·
πΌ+1
(οΈ
)οΈ π¦ (πΌβ1) (0)π₯πΌβ2 β² βπ¦ . Ξ(πΌ β 1)
Note that derivatives π·πΌ+1 π¦ β² and π·πΌ+1 π₯πΌβ2 do not exist, therefore it is impossible to apply the operator π·πΌ+1 to the separate summands in this case. The relationship (19) with π = πΌ 1βπΌ π¦ allows one to write the following representation of π¦: π¦ = π·1βπΌ πΌ 1βπΌ π¦ = πΌ πΌ π·πΌ 1βπΌ π¦ +
(πΌ 1βπΌ π¦)(0) Β· π₯πΌβ1 π¦ (πΌβ1) (0)π₯πΌβ1 = πΌ πΌ π·πΌ π¦ + , Ξ(πΌ) Ξ(πΌ)
whence π¦ β² = π·1βπΌ π·πΌ π¦ +
π¦ (πΌβ1) (0)π₯πΌβ2 Ξ(πΌ β 1)
(29)
(30)
due to (πΌ β 1)Ξ(πΌ β 1) = Ξ(πΌ). Then ππΌ+1 = βπ·π₯πΌ+1 (π·π₯1βπΌ π·π₯πΌ π¦). Due to the relationship (19) and the equation (16) we have (19)
π·1βπΌ π·πΌ π¦ = π·πΌ πΌ π·πΌ π¦ = πΌ πΌ π·πΌ+1 π¦ +
(π·πΌ π¦)(0)π₯πΌβ1 (16) (π·πΌ π¦)(0)π₯πΌβ1 = Ξ(1 β π½) Ξ(1 β π½)
(31)
(the existence of (π·πΌ π¦)(0) follows from the formulation of the Cauchy problem for the original equation or from the existence of π§ β² (0)). Due to (25) the πΌ + 1 fractional derivative of the expression (31) is equal to zero, whence ππΌ+1 |π·πΌ+1 π¦=0 = 0. Operator of the dilation group π3 : ππΌ+1 = π·πΌ+1 ((πΌ β 1)π¦ β π₯π¦ β² ). Applying the representation π₯π¦ β² = (π₯π¦)β² β π¦ and the relationship π·πΌ+1 (π₯π¦)β² = π·πΌ+2 (π₯π¦) (which holds due to (π₯π¦)|π₯=0 = 0), we obtain (23)
ππΌ+1 = π·πΌ+1 (πΌπ¦ β (π₯π¦)β² ) = πΌπ·πΌ+1 π¦ β π·πΌ+2 (π₯π¦) = βπ₯π·πΌ+2 (π¦) β 2π·πΌ+1 (π¦), and ππΌ+1 |π·πΌ+1 π¦=0 = 0.
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
65
Operator π4 : )οΈ (οΈ π¦ (πΌ) π¦ (πΌβ1) (0)π₯πΌβ1 π¦ (πΌβ1) π¦ (πΌβ1) (0)π₯πΌβ2 (πΌ) (πΌβ1) β² ππΌ+1 = (πΌ β 1)π¦π¦ β + βπ¦ π¦ . Ξ(πΌ β 1) Ξ(πΌ β 1) Applying the Leibniz rule (22) it is easy to see that due to the equation (16) the fractional derivatives of the first and the second summands vanish: β )οΈ β (οΈ β βοΈ β πΌ + 1 (22) β π·πΌ+1βπ π¦ Β· π·πΌ+π π¦ β = 0, π·π₯πΌ+1 (π¦π¦ (πΌ) )βπ·πΌ+1 π¦=0 = β πΌ+1 π π=0 π· π¦=0 β (οΈ )οΈ β β β (22) βοΈ πΌ + 1 (25) β π·πΌ+1βπ π₯πΌβ1 Β· π·πΌ+π π¦ β = 0. π·π₯πΌ+1 (π₯πΌβ1 π¦ (πΌ) )βπ·πΌ+1 π¦=0 = β πΌ+1 π π=0 π·π₯πΌ+1
π·
π¦=0
To simplify the remaining parts of the expression we use the representation π¦ β² (30): (οΈ (πΌβ1) )οΈ )οΈ (22) (οΈ π¦ (0)π¦ (πΌβ1) π₯πΌβ2 (30) πΌ+1 (πΌβ1) β² π·π₯ = βπ·π₯πΌ+1 πΌ 1βπΌ π¦ Β· π·1βπΌ π·πΌ π¦ = βπ¦ π¦ Ξ(πΌ β 1) )οΈ β (οΈ βοΈ πΌ+1 (22) = β π·πΌ+1βπ (π·1βπΌ π·πΌ π¦) Β· π·π (πΌ 1βπΌ π¦). π π=0 By virtue of the equation π·πΌ+π = 0 and all summands with π > 1 vanish. The first two summands are also equal to zero due to the relationship (31), holding true for the equation: (31)
