fulltext - DiVA Portal

12 downloads 530 Views 334KB Size Report
Rift Valley Fever virus (RVFV) causes an infection with severe impact on animal and ... This novel QRT-PCR method proved to be reliable and serves as a.
Rift Valley Fever Development of diagnostics and vaccines. Jonas Näslund

Department of Clinical Microbiology Umeå University, Sweden, 2010

Department of Clinical Microbiology Division of Infectious Diseases/Virology Umeå University SE-901 85 Umeå, Sweden

FOI- Swedish Research Defence Agency Division of CBRN Defence and Security SE- 901 82 Umeå, Sweden

Copyright©Jonas Näslund ISBN: 978-91-7264-883-8 ISSN: 0346-6612 New Series No 1323 Omslag: Pär Andersson, Print & Media Printed by: Print & Media, Umeå University, Umeå, Sweden, 2010

2

Table of contents Table of contents



Abstract



List of papers



Abbreviations



Introduction Bunyaviridae family

9  10 

The virus particle

11 

The genome

12 

Transmission

14 

Outbreaks

16 

Predictions of outbreaks

17 

Pathogenesis

18 

Clinical picture

19 

Diagnostics

21 

Detection of virus or antigens

21 

Detection of RVFV specific antibodies

21 

Treatment

22 

Viral Vaccines

23 

Traditional vaccine strategies

24 

Novel vaccine approaches

24 

DNA vaccines

25 

Virus-like particles

26 

Evaluation of vaccine efficacy

27 

Vaccines against Rift Valley Fever

29 

Aims

32 

Results and discussion

33 

Development of an animal model and diagnostic tools

33 

Quantitative real-time PCR

34 

Viral kinetics in Rift Valley fever

34 

Field sampling

35 

Development of new vaccines

37 

Genetic immunisation

37 

Virus like particles

40 

Future approaches

42 

Conclusion

45 

Populärvetenskaplig sammanfattning på svenska

46 

Acknowledgements

50 

References

51 

3

4

Abstract Rift Valley Fever virus (RVFV) causes an infection with severe impact on animal and human health. The disease is endemic throughout almost the entire African continent and large regions of the Arabian Peninsula. During epidemics, high mortality is observed in animals, especially among cattle, goats, and sheep. In humans, the symptoms vary from a benign influenza-like disease to a life-threatening hemorrhagic fever. Due to the devastating effect on communities in endemic regions and the possibility of further spread of this virus, there is an imperative need to improve and develop control measurements against this emerging disease. Therefore, this thesis focuses on diagnostics and vaccines against RVFV. RVFV infection kinetics was studied in a mouse model system by detection and quantification of viral genomes, using a developed quantitative real-time PCR (QRTPCR) method. This novel QRT-PCR method proved to be reliable and serves as a supplement to standard diagnostics, direct virus isolation and serological methods. High levels of viral RNA were found in blood and liver samples from experimentally infected mice during the first days post infection. Thereafter the levels declined rapidly and dropped below detection limit approximately seven days post infection. The QRT-PCR technique was also used in a study aimed to improve diagnosis of RVFV from field samples collected on filter strips. Today, the available RVFV vaccines are only approved for animal use and these vaccines have several shortcomings. Since RVFV is a highly pathogenic organism requiring bio-safety level 3 laboratories, two different none-replicating vaccine approaches have been applied and evaluated using a mouse model. A DNA based vaccine, administered via gene-gun, and the use of virus-like particles (VLP), by the intra-peritoneal route. RVFV specific and neutralising antibodies were raised with both vaccine approaches. However, VLP vaccination against Rift valley Fever proved to be more promising as a future vaccine, since higher titres of neutralising antibodies and improved survival rate were found upon a lethal RVFV challenge in mice. In conclusion, a sensitive and specific method for quantifying RVFV infection and a promising vaccine candidate against RVFV were developed.

5

6

List of papers

This thesis is based on the following papers, which are referred to in text by their roman numerals.

I.

Näslund J, Lagerqvist N, Lundkvist Å, Evander M, Ahlm C, Bucht G. Kinetics of Rift Valley Fever Virus in experimentally infected mice using quantitative real-time RT-PCR. Journal of Virological Methods. 2008, 151(2):277-282.

II.

Näslund J, Drobni P, Kerner A, Bucht G, Evander M, Ahlm C. PCR detection of a Hantavirus and Rift Valley Fever virus using dried whole blood spotted on filter strips. (Manuscript).

III.

Lagerqvist N, Näslund J, Lundkvist Å, Bouloy M, Ahlm C, Bucht G. Characterisation of immune responses and protective efficacy in mice after immunisation with Rift Valley Fever virus cDNA constructs. Virology Journal. 2009, 17;6:6.

IV.

Näslund J, Lagerqvist N, Habjan M, Lundkvist Å, Evander M, Ahlm C, Weber F, Bucht G. Vaccination with virus-like particles protects mice from lethal infection of Rift Valley Fever virus. Virology. 2009, 15;385:409-415.

7

Abbreviations BSL cDNA ELISA GN/GC HBsAg IFA ICTV kDa N NSm NSs PCR PKR PRNT PUUV QRT-PCR RdRp RNA RNP RVF RVFV SAP-30 VLP WHO

8

bio-safety level Complementary deoxyribonucleic acid Enzyme-linked immunosorbent assay Glycoprotein, N-/C-terminal of the precursor Hepatitis B surface antigen Immunofluorescence assay International Committee on Taxonomy of Viruses Kilo dalton Nucleocapsid Non structural m Non structural s Polymerase chain reaction Protein kinase R Plaque reduction neutralization test Puumala virus Quantitative real-time polymerase chain reaction RNA dependent RNA polymerase Ribonucleic acid Ribonucleoprotein Rift Valley Fever Rift Valley Fever virus Sin3A-Associated Protein 30 Virus-like particles World Health Organization

Introduction Rift Valley Fever (RVF) is a zoonotic viral disease causing outbreaks on a regular basis in Africa, often with a devastating impact on the socioeconomical situation (Meegan et al., 1979, Digoutte & Peters, 1989, Gerdes, 2002) . These epidemics and epizootics are often preceded by heavy rain falls and flooding, which create good breeding conditions for mosquitoes, the main vector of this virus. RVF has a very broad host range, with symptoms ranging from benign to severe disease among the different susceptible species (Gerdes, 2004, Metwally, 2008). The virus can cause severe hemorrhagic fever in humans and is therefore considered as a high risk pathogen that requires BSL 3 (biosafety level) conditions for handling and manipulations. Rift Valley Fever virus (RVFV), like other members of the viral hemorrhagic fever group, is redeemed as a possible agent for bioterrorism (Sidwell & Smee, 2003). For this reason RVFV is listed as a bio terror agent by the “Centre for Disease Control and Prevention” and is classified as a “category A” high priority pathogen, by National Institute for Allergy and Infectious Diseases. Indeed, there have been intentions to weaponize RVFV, undertaken by the United States before their offensive biological warfare program was closed in 1969 (Bouloy & Flick, 2009).

9

Bunyaviridae family The etiological agent responsible for this disease was isolated during an outbreak in 1930 in Rift Valley, Kenya, hence the name, Rift Valley Fever virus (Daubney et al., 1931). RVFV belongs to the Phlebovirus genus within the Bunyaviridae family (Fig.1). This family consist of more than 300 viruses divided in to five genera; Hantavirus, Nairovirus, Orthobunyavirus, Phlebovirus, and Tospovirus, according to the “International Committee on Taxonomy of Viruses” (ICTV). Viruses included in this family are distributed all over the world and cause a variety of diseases in animals, insects, and plants. Most of them are arboviruses, i.e. transmitted by arthropods, except for the Hantaviruses that are transmitted by rodents. Several members of the Bunyaviridae family can cause disease in humans resulting in different symptoms, ranging from more benign illnesses to severe hemorrhagic fevers (Elliot, 1996, Swanepoel, 2009).

Fig.1. Schematic overview of some selected viruses of the Bunyaviridae family.

10

The virus particle Like other members of the Bunyaviridae family the RVFV particle is small (80-120nm), enveloped and spherical in shape (Martin et al., 1985, Elliot, 1996). The virion has been believed to have a pleomorphic shape, but more recent findings indicates a icosahedral structure (Freiberg et al., 2008). The particle encloses three segmented negatively charged single stranded RNA genomes (Fig.2), tightly associated with the RNA dependent RNA polymerase (RdRp) and the nucleocapsid protein (N) subunits, that encapsidate and protect the RNA genomes (Elliot, 1996, Swanepoel, 2009). This ribonucleoprotein (RNP) complex has a helical shape surrounded by a lipid envelope of cellular origin with two viral encoded glycoproteins (GN and GC) protruding the surface (Sherman et al., 2009), supposedly in a heterodimer formation (Gerrard & Nichol, 2007, Huiskonen et al., 2009). The cytoplasmic tail of the glycoproteins is suggested to anchor the RNP complex (Overby et al., 2007), and thereby mediates assembly of the particle (Shi et al., 2007, Liu et al., 2008, Sherman et al., 2009). GN and GC are also responsible for the binding and uptake of the virions into the host cells upon infection, possibly by a class II fusion mechanism (Garry & Garry, 2004, Filone et al., 2006, Liu et al., 2008).

11

Fig.2. Schematic picture of a Rift Valley Fever virus particle, kindly provided by Nina Lagerqvist.

The genome The three individual RNA genomes are denoted after their size small (S), medium (M), and large (L), and translates in the cytoplasm of the infected cells into unique polypeptides. The S-segment encodes, in an ambisense manner, the N protein and a non-structural protein (NSs). The M-segment codes for two glycoproteins (GN and GC) and a non-structural protein called NSm, yet there is also evidence of a 78 kDa protein. The L-segment codes for the RNA-dependent RNA polymerase (RdRp) (Elliot, 1996, Swanepoel, 2009). The presence of genes encoding the non-structural proteins (NSs and NSm) varies between different viruses of the Bunyaviridae family. In the case of RVFV both genes are found. The NSs protein of RVFV is the major virulence factor and defects in the NSs gene leads often to a reduction in virulence. The NSs protein has been shown to inhibit the host immune system, both in general and specifically, to promote viral replication (Bouloy et al., 2001,

12

Madani et al., 2003, Billecocq et al., 2004, Le May et al., 2004, Le May et al., 2008, Habjan et al., 2009b, Ikegami et al., 2009a, Ikegami et al., 2009b). The more general inhibition occurs by the assembly of a filamentous structure in the nuclei that sequesters subunits of RNA polymerase II, and thereby interacts directly with the DNA (Bouloy et al., 2001, Le May et al., 2004, Mansuroglu et al., 2009). The NSs protein specifically targets activation of the interferon β promoter through an interaction with the Sin3A-Associated Protein 30 (SAP30), a suppressor of the promoter (Le May et al., 2008). To promote viral replication, NSs down-regulates protein kinase R (PKR), a host response regulator that interfere with the initiation of translation (Habjan et al., 2009b, Ikegami et al., 2009a, Ikegami et al., 2009b). The function of NSm is not yet fully understood, however, it is known that this protein disrupts apoptotic pathways of the cell (Won et al., 2007).

