From Dilute Tannery Effluent

23 downloads 0 Views 1MB Size Report
storage battery mariufacturing industries, tanneries' municipal sludges' extractive metal- lurgy processes, and ..... Press, Baca Raton, U.S.A.. Volesky, B. 1994.
I J E P3 1 ( 7 ) : 5 6 0 - 5 6 8( 2 O 11 )

( R e c e i v eodn J u n e1 1 , 2 0 1 0 )

Suitability of RhizopusStotoniferlor Removaland Recovery of Cr (T) From DiluteTanneryEffluent : Dilip Markandey, R.K. Salar, N. Markandey and R.c. Trivedi Delhi-|10 032 Central Pollution Control Board' Parivesh Bhavan, East Ariun Nagar' is of growing concern Contamination of aquatic resources by a variety of heavy metals well as human being' as fauna because of health risk posed by the exposure to flora and of industrial and The vast majority of toxic metals are the waste products/byproducts effluent from electroplating' metallurgical processes. other possible sources include the sludges' extractive metalstorage battery mariufacturing industries, tanneries' municipal amount of dissolved metals lurgy processes, and metat finishing operations conlains high value is very high in relation to and the concentration reaches to a significant range. The authorities at national and water quality standards, as prescribed by the various regulatory are chemical precipitation' international levels. The conventional decontamination methods o{ ion exchange ressolvert extraction, electrodialysis, electrolytic extracrion, application operation and maintenance ins, activated charcoal adsorption, etc., which involves high technologies for effectivecosts, which has stimulated a search of new decontamination like bacteria, yeast and and economic removal of such priority pollutants. Microorganisms, heavy metal ions' Biosorption is fungi, as well as algae can accumulate large amounts of biosorption rate depends on the considered to be u i""t physical or chemical process. The the advantages of low opertype of the process. Microbial removal of heavy metals offers sludge and high efficlency in ating cost, minimizing secondary problems r'rith metal-bearing qualities, the composite sample was detoxifying very dilute effluents. To assess the said of the promising isolate collected from a tannery to study the metal removal efficiency of the effluent have shown the Rhizopus stolonifer in the laboratoiy. The chernical anatyses various batch experiments were persignificantly high cr (T) concentration ((7O5 mg/Ll. isolate was tested under various formed with dilute efftuent. The rnycelial mass of the and untreated mycelia' physical treatment conditions, like formalin treated, alkali treated in the sorption efficiency The results of formalin treated biomass have shown improvement o f t h e i s o | a t e ( 9 8 % } t h a n t h e n a t i v e c u | t u r e | 8 7 o / o | . H o w e v e r , t h e a l k a | i t r e a t mthe e n t exsofthe Further optimizations in {57%}. efficiency the reduced substantially have biomass metal' The performances perimental variables have shown improvement of removal.of -targ-et 4th cycle of sorption/desorption' This of EDTA and NTA were found satisfactory upto paper describes the findings in detail'

KEYWORD T a n n e r y e f f l u e n t , B i o s o r p t i o n ,B i o r e m e d i a t i o n ,R e m o v a la n d r e c o v e r yo f h e a v y m e t a ls,A q u a t i c r e so u rced e co n ta mi n a tion' Mic rob i a tl e c h n o l og y,F o rma l i ntre a te db iomass. IN T ROD U C T I O N Global l y ,i t h a s b e e n e mp h a si ze dth a t the l f f l u e n tc o n t a i n r e m e d i a t i o no f i n d u s t r i a e 560

ing toxic and heavy metals,is one of the *ilot environmentalissueof the day {Ankit e t a 1 . , 2 0 O 5 ;H u s s e i ne t a l - , 2 0 0 3 , 2 O O 1 ; Khasimet a\.,2009;Four estandRoux,1992; , 969)'Presence V o l e s k y ,1 9 9 O ;B r o w n i n g 1 of varietyof heavy metalsin variousindusnamelyCr , Cd, Cu, Pb,et c ', tr iesdischar ges, ar e listed as pr ior ity pollutantsby var i ous r e g u l a t o r ya u t h o r i t i e si n c l u d i n gU S E P A ' n Abiupt acceler ationin industr ializatioand

voL. 31, NO'7, JULY2011 PROTEqTIoN, tNDtANJ. ENVIRONMENTAL O 2011 - KalPanaCorPoration

iF

JU

s F

25

C)

20

* e roo

15

o

@

10 c o

o

6

E

0

IE

100 .150 Biomssrg dryweilht basis)

qrftureage(h)

Fal Figure 4. Effect of initiat metal concentra_ tion on sorption of Cr (T) by R. stolonifer, without pH adjustments, initiat biomass concentration: IOO mg (dry weight), g hr exposure at ambient temperature

Figure 1. Effect of culture age on biosorption of Cr (T) by R. stoloniter from diluted tan_ nery effluent, appro'ximate concentration: 20 mg/L, without pH adjuptment, biomass: IOO mg (dry weight), exposure time: 2hr, batch experiments 120

s L

I roo L v

4

1oo

o g o

o t 4 0

@

o c o aE

tr o )

214

300

360

4X

60

480

Clttureage(h)

| *rh'".

