TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804â1815, 2006. 10. Churchill GC, Galione A: Spatial ...
ORIGINAL ARTICLE
Generation of Nicotinic Acid Adenine Dinucleotide Phosphate and Cyclic ADP-Ribose by Glucagon-Like Peptide-1 Evokes Ca2ⴙ Signal That Is Essential for Insulin Secretion in Mouse Pancreatic Islets Byung-Ju Kim,1 Kwang-Hyun Park,1 Chang-Yeol Yim,2 Shin Takasawa,3 Hiroshi Okamoto,3 Mie-Jae Im,1 and Uh-Hyun Kim1,4
OBJECTIVE—Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2⫹ concentrations ([Ca2⫹]i), resulting in insulin secretion from pancreatic -cells. The molecular mechanism(s) of the GLP-1–mediated regulation of [Ca2⫹]i was investigated.
a cooperative action of NAADP and cyclic ADPR spatiotemporally formed by multiple enzymes. Diabetes 57:868–878, 2008
RESEARCH DESIGN AND METHODS—GLP-1–induced changes in [Ca2⫹]i were measured in -cells isolated from Cd38⫹/⫹ and Cd38⫺/⫺ mice. Calcium-mobilizing second messengers were identified by measuring levels of nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (ADPR), using a cyclic enzymatic assay. To locate NAADP- and cyclic ADPR– producing enzyme(s), cellular organelles were separated using the sucrose gradient method.
n increase of intracellular Ca2⫹ concentration ([Ca2⫹]i) through release from intracellular Ca2⫹ stores and/or extracellular Ca2⫹ entry induces insulin secretion from pancreatic -cells (1– 4). An elevation of blood glucose levels stimulates insulin secretion through a specialized pathway that requires mitochondrial ATP synthesis, which leads to the closure of ATP-sensitive K⫹ channels, cell depolarization, and Ca2⫹ influx (5). In addition, glucose-mediated elevation of [Ca2⫹]i is also achieved through two Ca2⫹-releasing receptors in the endoplasmic reticulum (ER): receptor for inositol 1,4,5-trisphosphate (IP3) stimulated by IP3/phospholipase C activation and ryanodine receptor activated by cyclic ADP-ribose (ADPR) (6,7). Recent studies (8,9) have indicated that cyclic ADPR also induces Ca2⫹ entry. An additional pathway for intracellular Ca2⫹ release channel is the nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive receptor channel reportedly present in acidic lysosome–related granules (10). The production of cyclic ADPR and NAADP is catalyzed by ADPR cyclases, including CD38 (11,12). Glucose-stimulated Ca2⫹ mobilization and insulin secretion are elevated by CD38 overexpression (13) and reduced by knockout (14). Low levels of CD38 expression have been observed in diabetic -cells such as ob/ob mouse islets and RINm5F insulinoma cells with poor glucose-stimulated insulin production/release (15). A recent study (16) has indicated that NAADP initiates and propagates Ca2⫹ signals in response to insulin and is involved in insulin synthesis. Along the same lines, NAADP-sensitive Ca2⫹ store– controlled Ca2⫹ signaling and the production of NAADP by glucose stimulus in -cells have also been demonstrated (17,18). Glucagon-like peptide-1 (GLP-1), a peptide hormone released from gut L-cells, is a physiologically important potentiator of glucose-induced insulin secretion (19,20). The peptide elevates intracellular cAMP concentrations and causes activation of protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factor II (Epac) (21,22). Although these cAMP-binding proteins have been shown to play a role in GLP-1–mediated transient and sustained increase of [Ca2⫹]i (23), it remains to be clarified whether the increase of [Ca2⫹]i is mediated through activation of Ca2⫹ channels directly or through generation of Ca2⫹-mobilizing second messengers by the molecules PKA and Epac.