13

Transmission The main route of RVFV infection is through haematophagous insects, including mosquitoes, ticks and sand fly species (Fontenille et al., 1998, Flick & Bouloy, 2005). Mosquitoes from different genera (Aedes, Anopheles, Culex, Eretmapoites and Mansonia) are known to act as vectors (Fig.3) (Flick & Bouloy, 2005). The Aedes species are especially important since RVFV is capable of transovarian transmission in Aedes vexans and Aedes lineatopennis (Linthicum et al., 1985, Zeller et al., 1997, Chevalier et al., 2009). The virus survives inside the mosquito eggs and spreads vertically through the offspring straight after hatching. This mechanism is believed to maintain the virus in the environment between outbreaks. This theory could also explain the explosion-like progress of some outbreaks that seems to start simultaneously all over a wide area.

Fig.3. Aedes aegypti mosquito. Wikipedia Commons, public domain, Original author: US Department of Agriculture.

Furthermore, there are assumptions of cryptic hosts for RVFV, harbouring the virus between outbreaks, where rats (Namaqua rock rat and Rattus rattus) or bats are the main suspects (Boiro et al., 1987, Pretorius et al., 1997, Youssef & Donia, 2002). 14

Although mosquitoes are the main vector of the virus, other routes of transmission can take place. Inhalation of infectious particles by handling infected animals or via body fluids may also lead to an infection by RVFV (Brown et al., 1981, Sidwell & Smee, 2003, Bossi et al., 2004, Gerdes, 2004). An interesting suggestion is that the main route for human transmission may not be through mosquito bites but rather direct contact with infected animals or body fluids (Flick & Bouloy, 2005, Swanepoel, 2009). The higher seroprevalence seen among abattoir workers in South Africa, in contrast to the general population, together with the fact that veterinarians, abattoir workers and farmers are high risk occupations favours this route of viral transmission (Gerdes, 2002, Flick & Bouloy, 2005). RVFV can also be transmitted through inhalation of aerosolised particles, hence increasing the risk for using RVFV in bioterrorism (Francis & Magill, 1935, Sidwell & Smee, 2003).

15

Outbreaks Since the first documented outbreak in Kenya in 1930 (Daubney et al., 1931), several have followed. The first recorded outbreak of RVF in South Africa, 1950-51, resulted in an estimated 100 000 dead sheep and an additional 500 000 aborted foetuses (Gerdes, 2002, Swanepoel, 2009). Before 1977, RVF was considered to be an exclusive animal disease, affecting mainly domesticated animals with a few recorded exceptions of human deaths. However, that view changed soon after the large outbreak in Egypt, that recorded 623 human deaths and between 18 000-200 000 infected persons (Meegan et al., 1979, Meegan, 1979, Abd el-Rahim et al., 1999). This was also the first time RVFV provoked disease outside the sub Saharan region of Africa. Today the virus has spread almost all over the African continent and into the Arabian Peninsula with Saudi Arabia and Yemen as new endemic regions (Shoemaker et al., 2002, Balkhy & Memish, 2003, Gerdes, 2004). Over the years, several human RVF epidemics have taken place. Mauritania, 1987, with 89 000 infected and 224 confirmed human fatal cases, Kenya, 1997-98, 27 000 infected and 170 deaths, Arabian Peninsula, 2000, with 245 confirmed deaths, and the recent outbreak in Kenya, Somalia, and Tanzania, 2006-07, 1088 infected and 323 deaths (Digoutte & Peters, 1989, Woods et al., 2002, Al-Hazmi et al., 2003, Alrajhi et al., 2004, WHO, 2007).

16

Predictions of outbreaks Epidemics and epizootics of RVF are closely linked to the climate and its variations. Especially, heavy rainfalls with stagnant water are closely associated with RVF outbreaks since flooding results in good breeding ground for the mosquito vectors (Davies et al., 1985, Anyamba et al., 2009) . It is therefore possible to predict outbreaks and with good prediction models up to five months of preparations could be achieved (Linthicum et al., 1999). The El Nino phenomena is another factor that directly influence the weather and thereby the presence of RVFV. Hence, weather forecasts could therefore be a good way to predict outbreaks of this disease (Harvell et al., 2002, Anyamba et al., 2009).

RVF is an emerging disease with the potential to spread and become endemic in new regions of the world. In the case of RVF, this risk is elevated by the fact that RVFV is capable of using several host and arthropod species capable as reservoirs and vectors for the transmission, respectively (Gerdes, 2004). Several geographical regions around the world have been predicted to be high risk areas for establishment of RVFV, e.g. the river deltas of the Euphrates, Tigris and Indus River (Gerdes, 2004). Additionally, mosquitoes capable to hold and spread this virus are found around the Mediterranean basin, as well in North America (Moutailler et al., 2008, Turell et al., 2008).

17

Pathogenesis The general idea of the kinetics of RVFV infections is that the virus first replicates in the lymph nodes close to the site of entry. Thereafter, spreads further using the bloodstream to the primary organs of virus replication, e.g. liver, spleen and brain, hence RVFV is able to pass through the blood-brain barrier. The virus replicates rapidly in these organs to high titers and causes viremia, which may lead to further spread of the virus by a second biting mosquito and thereby closing the circle of virus transmission. RVFV preferably replicates in hepatocytes of the liver and the necrotic livers often observed in severe cases are probably caused directly by the cytopathic virus amplification (Anderson et al., 1987, Flick & Bouloy, 2005). On the other hand the meningoencephalitis and retinitis frequently observed during RVFV outbreaks are suggested to be associated with the immune response of the host (Laughlin et al., 1979, Siam et al., 1980, Gear, 1988, GonzalesScarano, 1996). RVFV cause abortions in cattle and the virus is present in the maternal placenta and foetal organs (Flick & Bouloy, 2005). Still, there is no clear evidence for abortions among humans, but vertical transmission of the virus is suspected (Arishi et al., 2006).

18

Clinical picture In animals, a broad host range of susceptible species develops RVF and the symptoms vary significantly. Less severe clinical signs, as nasal discharges and diarrhoea, to more severe ones, such as high fever, respiratory distress, haemorrhage and jaundice, are observed during RVFV outbreaks (Coetzer, 1977, Coetzer, 1982). A more severe form of the disease is found in cattle, goats and sheep where the case fatality rate varies between 10-30% and 40100% for adult or young animals, respectively (Gerdes, 2002, Flick & Bouloy, 2005). A typical indication of RVF-infection in these species is sudden deaths among young animals, less than two weeks of age, and abortions. An “abortion storm” may involve the complete herd and almost all pregnant animals abort their foetuses (Abdel-Wahab et al., 1978). Other animals known to develop a more severe form of the disease (abortions, viremia and high mortality) are buffaloes, camels, hamsters, mice, monkeys, and rats. In contrast, RVFV cause less severe disease in cats, dogs, and horses to mention a few (Gerdes, 2004, Metwally, 2008). Likewise, common to all species is that the clinical picture and prognosis are worse for younger animals. In humans, mild influenza-like symptoms are mostly observed upon infection, like fever, headache, nausea, and myalgia. Yet, more severe symptoms are frequently observed during outbreaks, such as retinitis, meningoencephalitis and hemorrhagic fever (Madani et al., 2003). The effect on the eye upon retinitis is mostly reversible with a complete recovery, however, some patients end up with seriously reduced sight or blindness as a 19

complication after a RVFV infection (Al-Hazmi et al., 2005). Hemorrhagic fever is the worst outcome of infection with a case fatality rate close to 50%. The onset of bleeding usually starts after the first week of illness with signs of persistent bleeding from needle wounds in the patients (Gear, 1988). The extent of bleedings varies from small petechial rashes on arms or legs to gastrointestinal bleeding (Isaacson, 2001). Patients with meningioencephalitis are also encountered during and after outbreaks and, the incubation time is usually between two and three weeks for this manifestation (Gonzales-Scarano, 1996). Common symptoms are severe headache, meningismus, and coma. Most patients recover but there may be residual brain damage and even fatal cases have been observed (McIntosh et al., 1980, Al-Hazmi et al., 2003). Although, the overall case fatality rate for this disease has been below 1%, a drastic increase have been reported recently with case fatality rates of 45% in the Somalia outbreak, 2006, 21% in Kenya, 2007, and 36% in Tanzania, 2007 (WHO, 2007). This recent increase is at the moment unexplained, however, several theories such as circulation of a new and more aggressive virus strain, change in diagnostic demands, or large numbers of unrecorded cases, are possible explanations.

20

Diagnostics Even though heavy rainfall, high density of mosquitoes, and abortions might indicate RVFV transmission, laboratory confirmation must be performed. Specimen from blood, liver, spleen, or brain should be collected and analysed, either by isolation of the virus or antigens thereof, or by demonstrating the presence of RVFV specific antibodies.

Detection of virus or antigens The golden standard of RVFV diagnostics is direct virus isolation. For that purpose blood, liver, or spleen samples are used for inoculation. Nowadays this test is performed in cell cultures, even though hamsters or mice are frequently used (Anderson et al., 1989, Digoutte et al., 1989, Flick & Bouloy, 2005). In addition, viral antigens can be readily detected from blood and tissue

samples

by

capture

ELISA

(Enzyme-linked

immunoassays),

Complement fixation, gel diffusion test, immunofluorescence assays (IFA), or immunohistochemical assays (Swanepoel, 2009). These methods are efficient and reliable but time consuming and sometimes difficult to perform.

Detection of RVFV specific antibodies Demonstrating the presence, or rising titers, of IgG or IgM antibodies specific for RVFV in serum samples are widely used in laboratories for the confirmation of a RVFV infection. Methods used are; complement fixation, 21

ELISA, IFA, haemagglutination inhibition tests, and plaque reduction neutralisation tests (Niklasson et al., 1984, Swanepoel et al., 1986, Paweska et al., 2003, Swanepoel, 2009). However, it is important to note that specific antibodies are absent during the first days of infection.

Treatment At the moment there exists no specific treatment for RVF. The therapy given is of supportive character and focuses mainly on the symptoms, i.e. administration of blood and coagulation factors in the case of hemorrhagic fever. The antiviral drug Ribavirin is a candidate for treatment, since it has shown to lower the viral replication in cell cultures and animal models. Also, plasma from recovered patients may be useful (Kende et al., 1985, Peters et al., 1986).

22

Viral Vaccines The vaccine era started in 1796 when Dr. Edward Jenner, via human experiments, substantiated that inoculation of samples containing cowpox virus lead to cross protection against smallpox. Jenner based that conclusion on an old knowledge that inoculation of pus from smallpox patients could lead to protection from the corresponding disease and on the fact that cowpox infected people did not acquire smallpox. Later, Louis Pasteur took the vaccination trials even further when he succeeded to produce a chicken cholera vaccine by chemical or thermal attenuation of the infecting agent and some years later he produced a rabies vaccine. Modern vaccine science started sometime during the middle of the 20th century, when vaccines against several different diseases were introduced, e.g. measles, mumps, polio, rubella and Yellow fever. This progress in the history of vaccination came as a result of developments and establishments of new molecular tools; cell culture methods, bacterial chemistry, microbiology, and immunology. Since then, several techniques and methods to develop vaccines against a variety of different pathogens and diseases have been established. Nowadays, the list of vaccines grows each year and weakens the burden of these diseases (Plotkin, 2004b).