.o

pH (value)

+arartreaeo

-EilEliiliEl-]

Figure 2. Biosorption efficiency of chemi_ cally modified biosorbent of R. stolonifer, without pH set, initiat biomass concentra_ tion: lOO mg (dry weight), initial Cr (T) con_ centration: 5O mg/L, exposure time: ghr, batch experiments

l=;,{ol Figure 5. Effect of pH on biosorption effi_ ciency o/ R. stolonifer, formalin treated, IOO mg (dry weight), and Cr (T) concentration: 1O2 mg/L, 8hr exposure at ambient tempera_ ture

120

s F

o

1n

100

a

60

E B o o * m

40

E o

1@

80

E *

20

E o

cE

0 400

% --

600

Biomass mg (dryweight)

Figure 3. Effect of initial biomassconcen_ t ra t io n o n b i o s o r p ti o n o f C r T ) b y R . stolonifer,without pH set, initial r (T) con_ temperature IFIDIAN J. ENVIRONMENTAL PROTECTION, VOL.31, NC.7, JTJLY 2O11 2 0 1 1 K alpana O Cor por ation

a o o o o

OtrA

EMA

AFO

ETI€S

(T) from Figure 7. Removal/recoveryof Cr loaded biomass of R. stolonifer in different adsorption/ desorption runs using EDTA' NTA, HCt and HNO3(1N each), batch experiments

ar eaof land and 131multiPlebasinconfigurations. The m ain dr iving for ce for the r esear chin of such effluentis the incr eas r emediation i n g l y s t r i n g e n td i s p o s a lr e l a t e dr e g u l a t o r y r equir em entsand the power of concer ned a u t h o r i t i e se s t a b l i s h e dt o e n f o r c et h e s e r e g u l a t i o n sS. i n c e t h e t a n n e r ye f f l u e n ti s t o i i " f o r m i c i o o r g a n i s m sh,e n c ei t c a n n o t be suitablytreatedby thesevariablesin aeroIn or bic as well as anaer obicenvir onment' syste m der to developefficientr emediation for tr eatingsuch eifluent especiallyfor its var iousinnovativem ethods ' detoxification, !ike biosor ptionusingvar iousbiologicalso r bents of differ entmicr obialor iginis an on -

ur b a n iz a t i o nh a s a l so a sso ci a te dto a n i n c re as ein c o n t a m i n a ti oonf a q u a ti cre so u rces (Pa g n a n e l lei t a l . , zOOi ; S te rn b e rge t a l '' Z O i Z ; M a r k a n d e Ya n d M a r k a n d e Y2' 0 0 3 ; M o z h g a ne t a l - , 2 O O 5 ;B r o w n i n g ' 1 9 6 9 ; and ( 4) possibilityof r ecove r y ' , 9 7 5 ) 'l t h a sa l s ob e e n biosor bents B r o o k s1, 9 9 1 ;R e y l e 1 r ep o rt e d( R e y l e1, 9 75 ; B ro w n i n g ,1 9 6 9 )th at T h e s u i t a b i l i t yo f v a r i o u sm i c r o o r g a n i s m s ' c a n l u n g t h e c h r o m i u mi s r e s p o n s i b l feo r ce r, der m a t i t i s :, e n e tra ti n gu l ce rs' p e rfo rat i o n o f n a s a ls e p t u ma n d i n f l a m m a t i o no f l iver a n d l u n g s i n h u ma nb e i n g ' T o re mo ve s u c h c o n t a m i n a nftr o m e f f l u e n t ' l i k e t a n n e r y i s a n i m p o r t a n te n v i r o n m e n t ai sl s u e ' Th e p re s e n c eo f c h ro mi u mi n va ri o u sfo rm s in t he t a n n e r ye f f l u e n t i s o n e o f th e mo st i ec ogni z e de n v i r o n me n taplro b l e m'w h i ch is l me d i a tion ar is ed u e t o l a c k o f e co n o mi care i l t te c hniq u e si n s u c h i n d u stri e s' s re g a rded as higtrlytoxic metalliccontaminantand also priincludedin the so-calledRed list of the l u t i o n c o n t r o l a n d g e n e r a t i o no f r e v e n u e ' HanWaste ority pollutantsof the Hazardous dling an d M a n a g e me nAt ct, 1 9 9 8 o f Go vt' n c hl me d i a ti ote . h e c o n v e n ti o n are of t nO i aT ni ques,l i k e c o a g u l a ti o ne, tc" h a ve sh o wn l i ke (1 ) Mo d e ra teto a lis t o f s h o r t c o m i n g s, at low metal concentration' ineffectiveness (2) sincethe metal typically presentas an(3) ion, it is not practically$et precipitated' (4) bulk h i g h e rr e q u i r e m e not f c o a g u l a n t ' h s t J O g ep r o d u c t i o n (, 5 ) e x p e n s i v e a n d l i n g a n d l i s p o s a l o f s l u d g e ,( 6 ) s o m e t i m e s ' slu d g ed i s p o s a l e a d sto g ro u n d w a te rconta m ina t i o n e , v e n afte r a p p l yi n ga p p ro p riate l a n d f l l lm e a s u r e s(' 7 ) r e q u i r e m e not f l a r g e 562

|ND|ANJ.ENV|RoNMENTALPRoTEcT|oN,VoL.31,No.7,JULY2 CorPoration €) 2011 - KalPana

Tabfe 1. Physico-chemical characteristics of tannery effluents Parameter

V a l u e ,m g / L

Colour Temperature pH TS SS DO, BOD

Y e l l o w g re e n 240C 8.7 20080.0 19758.0 2.0 3 8 4 0 .0 9750.0 705.0

coD C r (T)