βπ·πΌ+1 (π·1βπΌ π·πΌ π¦) Β· πΌ 1βπΌ π¦ β (πΌ + 1)π·πΌ (π·1βπΌ π·πΌ π¦) Β· π·πΌ π¦ = 0. Remark. It is clear from the proof that an operator of a simpler form than π4 is admitted: (πΌβ1) (πΌβ1) π¦ (0)π₯πΌβ2 π Λ 4 = π¦ (πΌβ1) π + π¦ π . ππ₯ Ξ(πΌ β 1) ππ¦
Operator π7 :
ππΌ+1 = π·πΌ+1 ((2πΌ β 1)π₯π¦ + (1 β πΌ2 )πΌπ¦ β π₯2 π¦ β² ). The following equalities hold: π·πΌ+1 πΌπ¦ = π·2 πΌ 1βπΌ πΌπ¦ = π·2 πΌ(πΌ 1βπΌ π¦) = π·πΌ 1βπΌ π¦ = π·πΌ π¦, π·πΌ (π₯π¦ β² ) = π·πΌ (π₯π¦)β² β π·πΌ π¦ = π·πΌ+1 (π₯π¦) β π·πΌ π¦ = π₯π·πΌ+1 π¦ + πΌπ·πΌ π¦, π·πΌ+1 (π₯π¦ β² ) = π·π·πΌ (π₯π¦ β² ) = (πΌ + 1)π·πΌ+1 π¦ + π₯π·πΌ+2 π¦. Thus, π·πΌ+1 πΌπ¦ = π·πΌ π¦,
π·πΌ (π₯π¦ β² )|π·πΌ+1 π¦=0 = πΌπ·πΌ π¦,
β π·πΌ+1 (π₯π¦ β² )βπ·πΌ+1 π¦=0 = 0.
(32)
Then, ππΌ+1 = (2πΌ β 1)π·πΌ+1 (π₯π¦) + (1 β πΌ2 )π·πΌ+1 πΌπ¦ β π·πΌ+1 (π₯ Β· π₯π¦ β² ) = = (2πΌ β 1)π₯π·πΌ+1 (π¦) + (2πΌ β 1)(πΌ + 1)π·πΌ π¦ + (1 β πΌ2 )π·πΌ π¦ β π₯π·πΌ+1 (π₯π¦ β² ) β (πΌ + 1)π·πΌ (π₯π¦ β² ). After substituting the equation (16) and using the relationships (32), we obtain ππΌ+1 |π·πΌ+1 π¦=0 = (2πΌ2 + πΌ β 1 + 1 β πΌ2 )π·πΌ π¦ β 0 β πΌ(πΌ + 1)π·πΌ π¦ = 0. Operator π8 : ππΌ+1 = π·πΌ+1 [πΌπ¦π¦ (πΌβ1) β (1 β πΌ)π₯π¦π¦ (πΌ) + (1 β πΌ2 )π¦ (πΌ) πΌπ¦ β π₯π¦ (πΌβ1) π¦ β² ]. Let us use the Leibniz rule (22) for representation of every summand taking into account that π·πΌ+π π¦ = 0 due to the equation (16) when π > 0. )οΈ β (οΈ βοΈ πΌ+1 (22) (16) πΌ+1 1βπΌ π· [πΌπ¦πΌ π¦] = πΌ π·πΌ+1βπ π¦ π·π+πΌβ1 π¦ = πΌ(πΌ + 1)(π·πΌ π¦)2 , π π=0
66
R.K. GAZIZOV, A.A. KASATKIN, S.YU. LUKASHCHUK
π·
πΌ+1
)οΈ β (οΈ βοΈ πΌ+1 (16) (23) [(πΌ β 1)π₯π¦π· π¦] = (πΌ β 1) π·πΌ+1βπ (π₯π¦) π·π+πΌ π¦ = (πΌ β 1)π·πΌ+1 (π₯π¦) = π π=0 πΌ
(22)
(16)
(23)
= (πΌ β 1)π₯π·πΌ+1 (π¦) + (πΌ β 1)(πΌ + 1)(π·πΌ π¦)2 = (πΌ2 β 1)(π·πΌ π¦)2 ,
π·
πΌ+1
)οΈ β (οΈ βοΈ πΌ+1 (16) [(1 β πΌ )π· π¦ πΌπ¦] = (1 β πΌ ) π·πΌ+1βπ (πΌπ¦) π·π+πΌ π¦ = π π=0 2
(22)
πΌ
2
(16)
(32)
= (1 β πΌ2 )π·πΌ+1 (πΌπ¦) π·πΌ π¦ = (1 β πΌ2 )(π·πΌ π¦)2 ,
π·
πΌ+1
β² 1βπΌ
[βπ₯π¦ πΌ
)οΈ β (οΈ βοΈ πΌ+1 (16) π¦] = β π·πΌ+1βπ (π₯π¦ β² ) π·π+πΌβ1 π¦ = π π=0 (22)
(16)
(32)
= βπ·πΌ+1 (π₯π¦ β² )πΌ 1βπΌ π¦ β (πΌ + 1)π·πΌ (π₯π¦ β² )π·πΌ π¦ = βπΌ(πΌ + 1)(π·πΌ π¦)2 .