23

Traditional vaccine strategies Over the years, killed, inactivated or live attenuated, and subunit based vaccines, are some approaches that have been used against viral diseases with success. Inactivation or killing of the causative agent through various treatments has produced vaccines against polio and hepatitis A (Salk, 1953, Peetermans, 1992). By lowering or abolishing the virulence through attenuation or, adaptation, of the microorganism to another host or tissue has lead to the development of vaccines e.g. measles, polio, and yellow fever (Katz et al., 1960, Sabin et al., 1960, Plotkin, 2004a). Another approach is subunit vaccines, where one or more proteins of the microorganism are used as a vaccine. As an example, the hepatitis B vaccine consists of only one component, the hepatitis B surface antigen (HBsAg). This protective HBsAg is an envelope protein that is produced in high amounts in patients during an infection (Blumberg et al., 1967, Hilleman et al., 1975, Zuckerman, 2006).

Novel vaccine approaches The improvement of molecular techniques over the years has made it more and more possible to manipulate and genetically engineer microorganisms to produce vaccine candidates. Induction of the immune response towards viral proteins or peptides by the use of viral vectors for antigen delivery holds a huge possibility. Several different viruses and constructs thereof are available as vectors, e.g. adeno, herpes simplex, retroviruses, and vaccinia virus (Paoletti, 1996, Tatsis & Ertl, 2004, Marconi et al., 2008). These

24

vectors can be altered in several ways; to become replication incompetent or to, get altered tropism, stability, and expression levels of the construct (Bouard et al., 2009). Also, using genetic systems (mini genomes, reverse genetic systems) to produce tailor engineered progeny of infectious agents for vaccine purposes are very promising strategies. Indeed, for example the first reverse genetic system for the Bunyaviridae family was established in 1996 and for RVFV in 2005 (Bridgen & Elliott, 1996, Ikegami et al., 2005).

DNA vaccines Vaccine development took a big leap in 1990 with the discovery that naked plasmid DNA injected intra-muscularly in mice induced expression of genetic material (Wolff et al., 1990). The vaccine properties of this strategy were shown in 1993, when protective immunity was conferred to mice in an influenza A study (Montgomery et al., 1993). This way to induce the immune response mimics a real infection of an intracellular microorganism perfectly. The gene product will be synthesised, altered and modified in the correct fashion by the host cell before it is presented to the immune system (Klinman et al., 1997). However, the DNA vaccine technique still waits for the “golden boy” to appear. In fact, when the first enthusiasm had settled several problems had emerged on the horizon that had to be unravelled. How to efficiently deliver the DNA, improving the immunogenicity, and the need for booster administrations are some issues that needs to be solved (Donnelly et al., 2005). Yet, there are three DNA vaccines approved for veterinarian usage; vaccine against West Nile in horses, Hematopoietic

25

necrosis virus in salmon, as well as melanoma in dogs (Traxler et al., 1999, Bergman et al., 2006, Martin et al., 2007).

Virus-like particles The idea of using this approach is to produce particles that resemble the authentic virus by over expressing one or several of the structural proteins of the virus in question. Production and assembly of the proteins and particles occurs via the normal expression and secretion route by the host cell (Johnson & Chiu, 2000). Since these particles lack the virus genome, virus replication is not possible, and thereby VLPs are considered to be safer than live attenuated vaccines (Mandell et al., 2009). The particles resemble the “authentic” virus both by shape and conformation and the virus display the protein epitopes in a similar way as a “real” virus particle (Noad & Roy, 2003). Since the proteins are correctly folded and modified they trigger the immune response and confer protection towards the corresponding virulent virus (Paliard et al., 2000, Warfield et al., 2003, Garcea & Gissmann, 2004, Grgacic & Anderson, 2006).

26

Evaluation of vaccine efficacy The general concept with vaccination is to induce a long lasting protective immunity in the recipient. The immune system can be divided into the innate and the adaptive immunity (Roitt, 2001), where the innate immunity is characterized as a rapid unspecific response without memory. In contrast, the adaptive immunity is specific and has an immunological memory, but requires some time for activation. The adaptive immunity can be further divided to a cellular and humoral immune response. Vaccination aims at the adaptive immune response to give rise to a specific immune response and an immunological memory. An important part of a functional vaccine is the capacity to induce the humoral response and generate production of antibodies with neutralising activity. In general, high titers of neutralising antibodies are associated with protection (Plotkin, 2004a). Furthermore, a high level of protection can also be achieved through induction of the cell mediated immune response. Though, activation of the innate response should not be overlooked, especially important to present antigens for, and activate the adaptive response. Herd immunity is an additional positive effect of vaccination programs. If a sufficient percentage of individuals in a herd are vaccinated (or naturally immunised) the spread of the disease will be limited and thereby also protect the unvaccinated. This is a very beneficial effect, since it protects individuals

27

that cannot be vaccinated due to different reasons, for instance, immune compromised people and newborns (Anderson & May, 1985, Plotkin, 2004a, Goncalves, 2008).

28

Vaccines against Rift Valley Fever Since the discovery of RVFV in 1930 several different approaches for vaccine development have been attempted. The results have varied from none to full protection, but various side effects have been observed post vaccination (Bouloy & Flick, 2009, Ikegami & Makino, 2009). One of the earliest vaccine candidates was the Smithburn vaccine strain, produced through several passages of the Entebbe strain in the brain of suckling mice before sufficient attenuation were achieved (Smithburn, 1949). This neuroadapted RVFV strain was capable of inducing protective immunity, but was teratogenic in cattle and sheep (Barnard, 1979, Coetzer & Barnard, 1977, Botros et al., 2006). Moreover, the risk of reversion to wild type has to be considered. Another early vaccine attempt towards RVFV was formalin inactivation of the virus (Randall et al., 1962). Several different batches have been tested and applied over the years. The levels of neutralising antibodies and conferred protection upon vaccination with these variants are low. These kind of vaccines require multiple inoculations for induction, and annual boosters to maintain the immune response (Barnard & Botha, 1977, Barnard, 1979, Lubroth et al., 2007). However, the only available vaccine for use in humans is a formalin inactivated variant (TSI-GSD-200) (Pittman et al., 1999, Metwally, 2008). This vaccine is produced for veterinarians and other personnel at high risk for RVF. Indeed, similar to the animal variants, it

29

requires several administrations and annual boosters to maintain its effect (Pittman et al., 1999, Frank-Peterside, 2000). Clone 13 is a naturally attenuated RVFV strain which was isolated from a benign case in the Central African Republic in 1987. This strain has been tested as a vaccine, with promising results (Vialat et al., 2000, Lubroth et al., 2007). The reason for attenuation of Clone 13 is a large in frame deletion in the NSs gene (Muller et al., 1995). MP12, another candidate vaccine is the product after chemically induced mutagenesis of the ZH548 strain upon several passages in cell culture (Caplen et al., 1985). MP12 has shown promising results in livestock (Morrill et al., 1987, Morrill et al., 1991, Morrill et al., 1997a, Morrill et al., 1997b, Morrill & Peters, 2003), but foetal malformations have been observed as a complication (Hunter et al., 2002). Yet, This candidate has recently been tested in a human phase II clinical trial, where a 95% seroconversion rate, production of neutralising antibodies and no adverse effects was observed (Bouloy & Flick, 2009). Furthermore, R556, a reassortant of Clone 13 and MP12 has been produced (S-segment of Clone 13, L and M segment of MP12) and tested as a vaccine. The results are again promising, no adverse effects, production of neutralising antibodies in sheep, and capable to confer protection in mice (Bouloy & Flick, 2009).

30

The establishment of a reverse genetic system for RVFV in 2005 (Ikegami et al., 2005) has lead to production of yet another vaccine candidate (Bird et al., 2008). This candidate has the NSs and NSm gene removed from the genome and is thereby attenuated. The strain grows readily in cell cultures and is therefore easy to produce. Results from rat immunization experiments indicate good vaccine properties; high titers of neutralising antibodies, no side effects and conferred protection from a lethal dose of wild type RVFV (Bird et al., 2008). Still, one problem with this candidate is the need for safety facilities during production and the possible reversion to wild type.

31

Aims

The overall aim of this thesis was to apply and evaluate different vaccine strategies for RVFV.

In order to evaluate our vaccine candidates we have established a mouse model system and developed diagnostic tools.

32

Results and discussion The goal is to develop a vaccine towards RVFV that would be a suitable candidate for both human and veterinarian usage. An animal vaccine is very desirable, especially for livestock, which are highly susceptible and develop severe forms of RVF with high mortality and abortions. Lowering the circulation of this virus in animal populations might reduce the numbers of human infections since, most human transmission occurs via direct contact with infected animals or body fluids. Removing amplification hosts of RVFV would also decrease the numbers of mosquitoes carrying the virus and thereby further limit transmission.

Development of an animal model and diagnostic tools To be able to evaluate our vaccine candidates we have established an animal model. We chose to work with mice and have used two different mice strains, BALB/c and C57BL/6 (Paper I, III and IV). Mice are a lethal animal model for RVF and they develop a severe form of the disease, which makes them suitable for infection studies (Easterday, 1965, Flick & Bouloy, 2005). Mice are easy to handle and smaller than for instance, rats, otherwise also considered to be a good animal model for RVF (Anderson & Peters, 1988, Anderson et al., 1991, Bird et al., 2007). We have successfully infected and induced RVF in mice with different doses of the wild type strain ZH548, an Egyptian isolate (Paper I).

33

Quantitative real-time PCR We had already established several serological assays (e.g. ELISA, IFA, PRNT and western blot) that could be used to evaluate our immunisation attempts. However, we wanted to be able to directly quantify the viral load, hence, we aimed to set up a QRT-PCR analysis (Paper I). At this time, two other publications regarding QRT-PCR for RVFV were found in public databases, both using probe based assays. On the contrary, they targeted different sites of the genome; the S-segment (NSs gene) and the M-segment (GC gene) (Garcia et al., 2001, Drosten et al., 2002). The idea with our QRTPCR was to develop a cheap and broad assay. Therefore, we choose SYBRgreen as fluorescing dye, cheaper than probes and not target specific. Furthermore, we designed the primers to, at least in theory, pick up many isolates of RVFV. We evaluated our QRT-PCR in several steps, first by using in vitro produced RNA at different dilutions, and second by titrated numbers of viruses added to various samples, e.g. serum, blood and homogenized organs. Upon optimization the QRT-PCR proved to be sensitive, reliable and accurate (Paper I).