N a k a j i m a n d S a k a g u c h i1, 9 9 3 , 1 9 8 6 ;W h i t e a n d G r a d d , 1 9 9 0 ) . F u n g a lc u l t u r e s ,l i k e , 4 s p e r g i l l u s n i g e r ( M u z z a r e l l ie t a l . , 1 9 8 0 ) ; Rhizopus arrhizus (Tsezos et al., 1gg7; F o u r e s te t a l . , 1 9 9 4 ; F o u r e s ta n d R o x , 1 9 g 2 ; Tobin et al., 1984, 1990), Penicill.iumsp. ( S i e g e le t a ! . , 1 9 8 6 ) ; R . j a v a n i c u m ( T r e e n S e a r se t a l . , 1 9 8 4 ) , e t c , w e r e t e s t e d b y f o r removaland recovery of various metals inc l u d i n gc h r o m i u m( M a r k a n d e ye t a l . , 1 g g 7 a , 1 9 9 7 b ) . l n t h i s p a p e r , f i n d i n g s r e l a t e dt o suitability of R. stolonifer to remove and r e c o v e rC r ( T ) f r o m d i l u t e d t a n n e r y c : f l u e n t w e r e p r e s e n t e d .T h e t e s t c u l t u r e w a s d e v e l o p e d i n t h e l a b o r a t o r yf r o m m e t a l r i c h e f f l u ent and tested under a variety of environmental stress from maximum removaland recovery of the target metal. M A T E R I A LA N D M E T H O D O L O G Y T h e c u l t u r e i s o l a t e df r o m a m e t a l b e a r i n g e f f l u e n t a n d t e n t a t i v e l y i d e n t i f i e da s R h i z o pus stolonifer. The methods of isolation and i d e n t i f i c a t i o ni s d e s c r i b e de l s e w h e r e ( M a r k a n d e y , 1 9 9 7 ) . A l l t h e c h e m i c a l su s e d w e r e o f a n a l y t i c a lg r a d e . T h e a c t u a l e f f l u e n t c o l l e c t e d f r o m a t a n n e r r Ti n c o m p o s i t e m a n n e r a n d b r o u g h t t o t h e l a b o r a t o r yu n d e r t e m p e r a t u r e - c o n t r o l l e dc o n d i t i o n f o r f u r t h e r a n a l y s i sa n d l a b o r a t o r ys c a l e e x p e r i m e n t s . T h e d e i o n i z e dd i s t i l l e dw a t e r w a s u s e d f o r m a k i n g a p p r o p r i a t ed i l u t i o n o f t h e e f f l u e n t , r e a g e n t s p r e p a r a t i o n ,e t c . B a t c h s o r p t i o n t e s t s w e r e c a r r i e d o u t i n t h e l a b o r a t o r ya t c o n s t a n t r o o m t e m p e r a t u r e( 2 5 " C ) o n a r o tary shakerusing 250 mL of Erlenmeyer's

conical flasks. The pH adjustmentswere c a r r i e do u t e i t h e r b y d i l u t e H C I o r N a O H s o lution. The reaction mixtures were filtered throughWhatman no.41 filter paperand filt r a t e w e r e a n a l y z e df o r r e s i d u a lC r ( T ) c o n centration. For each set of the experiment, a b l a n k s e t w a s a l s o r u n i n p a r a l l e l .M e t a l analyses of different sampies were performed as per stanilard methods of ApHA ( 19 9 8 ) . R E S U L TA N D D I S C U S S I O N Characteristics of the tannery effluent The effluent, collected frorn a tannery in c o m p o s i t em a n n e r ( 8 h r ) a n d a n a l y z e df o r v a r i o u s p a r a m e t e r s i s b r i e f l . ym e n t i o n e d i n t a b l e 1. l t c a n b e s e e n t h a t t h e e f f l u e n tw a s h i g h l ya l k a l i n ea n d s h o w e d v e r y l o w D O l e v e l . T h e c o n c e n t r a t i o no f C r ( T ) w a s v e r y h i g h a n d t h e v a l u e s o f B O D , C O D a n d s o l i d sw e r e also in higher range. Effects of culture age on sorption T h e m y c e l i a l b a l l s o f t h e t e s t o r g a n i s mc o l f e c t e d a f t e r e v e r v 2 4 h r o f i n c u b a t i o na n d e x p o s e dt o d i l u t e t a n n e r y e f f l u e n t . T h e f ; n 6 ings of this part of investigation are Lriefly m e n t i o n e di n t h e f i g u r e 1 . l t c o u l d b e s e e n that the 196 hr old mycelialballs adsorb m a x i m u m C r { T ) f r o m t h e r e a c t i o nm i x t u r e . Effect of chemical treatment on sorption efficiency Live cultureas well as dead cells effectively acts as a good adsorbentand sometimes e x h i b i t sh i g h e r s o r p t i o n c a p a c i t i e st h a n c o n ventional activated charcoal,ion exchange r e s i n s , e t c . T o d e v e l o p n o n v i a b l ec u l t u r e s , various means, like treatment with acid/alk a l i , o r g a n i c s ,l i k e f o r m a l d e h y d e s( l l e r ie t a l . , 1 9 9 0 ; H u a n g e t a l . , 1 9 8 8 ) , m e c h a n i c adl i s r u p t i o n ,l i k e s o n i c a t i o n( T s e z o sa n d V o l e s k y , 1 9 8 1) , e t c . , a r e c o m m o n l y u s e d . l n t h e p r e s e n t i n v e s t i g a t i o n ,a t t e m p t s h a v e b e e n m a d e t o u t i l i z et h e c u l t u r e i n n a t i v e f o r m a s w e l l a s a f t e r v a r i o u st y p e s o f c h e m i c a lt r e a t ment. The cultures were tested in native f o r m ( P u m p e la n d S c h i n n e r ,1 9 9 3 ) a s w e l l a s b y p r e p a r i n gt h e c u l t u r e s a f t e r g i v i n g c h e m i c a lt r e a t m e n t ( T r e e n s e a r s , 1 9 9 4 a ,

INDI A N J , E N V I R ON ME N T A L .P R OT E CTION, VOL"31, NO.7, JIJLY2O11 2 0 1 1 Kalpana Cor por ation @