RESULTS—A GLP-1–induced [Ca2⫹]i increase showed a cooperative Ca2⫹ signal, i.e., an initial [Ca2⫹]i rise mediated by the action of NAADP that was produced in acidic organelles and a subsequent long-lasting increase of [Ca2⫹]i by the action of cyclic ADPR that was produced in plasma membranes and secretory granules. GLP-1 sequentially stimulated production of NAADP and cyclic ADPR in the organelles through protein kinase A and cAMP-regulated guanine nucleotide exchange factor II. Furthermore, the results showed that NAADP production from acidic organelles governed overall Ca2⫹ signals, including insulin secretion by GLP-1, and that in addition to CD38, enzymes capable of synthesizing NAADP and/or cyclic ADPR were present in -cells. These observations were supported by the study with Cd38⫺/⫺ -cells, demonstrating production of NAADP, cyclic ADPR, and Ca2⫹ signal with normal insulin secretion stimulated by GLP-1. CONCLUSIONS—Our findings demonstrate that the GLP-1– mediated Ca2⫹ signal for insulin secretion in pancreatic -cells is From the 1Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea; the 2Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea; the 3 Department of Advanced Biological Sciences for Regeneration, Tohoku University Graduate School of Medicine, Sendai, Japan; and the 4Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea. Address correspondence and reprint requests to Uh-Hyun Kim, MD, PhD, Department of Biochemistry, Chonbuk National University Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea. E-mail: uhkim@chonbuk. ac.kr. Received for publication 2 April 2007 and accepted in revised form 2 January 2008. Published ahead of print at http://diabetes.diabetesjournals.org on 9 January 2008. DOI: 10.2337/db07-0443. Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/db07-0443. ADPR, ADP-ribosyl; Epac, cAMP-regulated guanine nucleotide exchange factor II; ER, endoplasmic reticulum; GLP-1, glucagons-like peptide-1; GPN, glycylphenylalanine 2-naphthylamide; KRBB, Krebs-Ringer bicarbonate buffer; NAADP, nicotinic acid adenine dinucleotide phosphate; PKA, protein kinase A. © 2008 by the American Diabetes Association. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
868
A
DIABETES, VOL. 57, APRIL 2008
B.-J. KIM AND ASSOCIATES
In this study, we examined the possibility that GLP-1 signaling activates ADPR cyclases/CD38 in the context of NAADP- and/or cyclic ADPR–mediated regulation of Ca2⫹ signals and insulin secretion. Our results demonstrate that the GLP-1–induced Ca2⫹ signal is mediated in a spatiotemporally different mode by both NAADP and cyclic ADPR, which are produced by as yet unidentified enzyme(s), and CD38. In particular, we demonstrate that the GLP-1– induced Ca2⫹ signal is regulated in a concerted and sequential way by the second messengers NAADP and cyclic ADPR. RESEARCH DESIGN AND METHODS Drugs. Anti-mouse CD38 monoclonal antibody was obtained from eBioscience (San Diego, CA,). Dulbecco’s modified Eagle’s medium containing low glucose and antibiotics was from Life Technologies (Grand Island, NY). GLP-1 (7-36) amide was purchased from American Peptide Company (Vista, CA). A 125 I-insulin radioimmunoassay kit was from Linco Research (Charles, MO). Biolog Life Science (Bremen, Germany) provided 8-pCPT-2⬘-O-Me-cAMP and N6-benzoyl-cAMP. Recombinant nicotinic acid mononucleotide adenylyltransferase was a gift from Dr. Se Won Suh (Department of Chemistry, Seoul National University, Seoul, Korea) (24). All other reagents were obtained from Sigma. Animals. Cd38⫺/⫺ mice with genetic background ICR were inbred in the animal facility of Chonbuk National University Medical School. The generation and characterization of Cd38⫺/⫺ mice have been described previously (14). All experimental animals used were under a protocol approved by the institutional animal care and use committee of the Chonbuk National University Medical School. Standard guidelines for laboratory animal care were followed (25). Preparation of islets. Pancreatic islets were isolated from Cd38⫹/⫹ and Cd38⫺/⫺ mice weighing 25–30 g using a collagenase method (14,26), with the exception of changing Krebs-Ringer buffer to Krebs-Ringer bicarbonate buffer (KRBB) (in millimoles per liter: 2 CaCl2, 2.8 glucose, 145 NaCl, 1.19 KCl, 2.54 MgCl2, 1.19 KH2PO4, 5 NaHCO3, and 20 HEPES, pH 7.3). Briefly, mouse pancreata were distended by infusion of KRBB containing 0.15 mg/ml type V collagenase through the bile duct. Islets were isolated, washed with KRBB, and stabilized by culturing in a humidified incubator (95% air, 5% CO2) overnight at 37°C in low glucose (5 mmol/l), Dulbecco’s modified Eagle’s medium supplemented with 10% (vol/vol) fetal bovine serum, 100 units/ml penicillin G, and 100 g/ml streptomycin (culture media). Complete methods, including a description of the procedures for measurement of [Ca2⫹]i, measurement of intracellular cyclic ADPR and NAADP concentration, separation of organelles, reconstitution study, analysis of CD38 in organelles, and measurement of insulin, are provided in the online appendix (available at http://dx.doi.org/10.2337/db07-0443). Statistical analysis. Data represent means ⫾ SEM of at least three separate experiments. Statistical analysis was performed using Student’s t test. A value of P ⬍ 0.05 was considered significant.
RESULTS
GLP-1 induces Ca2ⴙ signal by releasing Ca2ⴙ from ER and non-ER Ca2ⴙ stores in -cells. Dependency of glucose concentrations on GLP-1–mediated regulation of [Ca2⫹]i in -cells was first examined. At 2.8 mmol/l glucose, GLP-1 was not able to elevate [Ca2⫹]i (Fig. 1A). In contrast, the addition of 12 mmol/l glucose increased [Ca2⫹]i and [Ca2⫹]i slowly decreased, but not to the basal level, and sustained (Fig. 1B). At the sustained Ca2⫹ levels, application of GLP-1 induced a rapid and large rise of [Ca2⫹]i that was also sustained (Fig. 1B). It should be noted here that our preliminary studies showed that at 2.8 mmol/l glucose, none of the molecules used in this study generated Ca2⫹ signals (data not shown). To examine whether the GLP-1–induced Ca2⫹ signal is mediated by cAMP, we utilized forskolin, an activator of adenylyl cyclase. Treatment of -cells with forskolin produced an increase in the Ca2⫹ signal similar to that observed with GLP-1 (Fig. 1C). Next, we asked whether PKA and Epac mediate the GLP-1–induced Ca2⫹ signal. As shown in Fig. 1D, DIABETES, VOL. 57, APRIL 2008
activation of cAMP-dependent PKA or Epac also induced a rapid and sustained Ca2⫹ signal and the GLP-1–induced Ca2⫹ signaling or insulin secretion was only partially blocked by PKA inhibitors (10 mol/l H89 or 100 mol/l Rp-cAMP; online appendix Fig. 1). These results indicate that these two cAMP-sensitive molecules play a role in GLP-1–induced Ca2⫹ signal. To evaluate whether ADPR cyclase/CD38 is involved in the GLP-1–induced Ca2⫹ signal and to identify a Ca2⫹ store, we first examined ER Ca2⫹ store. Thapsigargin, an ER Ca2⫹ ATPase inhibitor, completely blocked only the late phase of Ca2⫹ signals, while maintaining an initial sharp Ca2⫹ rise (Fig. 1E). Pretreatment of the cells with high concentrations of ryanodine, which is known to inhibit ryanodine receptor or a cyclic ADPR antagonistic analog 8-Br– cyclic ADPR, resulted in a significant inhibition of only the GLP-1–induced sustained Ca2⫹ signal (Figs. 1F and G, respectively). Xestospongin C, an IP3 receptor inhibitor, did not show any effects on the GLP-1– induced Ca2⫹ signal (Fig. 1H). However, acetylcholineinduced Ca2⫹ signaling, which was proved to be due to IP3 production (27), was blocked by the reagent (online appendix Fig. 2). The effects of various inhibitors on the initial and sustained Ca2⫹ increases are summarized in Fig. 1I. Together, these data suggest that GLP-1 induces a rapid and sustained Ca2⫹ signal by releasing Ca2⫹ from ER and non-ER Ca2⫹ stores in -cells through generation of cAMP and that ADPR cyclase/CD38 is involved in the GLP-1–mediated sustained rise of [Ca2⫹]i via generation of cyclic ADPR. NAADP induces a rapid and sustained increase of [Ca2ⴙ]i by releasing Ca2ⴙ from ER and non-ER Ca2ⴙ stores. Considering the possibility that additional Ca2⫹mobilizing messengers targeting intracellular Ca2⫹ stores beside ER could be involved in GLP-1–induced Ca2⫹ signaling, we thought NAADP would be an interesting candidate since it is one of the most potent Ca2⫹-releasing messengers found thus far (28,29). Therefore, we initially tested whether NAADP can be transported into -cells when applied extracellularly because NAADP is known to be transported in certain cell types (30). Figure 2A shows that NAADP was transported in a time-dependent manner and that the NAADP transport was Ca2⫹ and glucose dependent and partially blocked by dipyridamole (Fig. 2B). Interestingly, cyclic ADPR externally applied to -cells was also similarly transported, except in a Ca2⫹-independent manner (online appendix Fig. 3). To rule out any possibility of the effect on purinoreceptors by extracellularly added NAADP, we also tested the effects of equimolar concentration of NAD and NADP under the same condition. However, we could not find any significant signals with even high concentration of the nucleotides (online appendix Fig. 4). Treatment of -cells with exogenous NAADP elicited Ca2⫹ signals in a bell-shaped concentration response, and the Ca2⫹ signal peaked at a 50 nmol/l concentration of NAADP (Fig. 2C). However, the NAADPinduced Ca2⫹ signal was not observed in the presence of 2.8 mmol/l glucose or in the Ca2⫹-free condition (online appendix Fig. 5), where NAADP was not transported into the cells (Fig. 2B). As shown in Fig. 2D, NAADP (50 nmol/l) induced a rapid and sustained [Ca2⫹]i increase in a manner similar to that observed with GLP-1 or forskolin (see Fig. 1C). An important property of NAADP signaling in mammalian cells is a self-desensitization mechanism induced by its high concentrations (31). Similarly, treatment of -cells with high concentrations of NAADP (10 mol/l) blocked the low 869
GLP-1–INDUCED PRODUCTION OF Ca2ⴙ MESSENGERS
B 1000 [Ca2+]i (nM)
[Ca2+]i (nM)
A
800 Glucose 600 12 mM 400 200 0
600 400 200
Glucose
GLP-1
2.8 mM
10 nM
0
GLP-1 10 nM
10 min
200 s
D
C [Ca2+]i (nM)
1000 800 600 400 200
E
Thapsigagin 1 µM
PKA, Epac
GLP-1
10 nM
GLP-1 10 nM
Forskolin 6 µM
PKA specific activator Epac specific activator
0 200 s
200 s
G
F
Ryanodine 20 µM
[Ca2+]i (nM)
1000 800 600 400 200
200 s
H 8-Bromo-cADPR 100 µM
Xestospongin C 2 µM
GLP-1
GLP-1
10 nM
10 nM GLP-1
10 nM
0
200 s
200 s
200 s GLP-1
[Ca2+]i (nM)
I
1200 1000 800 600 400 200 0
##
#
#
FIG. 1. GLP-1 induces a rapid and sustained increase in [Ca2ⴙ]i in -cells at high concentrations of glucose, and GLP-1–induced Ca2ⴙ increase involves release of Ca2ⴙ from ER and non-ER Ca2ⴙ stores. A: The effect of 10 nmol/l GLP-1 on the Ca2ⴙ signal at 2.8 mmol/l glucose (n ⴝ 13). B: The effect of GLP-1 on the Ca2ⴙ signal at 12 mmol/l glucose (n ⴝ 12). C: Comparison of the 10 nmol/l GLP-1–induced signal with 6 mol/l forskolin-induced Ca2ⴙ signal at 12 mmol/l glucose (GLP-1, n ⴝ 10 and forskolin, n ⴝ 16). D: Activator of PKA (100 mol/l N6-benzoyl-cAMP) and Epac (100 mol/l 8-pCPT-2ⴕ-O-Me-cAMP) induces a rapid and sustained increases in [Ca2ⴙ]i (PKA activator; n ⴝ 16 and Epac activator; n ⴝ 30). E: Depletion of ER Ca2ⴙ store with 1 mol/l thapsigargin blocks the late phase of the Ca 2ⴙ signal induced by GLP-1 (n ⴝ 11). F: Blocking of ryanodine receptor with 20 mol/l ryanodine inhibits the sustained Ca2ⴙ signal induced by GLP-1 (n ⴝ 10). G: A cyclic ADPR antagonist, 100 870