Viral kinetics in Rift Valley fever To further evaluate the possibility to use a QRT-PCR as a diagnostic tool in the case of RVF we infected mice and collected blood samples at several different time-points. In addition, we also included brain, kidney, liver, lung, 34

and spleen samples, since RVFV is known to replicate and cause extensive liver damage and a high level of viremia. A previous study in mice indicated high numbers of viable particles in those organs during the first days of infection (Brown et al., 1981). Interestingly, we could detect high levels of RVFV RNA in the blood of our mice during the first days of infection, proving the usefulness of a QRT-PCR for RVFV. We also observed high levels of viral RNA in brain and liver samples during this time, and lower levels from kidney, lung, and spleen. However, the initially high levels of RVFV RNA were followed by a harsh decline and at the end of the first week post infection none or very low levels of RNA were found.

Field sampling The presence of high amounts of viral RNA in blood during the first week of infection led us to try filter paper strips, a novel sampling procedure for RVFV. We also included the Puumala virus (PUUV), a locally endemic hemorrhagic fever (Hantavirus, Bunyaviridae) (Juto et al., 1997, Olsson et al., 2003, Johansson et al., 2004, Pettersson et al., 2008). PUUV was included to test clinical samples of a hemorrhagic fever virus. Filter strips have been used earlier for detection of other viruses (Cassol et al., 1992, Prado et al., 2005). Our results indicated that this method is possible to use for PUUV but not for RVFV. We could easily detect PUUV RNA with PCR after weeks of storage, still, it was not possible to accurately quantify the RNA copy numbers. Even though we successfully eluted viable RVFV particles from filters stored up to 48 h, none or only very low levels of RNA

35

were detected by the PCR. The reason for this difference could be due to their lifecycles, as speculated in a previous study including three other Bunyaviruses; Crimean-Congo Hemorrhagic fever virus (Nairovirus), Hantaan virus (Hantavirus), and the Sandfly fever Sicilian virus (Phlebovirus) (Hardestam et al., 2007), have all been shown to differ in viability in wet conditions. The Crimean-Congo Hemorrhagic fever virus, which lifecycle resembles RVFV the most by being spread by ticks or by direct contact with patients and infected blood (Whitehouse, 2004, Ergonul, 2006), was found to be the least stable one (Hardestam et al., 2007). Hantaan virus on the other hand, which has a similar lifecycle as PUUV, tolerated these conditions better. Notable, Hardestam with colleagues observed no differences in tolerance towards dry conditions (Hardestam et al., 2007).

36

Development of new vaccines Since the discovery of RVFV, several efforts to produce a vaccine have been launched (Bouloy & Flick, 2009, Ikegami & Makino, 2009). At the moment there exist two RVFV vaccines, however, for veterinarian usage only and either poorly immunogenic or accompanied by side effects. This renders the use of these two vaccines and since RVFV is considered as an emerging disease there is a huge need to develop practical and useful vaccines. RVFV is a highly pathogenic virus and no treatment is available at the moment. For these reasons we have applied and evaluated two none replicating vaccine candidates.

Genetic immunisation In the first study, we attempted to induce protection against RVF in experimentally infected mice via cDNA immunisation (Paper III). We immunised mice with four different constructs, encoding different structural genes; the nucleocapsid (N) gene or the two glycoproteins GN and GC, separately or together. We included the N gene based on the fact that this protein is very immunogenic and high levels of antibodies directed towards the N protein are observed after infection. In addition, there are indications that the N protein can induce protective immunity in mice, which has been documented both in previous study with RVFV, as well as in a study involving the closely related Toscana virus (Phlebovirus, Bunyaviridae) (Wallace et al., 2006,

37

Valentini et al., 2008). The authors speculate that the protection found might be through a cellular immune response. The N protein is an internal protein of the virion, and should therefore not induce production of neutralising antibodies. Our results upon immunising mice with the N gene substantiated the immunogenic properties of this protein. Antibodies specific for the N protein was observed already after the first immunisation and upon the final booster very high levels were reached (Paper III). We did also observe a 50% protection from symptoms upon a challenge with the wild type virus (Paper III). This protection, were not, as we expected, due to neutralising antibodies since we did not detected any after immunisation (Paper III). Instead, we observed a dose dependent proliferative response in spleen cells upon specific stimulation (Paper III). This cellular immune response could be responsible for the protection we observed, even though further evaluation is needed. If the protection induced by the N protein was unexpected, the low level of protection and neutralising antibodies observed after immunisation with the glycoprotein constructs were equally unexpected. The GN/GC proteins are known to induce production of neutralising antibodies and have been shown to induce protective immune response, even though at various percentages (Schmaljohn et al., 1989, Besselaar & Blackburn, 1991, Besselaar & Blackburn, 1994). Another DNA vaccine study, using similar glycoprotein construct and gene-gun for administration succeeded to confer full protection in mice (Spik et al., 2006). On the contrary, two other studies using glycoprotein DNA immunisations have not conferred protection (Wallace et al., 2006, Lorenzo et al., 2008). 38

Interestingly, we noticed that the GN gene was a necessity for production of neutralising antibodies in our animal model. However, the levels of neutralisation detected were very low and the protection in mice did not extend the N gene immunisation (Paper III). Yet, one important finding during this study was that the BALB/c mice were rather resilient against RVFV in general. This was probably due to the age of our mice, caused by the long immunisation schedule, as older animals in general are more resilient to RVFV infections (Gerdes, 2002). Thus, we have evaluated the induced protection based on signs of symptoms.

39

Virus like particles The second approach tested was to use RVFV VLPs for immunisation (Paper IV), produced by Professor Friedemann Weber and co-workers at Freiburg University, Germany (Habjan et al., 2009a). Basically, the VLPs consist of four RVFV specific proteins, the two glycoproteins (GN and GC), the N protein and the RdRp. These VLPs resemble in shape and structure RVF virions, with the glycoproteins protruding the membrane envelope of cellular origin. This kind of vaccination strategy has been applied on several viruses, with good results (McAleer et al., 1984, Andre & Safary, 1987, Harro et al., 2001, Tacket et al., 2003, Cox et al., 2008, Perrone et al., 2009). To evaluate the effectiveness of this RVFV VLP vaccine, we immunised groups of mice with two different doses at three time-points with two weeks intermission (Paper IV). We could, already after the second immunisation, detect antibodies specific for the glycoproteins of RVFV. Two weeks post the third and final booster, antibodies with neutralising capacity were observed in 14 out of 18 mice, titers ranging from 1:250 to 1:1250 (Paper IV). To further investigate the protection induced by the RVFV VLPs, we challenged the immunised mice with lethal doses of RVFV. The result of this experiment is truly encouraging, since all 14 mice that developed neutralising antibodies survived the challenge with wild type virus, while the remaining four mice did not. In comparison, for the control group (administered PBS), only one out 12 mice survived. The 92.5% survival rate among mice that were given the high VLP dose clearly indicates the good

40

vaccine potential of the RVFV VLPs. Interestingly, another RVFV study, also using VLPs as a vaccine has shown equally promising result, 68 % and 100 % protection were observed in mice and rats upon challenge, respectively (Mandell et al., 2009). These results indicate a huge vaccine potential in this VLP approach for RVF. The VLPs used for immunisation were not capable to induce antibodies specific for the N protein, even though small amounts of this immunogenic protein is included in the particles (Habjan et al., 2009a). The lack of N specific antibodies makes it really easy to distinguish infected animals from vaccinated ones. A so called marker vaccine (van Oirschot, 1999, Henderson, 2005), would be very beneficial for RVFV, since outbreaks results in restrictions in export of animals and related products. Even though our result from the VLP vaccination is encouraging, several problems need to be addressed before such a vaccine can be available on the market. How to administer efficiently, produce sufficient amount and the need for boosters are some issues that need to be solved.

41

Future approaches The promising results from our VLP vaccine study (Paper IV), and the knowledge that simultaneous expression of the glycoproteins together with the N protein is sufficient to produce RVFV VLPs (Liu et al., 2008, Habjan et al., 2009a, Mandell et al., 2009), might be useful to enhance genetic immunisation for RVFV. Introducing both the GN/GC and the N gene constructs to cells at the same time could result in production and budding of VLPs from host cells of the recipient and hopefully improving the induction of the immune response. There are several ideas on how to improve vaccination strategies. One way could be by mixing two different approaches e.g. prime boost techniques (Woodland, 2004, Lu, 2009, Radosevic et al., 2009). By, priming with VLP immunisation and then boosting through genetic immunisation might be a good approach. This strategy could lower the costs since it is more expensive to produce VLPs than genetic vaccines. Another disadvantage is that VLPs need storage facilities and a cold chain for transportation, whereas DNA vaccines do not. Additionally, this would reduce the total amounts of VLPs needed to obtain a protective immune response. At the moment, there are several vaccine candidates in the pipeline for RVFV (Bouloy & Flick, 2009, Ikegami & Makino, 2009). The recently established reverse genetic system (Ikegami et al., 2005) has lead to production of an attenuated RVFV strain (Bird et al., 2007). The complete NSs and NSm genes have been removed, rendering this candidate vaccine and highly

42

attenuated virus strain incapable to induce RVF in rats. This strain has shown promising results in rat immunisation experiments where it conferred a 100% protection from lethal challenge. Furthermore, like with our VLPs, it is possible to distinguish between vaccinated and infected animals, due to the lack of NSs specific antibodies upon vaccination (McElroy et al., 2009). It is relatively easy to produce high amounts of this attenuated virus and there is a low risk for reversion to a wild type virus, since the genes of interest have been completely deleted. However, a high safety level is still necessary for production as there is always a risk when handling viable viruses. Likewise, over-attenuation of the virus may result in a too low induction of the immune response in higher animals (Ikegami & Makino, 2009). Another approach under evaluation is an Alphavirus (Sindbis virus) replicon candidate, expressing GN, GC, and NSm of RVFV. This vector-based vaccination conferred full protection in mice after challenge and induced production of RVFV neutralising antibodies in sheep (Heise et al., 2009). This approach has shown promising results for other viruses as well (Hevey et al., 1998, Pushko et al., 2001) and it is possible to distinguish infected animals from vaccinated ones. However, the recombinant virus vector replicates in host cells and this might be of concern for the safety as a vaccine. Finally, there are also an Adenovirus vector construct (CAdVax-RVF), expressing a RVFV glycoprotein construct (GN and GC). This approach showed promising results in mice experiments (Holman et al., 2009). This non replicative approach has earlier been proven to be good vaccine strategy 43

(Swenson et al., 2008) and like the above mentioned vaccine candidates it is possible to distinguish immunised animals immunised from infected. One inherent problem with adenovirus vectors has been pre-immunity, however this problem can be overcame by increased vaccine dose. Still, full protection was not conferred in pre-immune mice (Holman et al., 2009). Hopefully, one or several of these novel approaches or improved older candidates will be successful and lead to the development and production of a fully working vaccine against RVFV in the future.

44

Conclusion We have established an animal infection model and developed diagnostic tools for RVFV. Mice proved to be a good animal model for RVFV infection studies. High amounts of viral RNA were detected in blood, brain and liver samples, shortly after infection. The established QRT-PCR analysis proved to be accurate, reliable and sensitive. The high amounts of RVFV RNA in circulation early post infection make the QRT-PCR a very good compliment to the more traditional diagnostic tools since RVFV specific antibodies need around 4-7 days to develop. Filter paper could make blood sampling for PUUV under field conditions easier, since PUUV RNA was readily detected in our experiments. However, this was not the case for RVFV, though viable RVFV particles could be eluted. We have developed and evaluated two none replicating RVFV vaccine candidates. The genetic vaccination did induce production of RVFV specific antibodies but did not confer a high level of protection. On the other hand, immunization with RVF VLPs show very promising results and could after further evaluations probably become a good future vaccine candidate.