563

1997: Whiteand Gadd,1990).Using izo1 9 8 4 b ) . I n s y n t h e t i cs o l u t i o n ,t h e a c c u m u pus sp. for variousmetals ions, Tobin et al. a t i o n o f t h e s e c o n t a m i n a n t sm a y b e s e l e c ( 1 9 8 4 ) r e p o r t e dt h e f o l l o w i n g p a t t e r n o f : i v e ( N a k a j i m aa n d S a k a g u n c h i ,1 9 8 6 ) . T h e p r e f e r e n c eo f t h e t e s t o r g a n i s m : )resenceof other pollutants, etc., also int e r f e r et h e s o r p t i o n c a p a c i t y o f t h e c u l t u r e UOr)Pb>Cd)Zn)Cu l T s e z o se t a l . , 1 9 9 7 1 . F u n g i e s p e c i a l l ys p e : i e s o f M u c o r a l e sa r e r e p o r t e d a s e f f i c i e n t Effect of initial biomass concentration on netal adsorber(Tobin et al., 1990). Other sorption efficiency rammannifungal isolates, like Mortierella The culture has been tested with various ans, Zygorhiynchus heterogamus, Mucor i n i t i a l b i o m a s s c o n c e n t r a t i o n sw i t h d i l u t e r a c e m o s u s ,e t c . , w e r e a l s o u n d e r c o n s t a n t t a n n e r y e f f l u e n t . l t h a s b e e n o b s e r v e dt h a t i n v e s t i g a t i o nt o r e m o v a l v a r i e t y o f m e t a l s of the biomass f r o m s y n t h e t i c s o l u t i o n s i n c l u d i n gr a d i o n u - w h e n t h e c o n c e n t r a t i o n r e a c t i o nm i x t u r e , c l i d e s ,l i k e U , e t c . , ( N a k a j i m aa n d S a k a g u c h i , r e a c h e st o 6 0 0 m g i n t h e i t r e m o v em a x i m u m o f 9 9 % C r ( T ) f r o m t h e 19 9 3 ) . A c t u a l b i o m a s s , h o t a l k a l i t r e a t e d s e t - u pw h i c h a l m o s t r e m a i nc o n s t a n tt i l l t h e b i o m a s sa n d f o r m a l i n t r e a t e d b i o m a s sw a s ' c o n c e n t r a t i o nr e a c h e s t o 1 0 0 0 m g ( d r y w t tested for metal sorption studies in batch part of investigam o d e . F i n d i n g s o f t h i s p a r t o f i n v e s t i g a - b a s i s ) . F i n d i n g so f t h i s t i o n a r e g r a p h i c a l l yp r e s e n t e di n f i g u r e 3 ' t i o n w e r e m e n t i o n e di n f i g u r e 2 . l t c o u l d be seen that the formalin treated biomass Effect of initial metal concentration nave shown maximum 98% of Cr (T) f'rom O n c e t h e b i o m a s s. c o n c e n t r a t i o nf o r m a x i the reaction mixture within 400-'480 min of m u m r e m o v a lo f C r ( T ) f r o m t h e e f f l u e n tw a s e x p o s u r e .T h e p e r f o r m a n c eo f a c t u a l b i o m d e t e r m i n e d ,i n t h e s u b s e q u e n ts e t , c h a n g ' e s ass was found better than the hot alkali p a t i n t h e i n i t i a l m e t a l c o n c e n t r a t i o n sw e r e treated biomass. The relative sorption e v a l u a t e d .l t h a s b e e n o b s e r v e d t h a t t h e t e r n o f c h e m i c a l l yt r e a t e d i s o l a t e c a n b e c h a n g e i n t h e i n i t i a l m e t a l c o n c e n t r a t i o :r e written as : d u c e s t h e s o r p t i o n e f f i c i e n c yo f t h e c u l t u r e , F o r m a l i nt r e a t e d> N a t i v e b i o m a s s) w h i c h w b s i n i t i a l l y9 9 % a t i n i t i a lm e t a l c o n (987o) l87o/ol c e n t r a t i o no f 5 0 m g / L , w h i c h w a s s u b s e Hot alkalitreated biomass. q u e n t l y r e d u c e d t o 9 5 o / o ,w h e n t h e c o n c e n (57Vol t r a t i o n r e a c h e st o 2 0 0 m g / L i n t h e r e a c t i o n mixture. Findingsof this part of investigaThough,the fungal biomasshave shown t i o n a r e g r a p h i c a l l yp r e s e n t e di n t h e f i g u r e i n c r e a s e ds o r p t i o n c a p a c i t y , w h e n i t w a s 4. t r e a t e d w i t h f o r m a l i n s o l u t i o n ,t h e t r e a t m e n t i t s s o r p with hot alkali solution reduced Effect of pH of the reaction'mixture t i o n c a p a c i t y . M a z z a r e l lei t a l . , ( 1 9 8 0 ) h a v e also reportedthat the biosorbentprepared To study thd effect of pH on the sorption c a p a c i t y o f t h e c u l t u r e , e x p e r i m e n t sw e r e from ,4. niger and treated with hot alkali, c o n d u c t e di n b a t c h m o d e f o r v a r i o u s p H t h e m e t a l d e c o n t a m i n a t i o ne f f i c i e n c yo f t h e v a l u e s r a n g i n gf r o m p H 1 . 0 t o p H 5 . 5 b y test isolatewas greatly reduced' Similar a d j u s t i n gt h e s e v a l u e s o f r e a c t i o n m i x t u r e , f i n d i n g sw e r e a l s o r e p o r t e db y G a l u n e t a l . , ( 1 9 8 7 ) I o r P e n i c i l l i u m s p . T h e p o s s i b l ee x b e f o r e e x p o s i n gt h e t e s t c u l t u r e . F i n d i n g s o f t h i s p a r t o f i n v e s t i g a t i o nw e r e g r a p h i p l a n a t i o nw a s t h e a l k a l i t r e a t m e n t d e a c t c a l l r Tm e n t i o n e di n f i g u r e 5 . l t c o u l d b e s e e n ylate the chitin content of the fungal cell w a l l , w h i c h u l t i m a t e l y f o r m s a c h i t o s a n - t h . a tt h e c u l t u r e i s a b l e t o a d s o r b m a x i m u m Cr (T) from the dilute solution,when the glucan complex, which shows reducesorpp r e s e n t , it pH of the reaction mixture was maintained tion. When other ions are also i n a c i d i cr a n g e .T h e m a x i m u mr e m o v a (l 9 9 % ) w a s i n t e r f e r ei n " s u c he f f i c i e n c y ,f o r e x a m p l e w a s o b s e r v e d . a tp H 1 . 0 , w h i c h w a s g r a d u A l , F e 3 * a n d o t h e r p o l l u t a n t s ( T s e z o se t a l . ,

