We will denote by Mod R the category of all R-modules and by mod R ... examples of locally support-finite categories are finite and locally representation-.
Galois coverings of algebras by l o c a l l y s u p p o r t - f i n i t e categories
Piotr Dowbor, Helmut Lenzing and Andrzej Skowroflski Throughout the paper
K w i l l denote a f i x e d a l g e b r a i c a l l y closed f i e l d . We w i l l
use f r e e l y d e f i n i t i o n s and notations introduced in [2]. Let K-category. We w i l l denote by
R be a l o c a l l y bounded
Mod R the category of a l l R-modules and by
mod R
(resp. ind R) i t s f u l l subcategory formed by a l l f i n i t e l y generated (resp. indecomposable f i n i t e l y generated) R-modules. For any R-module M we w i l l denote by supp M the support of objects a such that subcategory of such that finite
M, that i s , the f u l l subcategory of
M(a) • O. For each object
R formed by a l l objects of
a
of
R consisting of a l l
R, Ra
w i l l denote the f u l l
supp M, f o r a l l modules
M in
M(a) • O. Then f o l l o w i n g [3] R is l o c a l l y s u p p o r t - f i n i t e i f
(the number of objects is f i n i t e ) f o r each object
a
of
Ra
ind R is
R. Well-known
examples of l o c a l l y s u p p o r t - f i n i t e categories are f i n i t e and l o c a l l y representationf i n i t e categories. The main aim of this paper is to prove the theorem below. For the case of pr e s i d u a l l y f i n i t e groups this theorem was proved in [3]. Here, we give a new independent proof being a combination of Lemma I due to the second author and Lemma 2 stated in [3]. THEOREM. Let
R be a l o c a l l y s u p p o r t - f i n i t e K-category and l e t a group
K-automorphism of
generated R-modules. Then R/G
is l o c a l l y s u p p o r t - f i n i t e and the push-down functor
F~: Mod R ~ Mod R/G associated with the Galois covering b i j e c t i o n between the G-orbits of isoclasses of objects in of objects in
ind R/G. In p a r t i c u l a r
[ 4 , 5 , 6 ] ) i f and only i f LEMMA I. Let phisms of
R-modules. Let
R/G
F~ R ~ R/G
induces a
ind R and the isoclasses
R is representation-tame (in the sense of
is so.
R be a l o c a l l y bounded K-category and l e t a group
R act
G of
R act f r e e l y on the isoclasses of indecomposable f i n i t e l y
G of K-automor-
f r e e l y on the isoclasses of indecomposable f i n i t e l y generated
F~: Mod R ~ Mod R/G be the push-down functor and l e t
F.: Mod R/G ~Mod R be the pull-up functor associated with the Galois covering F: R ~ R/G. For a
module
X in
(i)
X ~ F~Y f o r some Y in
(ii)
F.X
(iii)
There is a f i n i t e l y
ind R/G the f o l l o w i n g conditions are equivalent ind R.
is a d i r e c t sum of f i n i t e l y generated R-modules. generated d i r e c t summand of
F.X.
92 Proof. ( i ) ~ ( i i ) . module
F.X ~ F.FAY ~ (iii)
If
~ (i).
is of the form
X
Assume t h a t
F.X
has a f i n i t e l y
F.X = Y ~ Z
is isomorphic to
where
Y
generated d i r e c t summand. Then is an object in
HomR/G(F~Y,X) ~ JR/G(FAY,X)
mod R/G. Consider a minimal l e f t
mod R. Then by [7, Theorem 3.6] morphism in
generated
R-
is obvious.
FAY. Since from [7, Lemma 3.5]
is enough to prove t h a t radical in
X ~ FAY f o r some f i n i t e l y
we have the required decomposition
@ gY. The i m p l i c a t i o n ( i i ) ~ ( i i i ) g C G
has a decomposition that
X
Y, then by [7, Lemma 3.2]
ind R. We shall show FAY
where
is indecomposable, i t
JR/G is the Jacobson
almost s p l i t morphism
F~f: F~Y ~ F~E
F.X
f : Y ~ E in
is a minimal l e f t almost s p l i t
mod R/G. Using f u n c t o r i a l p r o p e r t i e s of almost s p l i t morphisms [ I ] and
the f a c t t h a t
FA
is l e f t a d j o i n t to
F. we get the f o l l o w i n g commutative diagram
o f a b e l i a n groups with exact rows Hom(FAf,X)
I
i
Hom(f,F.X)
HomR(E,F.X)
~ HomR(Y,F.X)
Hence, f o r our aim, i t Indeed, i f
,/
~0 , HomR/G(F~Y,X)--, H°mR/G(F~Y'XJ/~R/G(FAY,X)/~
HomR/G(FAE,X)
it
I
~0
..... Coker Hom(f,F.X)
is enough to show t h a t
HomR(f,F.X)
is not an epimorphism.
is an epimorphism, then the canonical s p l i t monomorphism
f a c t o r i z e s through
f , and
assumption. Consequently For a f u l l
f
is also a s p l i t monomorphism, c o n t r a r y to our
HomR/G(F~Y,X) ~ JR/G(FAY,X)
subcategory
h: Y ~ F.X
and the Lemma is proved.