45

Populärvetenskaplig sammanfattning på svenska Rift Valley Feber (RVF) är en myggburen blödarfeber. Sjukdomen anses vara allmänt förekommande över hela den afrikanska kontinenten och sedan 2000 talets början inkluderas även den arabiska halvön. Ett stort antal djurarter kan insjukna i RVF med varierande sjukdomsbild. Kor, får och getter drabbas hårdast, med en dödlighet upp till 30 % för vuxna djur och upp mot 100 % hos ungdjur. Ett karaktäristiskt drag för ett RVF utbrott är aborter, något som beskrivs som att en ”abortstorm” sveper genom hjordar där ca 100 % av de havande djuren aborterar. Till skillnad från djur, insjuknar människor oftast i en mild influensaliknande sjukdom, även om det förekommer svårare fall med blödarfeber och hjärnhinneinflammation. Dödligheten har generellt varit låg vid epidemier, under 1 %, men vid de senaste utbrotten har betydligt högre siffror rapporterats. Med jämna mellanrum uppkommer RVF-utbrott av olika storlek, ofta associerade med kraftig nederbörd och översvämningar som direkt påverkar förekomsten av myggor. I Egypten 1977, blev mellan 20 000 - 200 000 personer infekterade och 594 dödsfall inträffade. Ett annat utbrott inträffade 1987 i Mauretanien med 220 dödsfall och ca 89 000 infekterade. Viruset överlever transovariellt (inuti äggen) hos vissa myggarter (Aedes) och bibehålls på så sätt i naturen. Aedes myggor är bärare av RVF och

46

sprider i sin tur smittan vidare till olika värddjur, vilka sprider viruset till andra myggor. Det är ett flertal olika myggarter som kan sprida RVF viruset; Anopheles, Culex, Eretmapoites and Mansonia. Intressant nog finns flera av dessa myggarter i Europa och övriga världen vilket gör det möjligt för RVF att spridas utanför Afrika. RVF-utbrott har en stor påverkan på drabbade samhällen då utbrott inte enbart påverkar djur och allmän folkhälsa utan även matproduktion och ekonomi. Animaliska produkter måste förstöras och exportförbud införs för att förhindra smittspridning. Vid diagnos av RVF är den huvudsakliga metoden direkt isolering av viruset även om påvisandet av antikroppar mot RVF också används i stor utsträckning. Kvantitativ real-tids PCR, är en metod som visat sig vara pålitlig och användbar för andra sjukdomar eftersom den möjliggör påvisning och kvantifiering av virusets arvsmassa. Vi har etablerat denna metod för RVFV och utvärderat dess användbarhet med hjälp av prover från experimentellt infekterade möss. Denna metod har visat sig vara stabil och pålitlig för RVFV och ett bra komplement till de befintliga metoderna. Den ger svar tidigare än de andra metoderna, och väldigt höga nivåer av RVFV arvsmassa påvisades i prover från blod och lever. Emellertid klingar de höga nivåerna relativt snabbt av och efter en vecka finns inte virus kvar. Vid fältstudier och i låginkomstländer kan det vara problem med att samla in och behandla prover på ett korrekt sätt. Vi har därför undersökt möjligheterna att använda Nobuto filterpapper för att samla in och förvara

47

blod och serum prover. Filterpapper tar upp liten plats och kan förvaras i rumstemperatur. Våra resultat tyder på att denna metod fungerar bra för Puumala viruset (PUUV), där vi kunde påvisa förekomsten av arvsmassa från filterpapper. PUUV är en nära släkting till RVFV som finns i norra Sverige där det orsaker sorkfeber (Nephropathia epidemica). Däremot var det inte möjligt att applicera filterpapper-metoden på RVFV. De två virusen har dock olika livscykel, vilket möjligtvis kan vara en avgörande faktor i stabilitetsskillnaden. För tillfället är behandlingen vid RVF enbart av livsuppehållande karaktär, då det inte existerar några specifika läkemedel, och de vacciner som existerar är för veterinärbruk. Där med finns det ett stort behov av utveckling av nya behandlingsmetoder, antivirala medel och vaccin mot denna sjukdom. Vi har fokuserat på vaccinering och använt oss av två olika tekniker, genetisk vaccinering och virus-lika partiklar. I den första studien använde vi oss av genetisk vaccinering, och immuniserade möss med DNA som innehåller olika RVFV proteiner. Enligt teorin ska proteinerna i fråga tillverkas, processas och modifieras på samma sätt som vid en riktig infektion och därmed även stimulera immunförsvaret på ett korrekt sätt. Mössen immuniserades med gener för två olika RVFV proteiner. Vi kunde visa att antikroppar bildades mot de två RVFV proteinerna men skyddseffekten var inte fullständig, bara hälften av djuren var skyddade mot RVF. I den andra studien använde vi oss av RVF virus-lika partiklar. Dessa partiklar kan enkelt beskrivas som ”tomma virus”, som är uppbyggda av

48

RVFV

proteinerna

men

saknar

den

virala

arvsmassan,

är

inte

sjukdomsalstrande. Dessa virus-lika partiklar tas upp och processas som riktiga viruspartiklar och kommer därmed att stimulera immunförsvaret på ett liknande sätt som det äkta viruset. Vi påvisade höga nivåer av RVFVspecifika antikroppar samt höga nivåer med antikroppar kapabla att neutralisera viruset. Det visade sig också att immuniserade möss, utsatta för en dödlig dos av RVFV, överlevde. Dessa virus-lika partiklar gav alltså skyddande immunitet mot RVF.

Sammanfattningsvis kan vi säga att vi har utvecklat en metod (kvantitativ real-tids PCR) som har stor potential som diagnostiskt verktyg för RVFV, framför allt som komplement till de traditionella metoderna. Vidare har vi visat att RVF virus-lika partiklar har mycket goda vaccinegenskaper och har stor möjlighet att utvecklas till ett framtida, framgångsrikt och säkert vaccin.

49

Acknowledgements Till slut där, framme vid slutet och en bunt folk att tacka för allt ☺ Resan har varit väldigt underhållande, nästan alltid… Har haft turen att ha 3st handledare som komplimenterat varandra utmärkt. Clas, du har skött det tråkiga på sidan om hur bra som helst. Löst de problem som uppkommit på många konstruktiva sätt och samtidigt kläckt ur dig nya idéer mm, det har varit ett sant nöje att doktorera under dig… även om du försökte elda på mig med små hot ☺ Göran och Magnus, bihandledarna, Ni har också stöttat och hjälpt mig framåt, kanske mer med roliga laborativa saker än pappersskyfflandet även om det verkar vara svårt att undvika helt. Det har iaf varit jävligt kul under dessa år Tack alla på infektion, det var en trevlig och bra miljö den lilla tiden jag var där… Gunborg ett stort tack! Alltid glad och hjälpsam, du har fixat och löst alla problem under dessa år Ett stort tack till all FOIter som har bidragit med en trevlig och stimulerande atmosfär. ffa f.d. virus gruppen, Anna, Bosse, Eva, Kattis, Lena och Marlene för allt stöd och hjälp. Marie, ärlig och rak, trevliga luncher/fikapauser. Nina (börja med det vid 30?!), vapendragaren, om än långsam som få, glassboxen ☺ Skickar ett stort tack till Baggefolket, Anna-lena, Laila, Solveig och Yngve. Åke, skitsnackande modoit. Anna och Kerstin tack så hemskt mycket för all hjälp, full koll på allt. Fredrik och Daniel för hårdrock respektive LFC snack ☺ det har underlättat resan monumentalt. Måste ju även tacka Moa och Jeanette, fd FOIter som jag nu terroriserar från viruslabb, aldrig något problem att ställa konstiga frågor eller ”sno” lite viktiga lösningar här inte, riktigt roliga spel och öl-kvällar. Anders grymt bra på att hitta böcker, sköna åsikter och ytterst trevligt pubsällskap. Folket på virus, allihop ska ha ett stort tack, skön stämning, fullt med trevliga människor och gott fredagsfika, fan höll på att glömma plumpen! Micke boy, skön lirare, dirty dancing haha :p Emma, hoppas att jag inte stört dig alldeles för mycket med all idioti, ruskigt trevligt har det varit iaf! Marko, rumspolarn med skaplig musiksmak, härliga flashbackdiskussioner. Nitte grym musiksmak men släpper ni skivan snart?? Jim ”datahackern” med grym mugg ☺ Mårten, snart indoktrinerad… Emma, Annasara, 50

Mari, Cissi och Carin tackar för underhållande diskussioner och trevligt fikasällskap. Tack till slavarna, Yngve, Karunakar, Lukas, Maria och Alex. Niklas Ma!^.*!-fan men trevlig trotsallt. Katrine, har hållit koll på allt trots att jag egentligen inte tillhör flocken, tackar så mycket… Göran, har skapat ett skönt arbetsklimat och en enorm kunskapskälla. Karin och Kickan, grymma kunskapskällor med allt under kontroll, riktigt roliga diskussioner och kortspel. Ya-fang för alla svåra frågor, Irene för all hjälp. Annika för PCR-kunskapen. Min familj, Mor & Far, skåningarna Stefan, Ann, Veronica, Nicholas och Cornelia. Peter, Carita, Nora och Theo. Sofia och Dino. Tack ska ni ha för allt…. Övriga släkten med, Gösta, Gunnar, Ingegerd och Bosse, Linda och Björn samt lilla Nike, Johan och Martin. Samt den ingifta familjen Marie och Tommy, Robin, Richard och Jessie, Margareta och Jens, och Anne-marie Alltid lika trevligt att besöka släkten. DITO min älskade fru Tacka lite polare med kanske, nope! va fan har de bidragit med förutom förströelse… dock så är det kanske det viktigaste :D så ett stort tack alla och det börjar vara jävligt tjatigt att skriva nu, samt sent, så nu får det vara nog!