564

VOL.31, NO.7, JULY2011 PROTECTION, J. E N V IR ONMENTAL IN D IA N O 2 0 1 1 K a l PanaCor Por ation

i

a l l y r e d u c e dt o 7 1 o / o ,w h e n t h e p H w a s s e t to pH 5.5.

in similarpattern to comparethe findings of the present investigation"

Effect of exposure period on sorption efficiency

CONCLUSION

B y c h a n g i n gt h e d u r a t i o n o f e x p o s u r e ,e x p e r i m e n t sw e r e c o n d u c t e d i n b a t c h m o d e a n d i t h a s b e e n o b s e r v e dt h a t t h e e x p o s u r e of 360 min was optimum for maximum rem o v a l o f t a r g e t m e t a l f r o m t h e r e a c t i o nm i x ture. The findings of this part of investigat i o n w e r e p r e s e n t e di n f i g u r e 6 . Recoveryof Cr {T} using different eluents T o r e c o v e rt h e C r ( T ) f r o m t h e l o a d e d b i o m a s s , e l u e n t s ,l i k e E D T A , N T A , H C I a n d H N O 3 w e r e t e s t e d i n d i v i d u a l l yf o r a b o u t 3 h r o f e x p o s u r ea t a m b i e n t t e m p e r a t u r e .T h e m i x tures were there centrifugedat 25000 gm f o r a b o u t 3 0 m i n . A f t e r c e n t r i f u g a t i o n .m e t a l s w e r e m e a s u r e di n s u p e r n a t a n t .F i n d i n g s o f t h i s p a r t o f i n v e s t i g a t i o nw e r e m e n t i o n e d in figure 7. lt can be seen that as compare t o d i l u t e a c i d s , p e r f o r m a n c e so f E D T A a n d NTA were observed in the higher range (Padmavathyet al., 2OO3; Pagnanelli.t al., 2 O O 1 ;S t e r n b e r ge t a l . , 2 O O 2 ;T i e n , 2 t J 0 2 ) . S i n c e b i o s o r b e n t ,p r e p a r e df r o m v a r i o u s s p s o f R h i z o p u sa n d r e p o r t e d a s e q u i v a l e n t t o c o m m e r c i a lr e s i n s f o r r e m o v a l o f v a r i e t y o f d i v a l e n tm e t a l s ( T o b i n e t a l . , 1 9 8 4 ; V o l e s k y , 1 9 8 4 , 1 9 9 0 a , 1 9 9 0 b ; T r e e n s e a re t a l . , 1 9 8 4 a , 1 9 8 4 b ) , o t h e r i n v e s t i g a t i o n ss t a r t e d c o r n p a r i n gt h e r e l a t i n g s o r p t i o n e f f i c i e n c y o f v a r i o u ss p e c i e so f s a m e g e n u s . U s i n g various sp. of Rhizopus, that is R. Oryzae, R. oligosporus, and r9. arrhizus, Yin et at. t1999) found that R. arrhizus exhibit reas o n a b l yh i g h e r u p t a k e c a p a c i t y o f h e a v y metals, like Cd. Though the sorption s t r o n g l yd e p e n d so n t h e p H o f t h e s o l u t i o n , m e t a l l i cc o n t a m i n a n t s ,l i k e C d , P b , Z n , e t c . , g e t a d s o r b e dt h e m o s t a t p H 5 . 0 a n d a b o v e . T h e p a l l e t e df o r m s o f m y c e l i u ma l s o e n h a n c e t h e s o r p t i o nc a p a c i t y o f t h e c u l t u r e ( P u m p e l a n d S c h i n n e r ,1 9 9 3 ; L i u e t a l . , 2 A O 4 ; M a r k a n d e ya n d M a r k a n d e y ,2 0 0 3 ; M o z h g a n et af., 2005; Nuhogluet al., 2OO2l.Prese n t l y , n o p u b l i s h e di n f o r m a t i o ni s a v a i l a b l e