DIABETES, VOL. 57, APRIL 2008
B.-J. KIM AND ASSOCIATES
NAADP concentration (50 nmol/l)–mediated Ca2⫹ signals (Fig. 2E). Analyses of characteristics of NAADP-mediated Ca2⫹ signals revealed that NAADP-mediated Ca2⫹ signals were very similar to those observed with GLP-1. Thus, pretreatment of -cells with thapsigargin blocked NAADPmediated late-phase Ca2⫹ signal but not the initial spiky Ca2⫹ rise (Fig. 2F). Ryanodine and 8-Br– cyclic ADPR also inhibited the NAADP-mediated sustained Ca2⫹ signal (Figs. 2G and H). The effects of various inhibitors on NAADP-induced Ca2⫹ increases are summarized in Fig. 2I. NAADP-induced Ca2ⴙ mobilization from acidic organelles governs overall GLP-1–mediated Ca2ⴙ signal. Numerous studies (18,32–34) have indicated that NAADP receptors exist in acidic organelles in a variety of cell types, including -cells. We hypothesized that the initial Ca2⫹ rise, which was not blocked by thapsigargin, was due to its release from acidic organelles. Treatment of -cells with bafilomycin A1, an inhibitor of vacuolar H⫹-ATPase, transiently increased [Ca2⫹]i and, following treatment with NAADP, failed to induce an increase of [Ca2⫹]I; nevertheless, thapsigargin-induced elevation of [Ca2⫹]i was observed (Fig. 3A). A similar result was also observed by treatment of the cells with glycylphenylalanine 2-naphthylamide (GPN), which selectively disrupts these organelles via osmotic lysis (data not shown). After treatment of -cells with bafilomycin A1 (Fig. 3B) or GPN (Fig. 3C), the increase of [Ca2⫹]i mediated by GLP-1 or forskolin could not be found. High concentrations of NAADP prevented the induction of Ca2⫹ signals mediated by GLP-1 or forskolin (Fig. 3D). In contrast, cyclic ADPR– mediated Ca2⫹ increase was not blocked by the treatment of 10 mol/l NAADP (Fig. 3E). The cyclic ADPR–mediated Ca2⫹ increase was also not affected by the treatment with either bafilomycin A1 or GPN (online appendix Fig. 6). In addition, bafilomycin A1 and GPN blocked generation of Epac- or PKA-induced Ca2⫹ signals but not depolarizationevoked Ca2⫹ influx (Figs. 3F and G). High concentrations of NAADP also completely abolished the Epac- or PKAinduced Ca2⫹ signals (Fig. 3H). Together, these results show that NAADP acts as the initiator and propagator of the GLP-1–induced Ca2⫹ signal. The effects of inhibitors on various stimulator-induced Ca2⫹ increases are summarized in Fig. 3I. Acidic organelles play an essential role in insulin secretion mediated by GLP-1. We evaluated the effects of acidic organelles disturbing agents on the insulin secretion induced by 12 mmol/l glucose or GLP-1 signaling molecules. Bafilomycin A1 and concanamycin A, inhibitors of vacuolar H⫹-ATPase, have been reported to inhibit glucose-induced insulin secretion by mouse islets (35). The glucose-induced insulin secretions were not affected by GPN or bafilomycin A1 (Fig. 4A) or by concanamycin A (online appendix Fig. 7). In contrast, however, pretreatment of the cells with GPN or bafilomycin A1 completely blocked GPL-1–, PKA-, or Epac-induced insulin secretion (Fig. 4A). Indeed, treatment with NAADP resulted in enhancement of insulin secretion at high glucose concentrations only, which was abolished by GPN or bafilomycin A1 (Fig. 4B). These results indicate that acidic organelles, which involve NAADP-mediated signaling and probably Ca2⫹ release, play critical roles in GLP-1–induced insulin secretion but not in glucose-induced insulin secretion.