51

References Abd el-Rahim, I. H., U. Abd el-Hakim & M. Hussein, (1999) An epizootic of Rift Valley fever in Egypt in 1997. Rev Sci Tech 18: 741-748. Abdel-Wahab, K. S., L. M. El Baz, E. M. El-Tayeb, H. Omar, M. A. Ossman & W. Yasin, (1978) Rift Valley Fever virus infections in Egypt: Pathological and virological findings in man. Trans R Soc Trop Med Hyg 72: 392-396. Al-Hazmi, A., A. A. Al-Rajhi, E. B. Abboud, E. A. Ayoola, M. Al-Hazmi, R. Saadi & N. Ahmed, (2005) Ocular complications of Rift Valley fever outbreak in Saudi Arabia. Ophthalmology 112: 313-318. Al-Hazmi, M., E. A. Ayoola, M. Abdurahman, S. Banzal, J. Ashraf, A. ElBushra, A. Hazmi, M. Abdullah, H. Abbo, A. Elamin, T. Al-Sammani el, M. Gadour, C. Menon, M. Hamza, I. Rahim, M. Hafez, M. Jambavalikar, H. Arishi & A. Aqeel, (2003) Epidemic Rift Valley fever in Saudi Arabia: a clinical study of severe illness in humans. Clin Infect Dis 36: 245-252. Alrajhi, A. A., A. Al-Semari & J. Al-Watban, (2004) Rift Valley fever encephalitis. Emerg Infect Dis 10: 554-555. Anderson, G. W., Jr. & C. J. Peters, (1988) Viral determinants of virulence for Rift Valley fever (RVF) in rats. Microb Pathog 5: 241-250. Anderson, G. W., Jr., J. A. Rosebrock, A. J. Johnson, G. B. Jennings & C. J. Peters, (1991) Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance. Am J Trop Med Hyg 44: 475-480. Anderson, G. W., Jr., J. F. Saluzzo, T. G. Ksiazek, J. F. Smith, W. Ennis, D. Thureen, C. J. Peters & J. P. Digoutte, (1989) Comparison of in vitro and in vivo systems for propagation of Rift Valley fever virus from clinical specimens. Res Virol 140: 129-138. Anderson, G. W., Jr., T. W. Slone, Jr. & C. J. Peters, (1987) Pathogenesis of Rift Valley fever virus (RVFV) in inbred rats. Microb Pathog 2: 283293. Anderson, R. M. & R. M. May, (1985) Vaccination and herd immunity to infectious diseases. Nature 318: 323-329. Andre, F. E. & A. Safary, (1987) Summary of clinical findings on Engerix-B, a genetically engineered yeast derived hepatitis B vaccine. Postgrad Med J 63 Suppl 2: 169-177. Anyamba, A., J. P. Chretien, J. Small, C. J. Tucker, P. B. Formenty, J. H. Richardson, S. C. Britch, D. C. Schnabel, R. L. Erickson & K. J. Linthicum, (2009) Prediction of a Rift Valley fever outbreak. Proc Natl Acad Sci U S A 106: 955-959. Arishi, H. M., A. Y. Aqeel & M. M. Al Hazmi, (2006) Vertical transmission of fatal Rift Valley fever in a newborn. Ann Trop Paediatr 26: 251-253.

52

Balkhy, H. H. & Z. A. Memish, (2003) Rift Valley fever: an uninvited zoonosis in the Arabian peninsula. Int J Antimicrob Agents 21: 153157. Barnard, B. J., (1979) Rift Valley fever vaccine--antibody and immune response in cattle to a live and an inactivated vaccine. J S Afr Vet Assoc 50: 155-157. Barnard, B. J. & M. J. Botha, (1977) An inactivated rift valley fever vaccine. J S Afr Vet Assoc 48: 45-48. Bergman, P. J., M. A. Camps-Palau, J. A. McKnight, N. F. Leibman, D. M. Craft, C. Leung, J. Liao, I. Riviere, M. Sadelain, A. E. Hohenhaus, P. Gregor, A. N. Houghton, M. A. Perales & J. D. Wolchok, (2006) Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24: 4582-4585. Besselaar, T. G. & N. K. Blackburn, (1991) Topological mapping of antigenic sites on the Rift Valley fever virus envelope glycoproteins using monoclonal antibodies. Arch Virol 121: 111-124. Besselaar, T. G. & N. K. Blackburn, (1994) The effect of neutralizing monoclonal antibodies on early events in Rift Valley fever virus infectivity. Res Virol 145: 13-19. Billecocq, A., M. Spiegel, P. Vialat, A. Kohl, F. Weber, M. Bouloy & O. Haller, (2004) NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78: 97989806. Bird, B. H., C. G. Albarino, A. L. Hartman, B. R. Erickson, T. G. Ksiazek & S. T. Nichol, (2008) Rift valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J Virol 82: 2681-2691. Bird, B. H., C. G. Albarino & S. T. Nichol, (2007) Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology 362: 10-15. Blumberg, B. S., B. J. Gerstley, D. A. Hungerford, W. T. London & A. I. Sutnick, (1967) A serum antigen (Australia antigen) in Down's syndrome, leukemia, and hepatitis. Ann Intern Med 66: 924-931. Boiro, I., O. K. Konstaninov & A. D. Numerov, (1987) [Isolation of Rift Valley fever virus from bats in the Republic of Guinea]. Bull Soc Pathol Exot Filiales 80: 62-67. Bossi, P., A. Tegnell, A. Baka, F. Van Loock, J. Hendriks, A. Werner, H. Maidhof & G. Gouvras, (2004) Bichat guidelines for the clinical management of haemorrhagic fever viruses and bioterrorism-related haemorrhagic fever viruses. Euro Surveill 9: E11-12. Botros, B., A. Omar, K. Elian, G. Mohamed, A. Soliman, A. Salib, D. Salman, M. Saad & K. Earhart, (2006) Adverse response of non-indigenous

53

cattle of European breeds to live attenuated Smithburn Rift Valley fever vaccine. J Med Virol 78: 787-791. Bouard, D., D. Alazard-Dany & F. L. Cosset, (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157: 153-165. Bouloy, M. & R. Flick, (2009) Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res 84: 101-118. Bouloy, M., C. Janzen, P. Vialat, H. Khun, J. Pavlovic, M. Huerre & O. Haller, (2001) Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J Virol 75: 13711377. Bridgen, A. & R. M. Elliott, (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93: 15400-15404. Brown, J. L., J. W. Dominik & R. L. Morrissey, (1981) Respiratory infectivity of a recently isolated Egyptian strain of Rift Valley fever virus. Infect Immun 33: 848-853. Caplen, H., C. J. Peters & D. H. Bishop, (1985) Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J Gen Virol 66 ( Pt 10): 2271-2277. Cassol, S., T. Salas, M. J. Gill, M. Montpetit, J. Rudnik, C. T. Sy & M. V. O'Shaughnessy, (1992) Stability of dried blood spot specimens for detection of human immunodeficiency virus DNA by polymerase chain reaction. J Clin Microbiol 30: 3039-3042. Chevalier, V., Y. Thiongane & R. Lancelot, (2009) Endemic Transmission of Rift Valley Fever in Senegal. Transbound Emerg Dis. Coetzer, J. A., (1977) The pathology of Rift Valley fever. I. Lesions occurring in natural cases in new-born lambs. Onderstepoort J Vet Res 44: 205-211. Coetzer, J. A., (1982) The pathology of Rift Valley fever. II. Lesions occurring in field cases in adult cattle, calves and aborted foetuses. Onderstepoort J Vet Res 49: 11-17. Coetzer, J. A. & B. J. Barnard, (1977) Hydrops amnii in sheep associated with hydranencephaly and arthrogryposis with wesselsbron disease and rift valley fever viruses as aetiological agents. Onderstepoort J Vet Res 44: 119-126. Cox, M. M., P. A. Patriarca & J. Treanor, (2008) FluBlok, a recombinant hemagglutinin influenza vaccine. Influenza Other Respi Viruses 2: 211-219. Daubney, R., J. Hudson & P. Garnham, (1931) Enzootic hepatitis of Rift Valley fever: an undescribed virus of sheep, cattle and man from East Africa. . J Pathol Bacteriol: 5. Davies, F. G., K. J. Linthicum & A. D. James, (1985) Rainfall and epizootic Rift Valley fever. Bull World Health Organ 63: 941-943. Digoutte, J. P., A. Jouan, B. Le Guenno, O. Riou, B. Philippe, J. Meegan, T. G. Ksiazek & C. J. Peters, (1989) Isolation of the Rift Valley fever

54

virus by inoculation into Aedes pseudoscutellaris cells: comparison with other diagnostic methods. Res Virol 140: 31-41. Digoutte, J. P. & C. J. Peters, (1989) General aspects of the 1987 Rift Valley fever epidemic in Mauritania. Res Virol 140: 27-30. Donnelly, J. J., B. Wahren & M. A. Liu, (2005) DNA vaccines: progress and challenges. J Immunol 175: 633-639. Drosten, C., S. Gottig, S. Schilling, M. Asper, M. Panning, H. Schmitz & S. Gunther, (2002) Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40: 2323-2330. Easterday, B. C., (1965) Rift valley fever. Adv Vet Sci 10: 65-127. Elliot, R., (1996) The Bunyaviridae. Plenum Press, New York and London. Ergonul, O., (2006) Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6: 203-214. Filone, C. M., M. Heise, R. W. Doms & A. Bertolotti-Ciarlet, (2006) Development and characterization of a Rift Valley fever virus cellcell fusion assay using alphavirus replicon vectors. Virology 356: 155-164. Flick, R. & M. Bouloy, (2005) Rift Valley fever virus. Curr Mol Med 5: 827834. Fontenille, D., M. Traore-Lamizana, M. Diallo, J. Thonnon, J. P. Digoutte & H. G. Zeller, (1998) New vectors of Rift Valley fever in West Africa. Emerg Infect Dis 4: 289-293. Francis, T. & T. P. Magill, (1935) Rift Valley Fever : A Report of Three Cases of Laboratory Infection and the Experimental Transmission of the Disease to Ferrets. J Exp Med 62: 433-448. Frank-Peterside, N., (2000) Response of laboratory staff to vaccination with an inactivated Rift Valley fever vaccine--TSI-GSD 200. Afr J Med Med Sci 29: 89-92. Freiberg, A. N., M. B. Sherman, M. C. Morais, M. R. Holbrook & S. J. Watowich, (2008) Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol 82: 1034110348. Garcea, R. L. & L. Gissmann, (2004) Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol 15: 513-517. Garcia, S., J. M. Crance, A. Billecocq, A. Peinnequin, A. Jouan, M. Bouloy & D. Garin, (2001) Quantitative real-time PCR detection of Rift Valley fever virus and its application to evaluation of antiviral compounds. J Clin Microbiol 39: 4456-4461. Garry, C. E. & R. F. Garry, (2004) Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model 1: 10.