The abrupt increase in the level of heavy m e t a l s i n a q u a t i c e n v i r o n m e n th a s b e e n p r o m i n e n t a f t e r a c c e l e r a t i o ni.n m i n i n g a n d metallurgicaa l ctivitiesas well as unorganized growth in industrialand urban sect o r s . T h e a n t h r o p o g e n i cd i s c h d r g eo f v a r i ous forms of chromium in such environhrent i s e n o r m o u s d u e t o i n d i s c r i m i n a t eu s e o f c h r o m a t e i n t a n n e r i e sa n d t h e s a m e i s o n e o f t h e b e s t e x a m p l e si n t h i s r e g a r d . N o w , i n c r e a s e da w a r e n e s s a b o u t t h e s e p r i o r i t y p . ollutants have attracted a great deal of c o n c e r n i n t h e l a s t f e w d e c a d e sa n d s t u d i e s o n m e t a l s r e m e d i a t i o nf o r d e t o x i f i c a t i o n of the metal bearingeffluents and their recovery has been under constant investigation all over the world. Since the convent i o n a l m e t h o d s , l i k e a c t i v a t e dc a r b o na d s o r p t i o n , a p p l i c a t i o no f i o n e x c h a n g e r e s i n s , e t c . , a r e c o n s i d e r e da s o u t d a t e d t r e a t m e n t system since these are not only expensive b u t a l s o h a s l i m i t e d a p p l i c a b i l i t y ,s p e c i a l l y when the concentrationof these contrmin a n t s i s v e r y l o w i n t h e r a n g eo f 1 - i O 0 m g / L . C u r r e n t l y ,t h e s e a r c h o f o t h e r s u i t a b l e a n d e c o n o m i c a l l ya c c e p t a b l e o p t i o n a r e greatly empirasized.Microorganismsoffer a potentially important treatment strategy for r e m e d i a t i o no f h e a v y m e t a l s c o n t a i n i n ge f fluent; sludge, etc., as it is evidencedby published scientific literature. Under the var i e t y o f e n v i r o n m e n t a lc o n d i t i o n s , m i c r o b e s h a v e b e e n s h o w n t o e n h a n c e dr e m e d i a t i o n rate in the aqueous bystems. I n t h e p r e s e n t i n v e s t i g a t i o n ,l a b o r a t o r yd e v e l o p e d a c c l i m a t i z e dp u r e c u l t u r e , w h i c h was tentatively identified as Rhizopus stolonifer was taken into consider'ationto s t u d y i t s s o r p t i o n p o t e n t i a l sf o r t h e r e m o v a l and recoveryof Cr(total)from dilute tann i n g e f f l u e n t . V a r i o r i s e n v i r o n m e n t a vl a r i d b l e s , l i k e c u l t u r e a g e , p r e t r e a t m e n t ,i n i t i a l m e t a l a n d b i o m a s sc o n c e n t r a t i o n ,p H o f t h e reaction mixture, agitation and exposure p e r i o d ,r e c o v e r yo f C r ( t o t a l )f r o m t h e l o a d e d b i o m a s sb y e l u t i n g w i t h v a r i o u sc o n v e n t i o n a l

INDIAN J. ENVIRONMENTAL PROTECTIO}J, VOL.31, hIO.7, JULY2O11 2011 KalpanaCorporation @)

565

e l u e n t sw e r e s t u d i e d i n d e t a i l i n b a t c h m o d e to assessthe suitability of the test organism. Based on findings, following conclusions can be drawn that the test organism e f f e c t i v e l y d e c o n t a m i n a t e st h e t a n n e r y e f fluent, when the later is tested in diluted condition. However, higher concentration and presenceof other toxic contaminants reduces the efficiency of the culture. The sorption of Cr (T) depends on pH of the reaction mixture. At acidic range especially pH 1-3, the culture have shown maximum s o r p t i o n , w h i c h g e t r e d u c e d c o n s i d e r a b l yi n a l k a l i n er a n g e . T h e e f f i c i e n c y o f s o r p t i o n o f the target metal improves when adsorbent doses are increased. At higher dosageand pH 1-3, maximum sorption of the metal t a k e s p l a c e . T h e p r o c e s so f s o r p t i o n s e e m s t o b e a c h e m i s o r p t i o nc o m p l e x a t i o n r e a c t i o n , w h i c h g e t s e n h a n c e da s t h e p e r i o d o f e x p o s u r e i n c r e a s e d .T n e s o r b e d m e t a l c a n also be recovered effectively from the contaminated biomass. REFERENCE A n k i t , B a l a r i a ,S i l k e S c h i e w e r a n d T h o m a s T r a i n o r . 2 0 u 5 . B i o s o r p t i o no f P b ( l l ) o n t o citrus pectin : Effect of process parameters o n m e t a l b i n d i n g e q u i l i b r i u ma n d k i n e t i c s ' W o r l d w a t e r a n d e n v i r o n m e n t a lr e s o u r c e s C o n g r e s s2 0 0 5 . A n c h o r a g e ,A l a s k a , U S A ' A P H A . 1 9 9 8 . S t a n d a r dm e t h o d s f o r e x a m i nation of water and wastewater (20th edn) A m e r i c a n P u b l i c H e a l t h A s s o c i a t i o n ,W a s h ington, D.C. B r o o k s ,C . S . 1 9 9 1 ' M e t a l r e c o v e r yf r o m i n dustrial wastes' Lewis Pub', Chelsea'Ml' Browning, E. 1969. Toxicity of industrial metals (2nd edn). Butterworths,London' F o u r e s t ,E . a n d J . C . R o u x. 1 9 9 2 ' H e a v ym e t a l b i o s o r p t i o nb y f u n g a l m y c e l i a l b y p r o d u c t : Mechanism and influence of pH' J' Appl' Microbio. Biotech.,37 : 399-403' F o u r e s t ,E ' , C . C a n a la n d J ' C ' R o u x ' 1 9 9 4 ' by l m p r o v e m e n to f h e a v y m e t a l b i o s o r p t i o n mycelial dead biomass of RhizoPus arrhizus, Mucor meihi and Penicillium chrysogenum : fhe pH control and cation MS, Microbio' Rev" 14 : activation. J' 325-332.