GLP-1 stimulates generation of NAADP and cyclic ADPR sequentially in the presence of high glucose and Ca2ⴙ concentrations. Since the above observations suggest that NAADP and cyclic ADPR differentially regulate Ca2⫹ signals mediated by GLP-1 and that NAADP initiates and propagates the GLP-1–induced Ca2⫹ signal, we examined kinetics of the production of these two Ca2⫹-mobilizing messengers in response to GLP-1. Treatment of islets with GLP-1 generated NAADP first and then cyclic ADPR, with a delay of ⬃10 s (Fig. 5A), suggesting that the production of cyclic ADPR depends on the NAADP-induced initial Ca2⫹ signal (Fig. 2D and F). Moreover, treatment of islets with NAADP increased the formation of cyclic ADPR, which was dependent on the presence of extracellular Ca2⫹ (Fig. 5B). We tested whether the cyclic ADPR production would be stimulated by a general Ca2⫹ signal. Ionomycin-induced Ca2⫹ signals did not affect cyclic ADPR production (online appendix Fig. 8) as in lymphokine-activated killer cells (8), indicating that NAADP-induced Ca2⫹ signaling specifically produces cyclic ADPR, as in sea urchin eggs (36). We next evaluated dependency of glucose and C a 2⫹ on the GLP1–stimulated production of NAADP and cyclic ADPR. As shown in Fig. 5C, high glucose concentrations increased the levels of NAADP and cyclic ADPR compared with low glucose concentrations. Addition of GLP-1 in the presence of high glucose concentrations further increased the production of NAADP and cyclic ADPR by ⬃3- and 2.5-fold, respectively. GLP-1–mediated production of NAADP and cyclic ADPR was significantly lower in the presence of 2.8 mmol/l glucose or absence of extracellular Ca2⫹ than that in the presence of high glucose and extracellular Ca2⫹ concentrations. These results indicate that high glucose and extracellular Ca2⫹ concentrations are prerequisite for the GLP-1–induced production of the Ca2⫹-mobilizing second messengers. Bafilomycin A1 completely blocked the GLP-1–induced formation of NAADP and cyclic ADPR (Fig. 5D), suggesting that NAADP is formed in acidic organelles. These results also indicate that the formation of cyclic ADPR may depend on NAADP signaling. NAADP and cyclic ADPR are produced in different organelles via CD38 and non-CD38 ADPR cyclase. CD38 (transmembrane glycoprotein) is known to catalyze the synthesis of NAADP and cyclic ADPR (7,11,12). However, it has not yet been clarified which organelles in the pancreatic -cells are involved in the production of NAADP and cyclic ADPR. To address the question, we resolved cellular organelles into at least three parts: plasma membranes, lysosomes, and secretory granules (Fig. 6A). NADase activity was detected in all three organelles; however, the lysosomes-containing fraction contained the highest NADase activity among the three fractions (Fig. 6B and C). To determine the presence of enzyme(s) other than CD38 in these compartments, CD38 in each fraction was immunoprecipitated with a CD38specific antibody, and NADase activity in the precipitates and supernatants was further determined. CD38 activity was found mainly in the lysosome fraction and less in the plasma membrane fraction. However, in the supernatants from all fractions, significant levels of NADase activity were also observed consistently (Figs. 6B and C), suggesting an existence of non-CD38 enzyme(s) in -cells.