55

Gear, J. H. S., (1988) Rift Valley Fever. In: Handbook of viral and rickettsial hemorrhagic fevers. J. H. S. Gear (ed). Boca Raton: CRC Press Inc, pp. 101-118. Gerdes, G. H., (2002) Rift valley fever. Vet Clin North Am Food Anim Pract 18: 549-555. Gerdes, G. H., (2004) Rift Valley fever. Rev Sci Tech 23: 613-623. Gerrard, S. R. & S. T. Nichol, (2007) Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology 357: 124-133. Goncalves, G., (2008) Herd immunity: recent uses in vaccine assessment. Expert Rev Vaccines 7: 1493-1506. Gonzales-Scarano, D. N., N., (1996) Bunyaviridae. In: Field´s Virology Third Edition B. K. Fields, D. Howley, P. (ed). Philadelphia: LippincottRaven Publishers, pp. 1473-1504. Grgacic, E. V. & D. A. Anderson, (2006) Virus-like particles: passport to immune recognition. Methods 40: 60-65. Habjan, M., N. Penski, V. Wagner, M. Spiegel, A. K. Overby, G. Kochs, J. T. Huiskonen & F. Weber, (2009a) Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology 385: 400-408. Habjan, M., A. Pichlmair, R. M. Elliott, A. K. Overby, T. Glatter, M. Gstaiger, G. Superti-Furga, H. Unger & F. Weber, (2009b) NSs protein of rift valley fever virus induces the specific degradation of the doublestranded RNA-dependent protein kinase. J Virol 83: 4365-4375. Hardestam, J., M. Simon, K. O. Hedlund, A. Vaheri, J. Klingstrom & A. Lundkvist, (2007) Ex vivo stability of the rodent-borne Hantaan virus in comparison to that of arthropod-borne members of the Bunyaviridae family. Appl Environ Microbiol 73: 2547-2551. Harro, C. D., Y. Y. Pang, R. B. Roden, A. Hildesheim, Z. Wang, M. J. Reynolds, T. C. Mast, R. Robinson, B. R. Murphy, R. A. Karron, J. Dillner, J. T. Schiller & D. R. Lowy, (2001) Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst 93: 284-292. Harvell, C. D., C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld & M. D. Samuel, (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158-2162. Heise, M. T., A. Whitmore, J. Thompson, M. Parsons, A. A. Grobbelaar, A. Kemp, J. T. Paweska, K. Madric, L. J. White, R. Swanepoel & F. J. Burt, (2009) An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol Infect 137: 1309-1318. Henderson, L. M., (2005) Overview of marker vaccine and differential diagnostic test technology. Biologicals 33: 203-209. Hevey, M., D. Negley, P. Pushko, J. Smith & A. Schmaljohn, (1998) Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 251: 28-37.

56

Hilleman, M. R., E. B. Buynak, R. R. Roehm, A. A. Tytell, A. U. Bertland & G. P. Lampson, (1975) Purified and inactivated human hepatitis B vaccine: progress report. Am J Med Sci 270: 401-404. Holman, D. H., A. Penn-Nicholson, D. Wang, J. Woraratanadharm, M. K. Harr, M. Luo, E. M. Maher, M. R. Holbrook & J. Y. Dong, (2009) A complex adenovirus-vectored vaccine against Rift Valley fever virus protects mice against lethal infection in the presence of preexisting vector immunity. Clin Vaccine Immunol 16: 1624-1632. Huiskonen, J. T., A. K. Overby, F. Weber & K. Grunewald, (2009) Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN-GC glycoprotein heterodimers. J Virol 83: 3762-3769. Hunter, P., B. J. Erasmus & J. H. Vorster, (2002) Teratogenicity of a mutagenised Rift Valley fever virus (MVP 12) in sheep. Onderstepoort J Vet Res 69: 95-98. Ikegami, T. & S. Makino, (2009) Rift valley fever vaccines. Vaccine 27 Suppl 4: D69-72. Ikegami, T., K. Narayanan, S. Won, W. Kamitani, C. J. Peters & S. Makino, (2009a) Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR. Ann N Y Acad Sci 1171 Suppl 1: E75-85. Ikegami, T., K. Narayanan, S. Won, W. Kamitani, C. J. Peters & S. Makino, (2009b) Rift Valley fever virus NSs protein promotes posttranscriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog 5: e1000287. Ikegami, T., C. J. Peters & S. Makino, (2005) Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 79: 5606-5615. Isaacson, M., (2001) Viral hemorrhagic fever hazards for travelers in Africa. Clin Infect Dis 33: 1707-1712. Johansson, P., M. Olsson, L. Lindgren, C. Ahlm, F. Elgh, A. Holmstrom & G. Bucht, (2004) Complete gene sequence of a human Puumala hantavirus isolate, Puumala Umea/hu: sequence comparison and characterisation of encoded gene products. Virus Res 105: 147-155. Johnson, J. E. & W. Chiu, (2000) Structures of virus and virus-like particles. Curr Opin Struct Biol 10: 229-235. Juto, P., F. Elgh, C. Ahlm, O. A. Alexeyev, K. Edlund, A. Lundkvist & G. Wadell, (1997) The first human isolate of Puumala virus in Scandinavia as cultured from phytohemagglutinin stimulated leucocytes. J Med Virol 53: 150-156. Katz, S. L., C. H. Kempe, F. L. Black, M. L. Lepow, S. Krugman, R. J. Haggerty & J. F. Enders, (1960) Studies on an attenuated measlesvirus vaccine. VIII. General summary and evaluation of the results of vaccine. N Engl J Med 263: 180-184.

57

Kende, M., C. R. Alving, W. L. Rill, G. M. Swartz, Jr. & P. G. Canonico, (1985) Enhanced efficacy of liposome-encapsulated ribavirin against Rift Valley fever virus infection in mice. Antimicrob Agents Chemother 27: 903-907. Klinman, D. M., G. Yamshchikov & Y. Ishigatsubo, (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158: 3635-3639. Laughlin, L. W., J. M. Meegan, L. J. Strausbaugh, D. M. Morens & R. H. Watten, (1979) Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans R Soc Trop Med Hyg 73: 630633. Le May, N., S. Dubaele, L. Proietti De Santis, A. Billecocq, M. Bouloy & J. M. Egly, (2004) TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116: 541-550. Le May, N., Z. Mansuroglu, P. Leger, T. Josse, G. Blot, A. Billecocq, R. Flick, Y. Jacob, E. Bonnefoy & M. Bouloy, (2008) A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog 4: e13. Linthicum, K. J., A. Anyamba, C. J. Tucker, P. W. Kelley, M. F. Myers & C. J. Peters, (1999) Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285: 397-400. Linthicum, K. J., F. G. Davies, A. Kairo & C. L. Bailey, (1985) Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. J Hyg (Lond) 95: 197-209. Liu, L., C. C. Celma & P. Roy, (2008) Rift Valley fever virus structural proteins: expression, characterization and assembly of recombinant proteins. Virol J 5: 82. Lorenzo, G., R. Martin-Folgar, F. Rodriguez & A. Brun, (2008) Priming with DNA plasmids encoding the nucleocapsid protein and glycoprotein precursors from Rift Valley fever virus accelerates the immune responses induced by an attenuated vaccine in sheep. Vaccine 26: 5255-5262. Lu, S., (2009) Heterologous prime-boost vaccination. Curr Opin Immunol 21: 346-351. Lubroth, J., M. M. Rweyemamu, G. Viljoen, A. Diallo, B. Dungu & W. Amanfu, (2007) Veterinary vaccines and their use in developing countries. Rev Sci Tech 26: 179-201. Madani, T. A., Y. Y. Al-Mazrou, M. H. Al-Jeffri, A. A. Mishkhas, A. M. AlRabeah, A. M. Turkistani, M. O. Al-Sayed, A. A. Abodahish, A. S. Khan, T. G. Ksiazek & O. Shobokshi, (2003) Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 37: 1084-1092. Mandell, R. B., R. Koukuntla, L. J. Mogler, A. K. Carzoli, A. N. Freiberg, M. R. Holbrook, B. K. Martin, W. R. Staplin, N. N. Vahanian, C. J. Link & R. Flick, (2009) A replication-incompetent Rift Valley fever

58

vaccine: Chimeric virus-like particles protect mice and rats against lethal challenge. Virology. Mansuroglu, Z., T. Josse, J. Gilleron, A. Billecocq, P. Leger, M. Bouloy & E. Bonnefoy, (2009) Non structural NSs protein of Rift Valley Fever Virus interacts with pericentromeric DNA sequences of the host cell inducing chromosome cohesion and segregation defects. J Virol. Marconi, P., R. Argnani, E. Berto, A. L. Epstein & R. Manservigi, (2008) HSV as a vector in vaccine development and gene therapy. Hum Vaccin 4: 91-105. Martin, J. E., T. C. Pierson, S. Hubka, S. Rucker, I. J. Gordon, M. E. Enama, C. A. Andrews, Q. Xu, B. S. Davis, M. Nason, M. Fay, R. A. Koup, M. Roederer, R. T. Bailer, P. L. Gomez, J. R. Mascola, G. J. Chang, G. J. Nabel & B. S. Graham, (2007) A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis 196: 1732-1740. Martin, M. L., H. Lindsey-Regnery, D. R. Sasso, J. B. McCormick & E. Palmer, (1985) Distinction between Bunyaviridae genera by surface structure and comparison with Hantaan virus using negative stain electron microscopy. Arch Virol 86: 17-28. McAleer, W. J., E. B. Buynak, R. Z. Maigetter, D. E. Wampler, W. J. Miller & M. R. Hilleman, (1984) Human hepatitis B vaccine from recombinant yeast. Nature 307: 178-180. McElroy, A. K., C. G. Albarino & S. T. Nichol, (2009) Development of a RVFV ELISA that can distinguish infected from vaccinated animals. Virol J 6: 125. McIntosh, B. M., D. Russell, I. dos Santos & J. H. Gear, (1980) Rift Valley fever in humans in South Africa. S Afr Med J 58: 803-806. Meegan, J. M., (1979) The Rift Valley fever epizootic in Egypt 1977-78. 1. Description of the epizzotic and virological studies. Trans R Soc Trop Med Hyg 73: 618-623. Meegan, J. M., H. Hoogstraal & M. I. Moussa, (1979) An epizootic of Rift Valley fever in Egypt in 1977. Vet Rec 105: 124-125. Metwally, S., (2008) Foreign Animal Diseases, p. 472. Boca Publications Group inc, Boca Raton, FL. Montgomery, D. L., J. W. Shiver, K. R. Leander, H. C. Perry, A. Friedman, D. Martinez, J. B. Ulmer, J. J. Donnelly & M. A. Liu, (1993) Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol 12: 777-783. Morrill, J. C., L. Carpenter, D. Taylor, H. H. Ramsburg, J. Quance & C. J. Peters, (1991) Further evaluation of a mutagen-attenuated Rift Valley fever vaccine in sheep. Vaccine 9: 35-41. Morrill, J. C., G. B. Jennings, H. Caplen, M. J. Turell, A. J. Johnson & C. J. Peters, (1987) Pathogenicity and immunogenicity of a mutagenattenuated Rift Valley fever virus immunogen in pregnant ewes. Am J Vet Res 48: 1042-1047.