566

G a l u n ,M . , e f a t . 1 9 8 7 . T h e r e m o v a lo f m e t a l ions from aqueous solution by Penicillium biomass: Kineticsand uptake parameters' J. Water Air Soit Poll., 33 : 359-371' H u a n g ,C . P . , e t a / . 1 9 8 8 - T h e r e m o v a lo f C d (ll) from dilute aqueoussolution by fungal absorbent. J. Water Sci. Tecfi.' 20 : 369376. H u g h e s ,M . N . a n d R . K . P o o l e . 1 9 8 9 M e t a l s a n d m i c r o o r g a n i s mC. h a p m a na n H a l l , London H u s s e i n ,H . , e f a t . 2 O O 1 .I n t e r a c t i o no f t h e d i f f e r e n th e a v y m e t a l i o n s w i t h i m m o b i l i z e d bacterialculture degradingxenobiotic w a s t e w a t e r e o m p o u n d s . l n t e r n a t i o n a lW a t e r A s s o c i a t i o nW o r l d W a t e r C o n f e r e n c e ' B e r l i n ,G e r m a n Y . H u s s e i nH , . , S . F a r a ga n d H . M o a w a d ' 2 0 0 3 ' l s o l a t i o n a n d c h a r a c t e r i z a t i o no f P s e u d o m o n a s r e s i s t a n tt o h e a v y m e t a l s c o n t a m i nants. Arab. J. Biotech., T . 13-22' I t e r i , R ,, e t a l . 1 9 9 O . T h e u s e o f b i o s o r p t i o n f o r u p t a k e o f l o w l e v e l c o n t a m i n a n t sb y c e l l s . 5 t h E u r o .C o n f ' B i o t e c h ' , immobilized C o p e n h a g e nP . r o c e e d i n g sP, P 8 3 ' K h a s i m , S . K . B . , e t a l . 2 0 0 9 . B i o s o r p t i o no f nickel and c:pper ions from sihgle metal a q u e o u s s o l u t i o n s b y f u n g i' J ' E n v ' . S c i ' '51 (1 : 1-6. Eng., ) lesky' 1988' BiosoK u y u c a k ,N . a n d B ' metals from indusrbent for recovery trial solution. J. Biotech. Letters' 1O : 137142. L i u , H . L . , e t a l . 2 O O 4 ' B i o s o r p t i o no 1 7 n ( l l ) tn6 gu(ll) by the indigenous Thiobacillus t h i o o x i d a n sC . h e m .E n g . J ' , 9 7 : 1 9 5 - 2 0 1 ' M a r k a n d e y ,D . K . 1 9 9 7 . B i o t e c h n o l o g i c a l a p p r o a c h f o r b i o s o r p t i o na n d b i o a c c u mulationof heavy metalliccontaminants' M . T e c h . T h e s i s .l S M , D h a n b a d ' M a r k a n d e yD , . K . a n d N . R . M a r k a n d e y2' 0 0 3 ' ' apital M i c r o o r g a n i s m si n b i o r e m e d i a t i o nC Pub. Co., New Delhi. M a r k a n d e YD , .K., S'K' Maiti and S'D'

c h e m i c a l l ys y n t h e s i z e dm u l t i - c o m p o n e n t m a n a g e m e n ta n d r e s o u r c er e c o v e r y ' N e w

|NDIANJ'ENV|RoNMENTALPRoTEcT|oN,VOL'31,No.7,JU1Y201tr @ 2 0 1 1 - KalPanaGor Por ation

Delhi. M a r k a n d e y ,D . K . , S . K . M a i t i a n d S . D " M a k h i j a n i .1 9 9 7 b . A s s e s s m e n to f h e a v y m e t a l b i o s o r p t i o ne f f i c i e n c y o f n o n - v i a b l e b i o m a s s o f m i c r o b i a lo r i g i n i n c h e m i c a l l y composedmulti metal ion system. 3gth A n n u a l M e e t i n go f A M I a n d C o n f . o n M i c r o b e s i n s u s t a i n a b l ed e v e l o p m e n t . N e w Delhi. M o z h g a n ,A l i m o h a m a d i G , i t i A b o l h a m da n d A l i r e z aK e s h t k a r .2 0 0 b . P b ( l t ) a n d C u i l l ) biosorpticin on Rhizopus arrhr2us modeling m o n o - a n d m u l t i - c o m p o n e n ts y s t e m s . / t / r n e r a l sE n g . , 1 8 ( 1 3 - 1 4 i ,: 1 3 2 5 - 1 3 3 0 M u z z a r e l l iR , .A.A. 1977. Chitin. pergamon P i ' e s s ,N . Y . M u z z a r e l l iR , .A.A., F. Tanfaniand G. S c a r p i n i n .1 9 8 0 . C h e l a t i n g ,f i l m f o r m i n g a n d c o a g u l a t i n ga b i l i t y o f t h e c h i t o s a n glucan complex fror-. Aspergillus niger industrial waste. J. Biotech. Bioeng., 22 : 855-896. NakajimaA , . a n d T . S a k a g u c h i .1 9 8 6 . S e l e c t i v e a c c u m u l a t i o no f h e a v y m e t a l s b y microorganisms.J. Appl. Microbio. Biotech., 24 ."59-64. N a k a j i m a ,1 . . .a n d T . S a k a g u c h i . 1 9 9 3 . A c cumulationof U by basidiomycetes.J. Appt. Microbio. Biotech., 3g : 574-579. N o u r b a k s h ,M . , e t a l . 1 9 9 4 . A c o m p a r a t i v e s t u d y o f t h e v a r i o u s b i o s o r b e n t sf o r r e m o v a l o f C r ( V l ) f r o m i n d u s t r i a le f f l u e n t . J. Proc. Biochem., 291r1t,: 1-5. N u h o g l u ,Y . , e t a l . 2 O O 2 . T h e r e m o v a l o f Cu(ll) from aqueoussolutions by lJlothrix z o n a t a .B i o r e s o u r .T e c h . , 8 5 ( 3 ) : 3 3 1 - 3 3 3 . P a d m a v a t h y ,V . , P . V a s u d e v a na n d S . C . D h i n g r a .2 0 0 3 . B i o s o r p t i o no f n i c k e l( l l ) i o n s on Bakers Yeast. Process Biochentistry. 38(10):1389-1395. P a g n a n e l l iF, . , e t a 1 . 2 0 0 1 . E q u i l i b r i u m b i o s o r p t i o ns t u d i e s i n s i n g l e a n d m u l t i metal systems. Process Biochemistry. 3 7 1 2 1: 1 1 5 - 1 2 4 . P u m p e l ,T . a n d F . S c h i n n e r . 1 9 9 3 . N a t i v e f u n g a l p e l l e t s a s a b i o s o r b e n tf o r h e a v y metals.FEMS,Microbio.Rev., 1 1 : 1bg-164. R e y l e ,H . 1 9 7 5 . T o x i c i t y o f c h r o m i c a c i d i n the chromiumplating industry. l. Eng. Res., 10:141. S i e g e l ,5 . , e t a l . 1 9 8 6 . B i o s o r p t i o no f p b