C of a l o c a l l y bounded K-category
R we w i l l
denote by
A
C the f u l l
subcategory of
R(b,a) ~ 0
f o r some b
LEMMA 2. Let
C be a f u l l
R formed by a l l objects
from
C. Then
Y
R(a,b) # 0
subcategory of a l o c a l l y bounded K-category
Res: Mod R ~ Mod C denote the r e s t r i c t i o n in
such t h a t
or
C.
A
there is a decomposition
a
Res X = Y @ Z
is an R-module and
in
R and l e t
f u n c t o r . Assume t h ) t f o r an R-module X ^ Mod C such t h a t supp Y is contained
× = Y ~ Z'
f o r some R-module
Z'
Proof. The f a c t t h a t Y is an R-module is a t r i v i a l consequence of the d e f i n i t i o n A--" of C. The required R-module Z' is constructed as f o l l o w s : For each object a E R A
we set in
Z ' ( a ) = Z(a)
R then
shows t h a t
if
Z ' ( a ) = Z(a) Z'
A
a E C and if
A
Z ' ( a ) = X(a)
~ C C and
is an R-module and
for
Z ' ( a ) = X(~)
× = Y @ Z'
in
a ¢ C. I f for
Mod R.
~ A
is a morphism
~ ¢ C. A simple
analysis
93
Proof o f the Theorem. From [7, Theorem 3.6] Fl: Mod R ~ Mod R/G
the push-down f u n c t o r
associated with the Galois covering
F: R ~ R/G
induces an
i n j e c t i o n of the required sets. In order to prove t h a t t h i s is also a s u r j e c t i o n we will
use Lemmas I and 2. Let
and l e t
a
Un, n 6 ~
be an o b j e c t of
X be an indecomposable f i n i t e l y
supp F.X. Consider the f o l l o w i n g i n f i n i t e
= { 0 , 1 , 2 . . . . } , of f i n i t e
is the f u l l
subcategory o f
generated
full
subcategories of
R defined as f o l l o w s : Uo
R/G-module
sequence
R defined as f o l l o w s : Uo
is the f u l l
subcategory of
R
A
formed by the o b j e c t finite
a
subcategory o f
Res: Mod R ~ Mod Un+I
and, f o r
R containing
functor
by our assumption composable f i n i t e l y Lemma I
Y
Y(a) + O. From [8, Chap X]
and f a i t h f u l
X
Un = Un_I . Then
a, is contained in some Un.
be the r e s t r i c t i o n
mod Un+I , Res(F.X)(a) ~ O, and l e t such t h a t
n > O, we set
f u n c t o r . Then
Res(F.X)
Ra, as a f u l l Let is an object o f
be an indecomposable d i r e c t summand o f the f u n c t o r
I : Mod Un+I ~ Mod R. Thus
Res
admits a l e f t a d j o i n t f u l l is an o b j e c t of
ind R and
supp Y c supp I(Y) c Ra c Un. Hence from Lemma 2, Y
is an inde-
generated d i r e c t summand of
is isomorphic to
I(Y)
Res(F.X)
F.X
in
Mod R. Consequently from
FAY and the theorem is proved.
References [I ] M. Auslander and I . Reiten, Representation theory of a r t i n algebras VI, Commun. Algebra 6 (1978), 257 - 300. [2 ] K. Bongartz and P. G a b r i e l , Covering spaces in r e p r e s e n t a t i o n theory, Invent. Math., 65 (1982), 331 - 378. [3 ] P. Dowbor and A. Skowro~ski, On Galois coverings of tame algebras, p r e p r i n t 1983, I - 12. [4 ] P. Dowbor and ~. Skowro~ski, On the r e p r e s e n t a t i o n type of l o c a l l y bounded c a t e g o r i e s , p r e p r i n t 1984, I - 7. [5 ] Ju. A. Drozd, On tame and w i l d matrix problems, In: Matrix problems, Kiev (1977), 104 - 114. [6 ] Ju. A. Drozd, Tame and w i l d m a t r i x problems, In: Representations and quadratic forms, Kiev (1979), 39 - 74. [7 ] P. G a b r i e l , The u n i v e r s a l cover of a r e p r e s e n t a t i o n - f i n i t e a l g e b r a , In: Representations o f Algebras, Springer Lecture Notes 903, 1981, 68 - 105. [8 ] S. Mac Lane, Categories f o r the working mathematician, S p r i n g e r - V e r l a g , 1971, 262 p.
P. Dowbor and A. Skowro~ski I n s t i t u t e o f Mathematics, Nicholas Copernicus U n i v e r s i t y Chopina 12/18 87-100 Toruh, Poland
Received
9.11.1984
H. Lenzing Fachbereich Mathematik der Universit~t-Gesamthochschule D-4790 Paderborn Germany