59

Morrill, J. C., C. A. Mebus & C. J. Peters, (1997a) Safety and efficacy of a mutagen-attenuated Rift Valley fever virus vaccine in cattle. Am J Vet Res 58: 1104-1109. Morrill, J. C., C. A. Mebus & C. J. Peters, (1997b) Safety of a mutagenattenuated Rift Valley fever virus vaccine in fetal and neonatal bovids. Am J Vet Res 58: 1110-1114. Morrill, J. C. & C. J. Peters, (2003) Pathogenicity and neurovirulence of a mutagen-attenuated Rift Valley fever vaccine in rhesus monkeys. Vaccine 21: 2994-3002. Moutailler, S., G. Krida, F. Schaffner, M. Vazeille & A. B. Failloux, (2008) Potential vectors of Rift Valley fever virus in the Mediterranean region. Vector Borne Zoonotic Dis 8: 749-753. Muller, R., J. F. Saluzzo, N. Lopez, T. Dreier, M. Turell, J. Smith & M. Bouloy, (1995) Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am J Trop Med Hyg 53: 405-411. Niklasson, B., C. J. Peters, M. Grandien & O. Wood, (1984) Detection of human immunoglobulins G and M antibodies to Rift Valley fever virus by enzyme-linked immunosorbent assay. J Clin Microbiol 19: 225-229. Noad, R. & P. Roy, (2003) Virus-like particles as immunogens. Trends Microbiol 11: 438-444. Olsson, G. E., F. Dalerum, B. Hornfeldt, F. Elgh, T. R. Palo, P. Juto & C. Ahlm, (2003) Human hantavirus infections, Sweden. Emerg Infect Dis 9: 1395-1401. Overby, A. K., V. L. Popov, R. F. Pettersson & E. P. Neve, (2007) The cytoplasmic tails of Uukuniemi Virus (Bunyaviridae) G(N) and G(C) glycoproteins are important for intracellular targeting and the budding of virus-like particles. J Virol 81: 11381-11391. Paliard, X., Y. Liu, R. Wagner, H. Wolf, J. Baenziger & C. M. Walker, (2000) Priming of strong, broad, and long-lived HIV type 1 p55gag-specific CD8+ cytotoxic T cells after administration of a virus-like particle vaccine in rhesus macaques. AIDS Res Hum Retroviruses 16: 273282. Paoletti, E., (1996) Applications of pox virus vectors to vaccination: an update. Proc Natl Acad Sci U S A 93: 11349-11353. Paweska, J. T., S. J. Smith, I. M. Wright, R. Williams, A. S. Cohen, A. A. Van Dijk, A. A. Grobbelaar, J. E. Croft, R. Swanepoel & G. H. Gerdes, (2003) Indirect enzyme-linked immunosorbent assay for the detection of antibody against Rift Valley fever virus in domestic and wild ruminant sera. Onderstepoort J Vet Res 70: 49-64. Peetermans, J., (1992) Production, quality control and characterization of an inactivated hepatitis A vaccine. Vaccine 10 Suppl 1: S99-101. Perrone, L. A., A. Ahmad, V. Veguilla, X. Lu, G. Smith, J. M. Katz, P. Pushko & T. M. Tumpey, (2009) Intranasal vaccination with 1918 influenza

60

virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 83: 5726-5734. Peters, C. J., J. A. Reynolds, T. W. Slone, D. E. Jones & E. L. Stephen, (1986) Prophylaxis of Rift Valley fever with antiviral drugs, immune serum, an interferon inducer, and a macrophage activator. Antiviral Res 6: 285-297. Pettersson, L., J. Boman, P. Juto, M. Evander & C. Ahlm, (2008) Outbreak of Puumala virus infection, Sweden. Emerg Infect Dis 14: 808-810. Pittman, P. R., C. T. Liu, T. L. Cannon, R. S. Makuch, J. A. Mangiafico, P. H. Gibbs & C. J. Peters, (1999) Immunogenicity of an inactivated Rift Valley fever vaccine in humans: a 12-year experience. Vaccine 18: 181-189. Plotkin, A., S. Orenstein, A, W., (2004a) Vaccines. Philadelphia. Plotkin, L., S. Plotkin, A, S., (2004b) A short history of vaccination. In: Vaccines. A. Plotkin, S. Orenstein, A, W. (ed). Philadelphia: Elsevier, pp. Prado, I., D. Rosario, L. Bernardo, M. Alvarez, R. Rodriguez, S. Vazquez & M. G. Guzman, (2005) PCR detection of dengue virus using dried whole blood spotted on filter paper. J Virol Methods 125: 75-81. Pretorius, A., M. J. Oelofsen, M. S. Smith & E. van der Ryst, (1997) Rift Valley fever virus: a seroepidemiologic study of small terrestrial vertebrates in South Africa. Am J Trop Med Hyg 57: 693-698. Pushko, P., J. Geisbert, M. Parker, P. Jahrling & J. Smith, (2001) Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol 75: 11677-11685. Radosevic, K., A. Rodriguez, A. Lemckert & J. Goudsmit, (2009) Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccines 8: 577-592. Randall, R., C. J. Gibbs, Jr., C. G. Aulisio, L. N. Binn & V. R. Harrison, (1962) The development of a formalin-killed Rift Valley fever virus vaccine for use in man. J Immunol 89: 660-671. Roitt, I. B., J. Male, D., (2001) Immunology, p. 480. Harcourt Publisher limited, London. Sabin, A. B., M. Ramos-Alvarez, J. Alvarez-Amezquita, W. Pelon, R. H. Michaels, I. Spigland, M. A. Koch, J. M. Barnes & J. S. Rhim, (1960) Live, orally given poliovirus vaccine. Effects of rapid mass immunization on population under conditions of massive enteric infection with other viruses. JAMA 173: 1521-1526. Salk, J. E., (1953) Studies in human subjects on active immunization against poliomyelitis. I. A preliminary report of experiments in progress. J Am Med Assoc 151: 1081-1098. Schmaljohn, C. S., M. D. Parker, W. H. Ennis, J. M. Dalrymple, M. S. Collett, J. A. Suzich & A. L. Schmaljohn, (1989) Baculovirus expression of the M genome segment of Rift Valley fever virus and examination of

61

antigenic and immunogenic properties of the expressed proteins. Virology 170: 184-192. Sherman, M. B., A. N. Freiberg, M. R. Holbrook & S. J. Watowich, (2009) Single-particle cryo-electron microscopy of Rift Valley fever virus. Virology 387: 11-15. Shi, X., A. Kohl, P. Li & R. M. Elliott, (2007) Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. J Virol 81: 10151-10160. Shoemaker, T., C. Boulianne, M. J. Vincent, L. Pezzanite, M. M. Al-Qahtani, Y. Al-Mazrou, A. S. Khan, P. E. Rollin, R. Swanepoel, T. G. Ksiazek & S. T. Nichol, (2002) Genetic analysis of viruses associated with emergence of Rift Valley fever in Saudi Arabia and Yemen, 2000-01. Emerg Infect Dis 8: 1415-1420. Siam, A. L., J. M. Meegan & K. F. Gharbawi, (1980) Rift Valley fever ocular manifestations: observations during the 1977 epidemic in Egypt. Br J Ophthalmol 64: 366-374. Sidwell, R. W. & D. F. Smee, (2003) Viruses of the Bunya- and Togaviridae families: potential as bioterrorism agents and means of control. Antiviral Res 57: 101-111. Smithburn, K. C., (1949) Rift Valley fever; the neurotropic adaptation of the virus and the experimental use of this modified virus as a vaccine. Br J Exp Pathol 30: 1-16. Spik, K., A. Shurtleff, A. K. McElroy, M. C. Guttieri, J. W. Hooper & C. SchmalJohn, (2006) Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 24: 4657-4666. Swanepoel, R., J. K. Struthers, M. J. Erasmus, S. P. Shepherd, G. M. McGillivray, B. J. Erasmus & B. J. Barnard, (1986) Comparison of techniques for demonstrating antibodies to Rift Valley fever virus. J Hyg (Lond) 97: 317-329. Swanepoel, R. B., F., (2009) Bunyaviridae. John Wiley & Sons ltd. Swenson, D. L., D. Wang, M. Luo, K. L. Warfield, J. Woraratanadharm, D. H. Holman, J. Y. Dong & W. D. Pratt, (2008) Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol 15: 460-467. Tacket, C. O., M. B. Sztein, G. A. Losonsky, S. S. Wasserman & M. K. Estes, (2003) Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol 108: 241247. Tatsis, N. & H. C. Ertl, (2004) Adenoviruses as vaccine vectors. Mol Ther 10: 616-629. Traxler, G. S., E. Anderson, S. E. LaPatra, J. Richard, B. Shewmaker & G. Kurath, (1999) Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Dis Aquat Organ 38: 183-190.

62

Turell, M. J., D. J. Dohm, C. N. Mores, L. Terracina, D. L. Wallette, Jr., L. J. Hribar, J. E. Pecor & J. A. Blow, (2008) Potential for North American mosquitoes to transmit Rift Valley fever virus. J Am Mosq Control Assoc 24: 502-507. Valentini, M., M. Valassina, G. G. Savellini & M. G. Cusi, (2008) Nucleotide variability of Toscana virus M segment in strains isolated from clinical cases. Virus Res 135: 187-190. Wallace, D. B., C. E. Ellis, A. Espach, S. J. Smith, R. R. Greyling & G. J. Viljoen, (2006) Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever. Vaccine 24: 71817189. van Oirschot, J. T., (1999) Diva vaccines that reduce virus transmission. J Biotechnol 73: 195-205. Warfield, K. L., C. M. Bosio, B. C. Welcher, E. M. Deal, M. Mohamadzadeh, A. Schmaljohn, M. J. Aman & S. Bavari, (2003) Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A 100: 15889-15894. Whitehouse, C. A., (2004) Crimean-Congo hemorrhagic fever. Antiviral Res 64: 145-160. WHO, (2007) Outbreaks of Rift Valley Fever in Kenya, Somalia and United Republic of Tanzania, December 2006-April 2007. In.: World Health Organization, pp. Vialat, P., A. Billecocq, A. Kohl & M. Bouloy, (2000) The S segment of rift valley fever phlebovirus (Bunyaviridae) carries determinants for attenuation and virulence in mice. J Virol 74: 1538-1543. Wolff, J. A., R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani & P. L. Felgner, (1990) Direct gene transfer into mouse muscle in vivo. Science 247: 1465-1468. Won, S., T. Ikegami, C. J. Peters & S. Makino, (2007) NSm protein of Rift Valley fever virus suppresses virus-induced apoptosis. J Virol 81: 13335-13345. Woodland, D. L., (2004) Jump-starting the immune system: prime-boosting comes of age. Trends Immunol 25: 98-104. Woods, C. W., A. M. Karpati, T. Grein, N. McCarthy, P. Gaturuku, E. Muchiri, L. Dunster, A. Henderson, A. S. Khan, R. Swanepoel, I. Bonmarin, L. Martin, P. Mann, B. L. Smoak, M. Ryan, T. G. Ksiazek, R. R. Arthur, A. Ndikuyeze, N. N. Agata & C. J. Peters, (2002) An outbreak of Rift Valley fever in Northeastern Kenya, 1997-98. Emerg Infect Dis 8: 138-144. Youssef, B. Z. & H. A. Donia, (2002) The potential role of rattus rattus in enzootic cycle of Rift Valley Fever in Egypt 2-application of reverse transcriptase polymerase chain reaction (RT-PCR) in blood samples of Rattus rattus. J Egypt Public Health Assoc 77: 133-141. Zeller, H. G., D. Fontenille, M. Traore-Lamizana, Y. Thiongane & J. P. Digoutte, (1997) Enzootic activity of Rift Valley fever virus in Senegal. Am J Trop Med Hyg 56: 265-272.

63

Zuckerman, J. N., (2006) Protective efficacy, immunotherapeutic potential, and safety of hepatitis B vaccines. J Med Virol 78: 169-177.

64