and r by the Peniciilium pieparation. J. Wat Air, Soil poll., 27 : 6g_75. Sternberg,Steven p.K..and Ryan W. Dorn. 2OO2.Cadmiumr em ovalusing Clado phor a i n b a t c h , s e m i - b a t c ha n d f l o w r e a c t o r s . Bior esourTech.,81( . 3): 24g- 285. Tien, C.J. 2OO2.Biosor ptionof metal i ons by freshwateralgae with differentsurface , characteristics.ProcessBiochemistry.3g (4): 605-613. T o b i n ,J . M . , D . G . C o o p e ra n d R . J . N e u f e l d . 1984. Uptake of metal ions by Rhizopus arrhizus biomass. J. Appl. Env. Micro., 47 :821-824. T o b i n ,J . M . , D . G . C o o p e ra n d R . J . N e u f e l d . 1 9 9 0 . I n v e s t i g a t i oonf- t h e m e c h a n i s m of metaf uptake by denaturedRhizopus arrhizus biomass. J. Enz. Microbial. Tech., 12: 591-595. T r e e n - S e a r sM, . E . , S . M . M a r t i n a n d B . Vofesky. 1984a. Pr epar ationof Rniz opus javanicus biosorbent. J. Appl. Env. Microbio.,48 : 137-141. T r e e n - S e a r sM, . E . , B . V o l e s k ya n d R . J . Neufeld.1984b. lon exchange/complex ati on of ur anyl i,;n by Rhizopusbiosor be nt.J . Bigtech.Bioeng.,26 : 1323-1329. T s e z o s ,M . a n d B . V o l e s k y .1 9 8 1 . B i o s orption of U with Aspergillus niger. In lmmobilization of ions by biosor ption. Ed H .H . E c c l e sa n d H . H u n t . E l l i s H a r w o o d , ChichesterU.K. , pp 183- 200. Tsezos,M ., Z. Geor gousisand M. Rem oun d a k i .1 9 9 7 . M e c h a n i s m o f a l u m i n i u mi n terferenceson U biosorptionby Rhizopus arrhizus.J. Biotech.Bioeng.,bb : 16-27. V o l e s k y ,B . 1 9 9 O a .B i o s o r p t i o no f h e a v y m etal.CRC Pr ess,Boca Raton,U.S.A. Volesky,B. 19gob. Biosor ptionand bi os orbents.ln Biosorptionof heavymetals.CRC Pr ess,BacaRaton,U.S.A. Volesky,B. 1994. Advancesin biosor pti on of m etals.Selectionof biom asstypes . J . F E M SM i c r o b i oR . e v . ,1 4 : 2 9 1 - 3 O 2 . W hite,C. and M.M. Gadd.1990. Biosor pti on o f r a d i o n u c l i d e bs y f u n g a l b i o m a s s .J . Chem.Tech.Biotech.,49 : 33-43. Yin, P., et al. 1999. Biosor ption r emovalof C d f r o m a q u e o u ss o l u t i o nb y u s i n g p r e treated biomasscultured from starch

I N D I A NJ . ENVIRONMENTAL PROTECTION, VOL.31, NO.7, JULY2O11

@ 2011 - KalpanaCorporation

567

was t ew a t e r J. . W a te r R e s.,3 3 (8 ) : 1 9 6 O19 6 3 . AUTHOR 1*. Mr. D i l i p M a r k an d e y,S ci e n ti stC , C e ntral PollutionControlBoard,PariveshBhavan, Eas t Arju n N a g a r ,De l h i 1 1 0 0 3 2 , p re se n tly at Cent r a l P o l l u t i o nC o n tro l B o a rd , T o n al O f f i c e - W e s t ,P a r i v e s hB h a v a n ,N e a r V M C 0 3. Wa rd 10 , Su b h a n p u raV, a d o d a ra -3 g O2

568

2 . D r . R . K . S a l a r ,R e a d e r ,D e p a r t m e n to f B i o technology, ChoudharyDevi Lal University, Sirsa. 3 . D r . N e e l i m aM a r k a n d e y ,S c i e n t i f i cO f f i c e r , G G S I P U n i v e r s i t y ,K a s h m e r eG a t e , D e l h i 110003. 4 . D r . R . C . T r i v e d i , A d d i t i o n a lD i r e c t o r ,C e n t r a l P o l l u t i o nC o n t r o lB o a r d ,P a r i v e s hB h a v a n , E a s t A r j u n N a g a r , D e l h i - 11 0 0 3 2 .

VOL.31; NO.7, JULY2O11 PROTECTIC}N, INDIANJ. ENVIRONMENTAL CorPoration @)2O11 - Kalpana.