It is easy to see that the sum of right-hand sides turns to zero, which was to be proved. Note that simpler operators are also admitted: (οΈ )οΈ Λ 8 = π₯π¦ (πΌβ1) π + πΌπ¦π¦ (πΌβ1) π , Β― 8 = (πΌ β 1)π₯π¦π¦ (πΌ) + (1 β πΌ2 )π¦ (πΌ) πΌπ¦ π . π π ππ₯ ππ¦ ππ¦ Remark. In our previous paper [9] five local symmetries, including the projective operator π 9 = π₯2
π π + πΌπ₯π¦ ππ₯ ππ¦
were obtained from the principle of invariance of the equation (16). The present operator cannot be combined from π1 , . . . , π8 , but the closest to it is π7 (obtained from the projective operator for the equation π§ β²β² = 0). It is easy to verify that the nonlocal operator π10 β‘ π7 β π9 = [(πΌ β 1)π₯π¦ + (1 β πΌ2 )πΌπ¦]
π ππ¦
is admitted by the equation (16). Meanwhile, in the boundary case πΌ = 1 the operator π10 turns to zero, i.e. π7 matches π9 . Conclusion The prolongation formulae obtained in the paper give an opportunity to investigate symmetry properties of a new class of differential equations, containing fractional derivatives of a function with respect to another function. Meanwhile, the following important problem to be solved is the development of a method that allows to solve the resulting determining equations. The main difficulty in this case is caused by splitting rules for the determining equation. Another direction of the further research is systematization of results considering nonlocal symmetries of fractional differential equations and developing new algorithms of their construction. The problem of determining classification rules for nonlocal symmetries of such equations also seems to be important. BIBLIOGRAPHY 1. R. Metzler, J. Klafter The random walkβs guide to anomalous diffusion: A fractional dynamic approach // Phys. Rep., 2000, V. 339, P. 1β77. 2. Uchaikin V.V. Method of fractional derivatives (in Russian). β Artishok publ., Ulyanovsk, 2008. 512 p 3. Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and derivatives: Theory and Applications. β Gordon and Breach Science Publishers, Yverdon, 1993.
FRACTIONAL DIFFERENTIAL EQUATIONS. . .
67
4. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo Theory and applications of fractional differential equations. β Elsevier, Amsterdam, 2006. 5. Nahushev A.M. Fractional calculation and its application. (In Russian). β M.: Phismatilit. 2003. 272 p. 6. G. Jumarie Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results // Computers and Mathematics with Applications. Vol. 51, 2006. P. 1367β1376. 7. K.M. Kolwankar, A.D. Gangal HΒ¨ older exponents of irregular signals and local fractional derivatives // Pramana J. Phys. V. 48, No. 1 (1997). P. 49β68. 8. E Buckwar, Yu. Luchko Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations // J. Math. Anal. Appl., 1998, V. 227, P. 81β97. 9. Gazizov R.K., Kastkin A.A., Lukashchuk S.Yu. Continuous groups of transformations of fractional differential equations // Vestnik USATU. 2007. V. 9, 3 (21). P. 125β135. 10. R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk Symmetry properties of fractional diffusion equations // Physica Scripta. 2009. T 136, 014016. 11. R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk Group-Invariant Solutions of Fractional Differential Equations. ββ Nonlinear Science and Complexity, Springer. 2011. P. 51β59. 12. R. Sahadevan, T. Bakkyaraj Invariantanalysis of timefractional generalized Burgers and Kortewegde Vries equations // Journal of Mathematical Analysis and Applications, V. 393, Issue 2. P. 341β347. 13. Gazizov R.K., Kasatkin A.A., Lukashchuk S.Yu. Symmetry properties of differential equations of the fractional order translation // Works of the Institute of mechanics by the name of R.R. Mavlyutov USC RAS. Issue. 9. / Works of the 5th Russian conference with the international participation βMulti-phase systems: theory and applicationβ (Ufa, July 2-5, 2012.). Part 1. β Ufa: Neftegazovoye delo, 2012. P. 59β64 14. N.H. Ibragimov (ed.) CRC Handbook of Lie Group Analysis of Differential Equations. ββ CRC Press, Boca Raton. V. 1. 1994. 430 p. 15. Akhatov I.Sh., Gazizov R.K., Ibragimov N.H. Nonlocal symmetries. Heuristic approach. ββ Modern problems of mathematics. The latest achievements. Results of science and technology. M.: VINITI, 1989. V. 34. P. 3β83.
Rafail Kavyevuch Gazizov, Ufa State Aviation Technical University, Laboratory βGroup analysis of mathematical models of natural sciences, techniques and technologiesβ, 12, Karl Marx str., Ufa, Russia, 450000 E-mail:
[email protected] Alexey Alexandrovich Kasatkin, Ufa State Aviation Technical University, Laboratory βGroup analysis of mathematical models of natural sciences, techniques and technologiesβ, 12, Karl Marx str., Ufa, Russia, 450000 E-mail: alexei
[email protected] Stanislav Yurjevich Lukashchuk, Ufa State Aviation Technical University, Laboratory βGroup analysis of mathematical models of natural sciences, techniques and technologiesβ, 12, Karl Marx str., Ufa, Russia, 450000 E-mail:
[email protected]