mol/l 8-bromo-cyclic ADPR, inhibits the sustained Ca2ⴙ signal induced by GLP-1 (n ⴝ 10). H: Blocking of IP3 receptor with 2 mol/l xestospongin C does not affect the GLP-1–induced Ca2ⴙ signals (n ⴝ 9). I: A direct comparison of mean [Ca2ⴙ]i during increases of [Ca2ⴙ]i. The data shown were analyzed at 130 (䡺), 200 (u), and 500 (f) s. *P < 0.05 vs. control; #P < 0.05 vs. 10 nmol/l GLP-1. DIABETES, VOL. 57, APRIL 2008
871
GLP-1–INDUCED PRODUCTION OF Ca2ⴙ MESSENGERS
B
A
NAADP concentration (pmole/mg)
NAADP concentration (pmole/mg)
35 30 25 20 15 10
30
12 mM Glucose
25 20 15 10 #
5
#
0
5 0 0
2
4
6 (min)
10
E
D NAADP
800
1000 50 nM 800 600 400 200 0 200 s
[Ca2+]i (nM)
[Ca2+]i (nM)
C
8
600 400 200
NAADP 10 µM NAADP 50 nM
200 s
NAADP (nM)
F [Ca2+]i (nM)
1000 800 600 400 200 0
Thapsigagin 1 µM
G
H
Ryanodine 20 µM
8-Bromo-cADPR 100 µM
NAADP 50 nM
200 s
200 s
I
200 s
NAADP 50 nM 1200
[Ca2+]i (nM)
1000 800 600 400 200
#
#
# #
0
We next performed reconstitution studies to determine the production of NAADP and cyclic ADPR in the organelles isolated. The reconstitution study revealed that cyclic ADPR was produced in both plasma membrane– and secretory granule– containing fractions (Fig. 6D). In872
NAADP 50 nM
NAADP 50 nM
FIG. 2. Treatment of -cells with exogenous NAADP induces rapid and sustained [Ca2ⴙ]i, and NAADP-mediated Ca2ⴙ rise induces the release of Ca2ⴙ from the ER Ca2ⴙ store. A and B: NAADP transport experiments were executed by a rapid oil-stop procedure (50), and transported NAADP was measured using a cyclic enzymatic assay as described in the manuscript. Islets preincubated with high glucose concentrations were treated with 100 mol/l NAADP for the indicated time. NAADP was transported in a timedependent manner (A), and the NAADP transport was Ca2ⴙ and glucose dependent and partially blocked by dipyridamole (B). C: Amplitude of [Ca2ⴙ]i rise induced by various concentrations of NAADP. Peak amplitudes are given as the means ⴞ SE from 3 to 5 independent experiments. D: A total of 50 nmol/l NAADP induces a rapid and sustained increase in [Ca2ⴙ]i (n ⴝ 14). E: Blocking of NAADP receptor with 10 mol/l NAADP abolishes completely the Ca2ⴙ signal mediated by 50 nmol/l NAADP (n ⴝ 12). F: Thapsigargin blocks the late phase of Ca2ⴙ signal induced by NAADP (n ⴝ 10). G: Inhibition of ryanodine receptor results in inhibition of the sustained Ca2ⴙsignal induced by NAADP (n ⴝ 18). H: 8-Bromo-cyclic ADPR inhibits the NAADP-induced sustained Ca2ⴙ signal (n ⴝ 4). I: A direct comparison of mean [Ca2ⴙ]i during increases of [Ca2ⴙ]i. The data shown were analyzed at 150 (䡺), 220 (u), and 500 (f) s. *P < 0.05 vs. control; #P < 0.05 vs. 50 nmol/l NAADP.
terestingly, CD38 was not detected in the fractions of secretory granules. On the other hand, the production of NAADP was observed only in fractions containing lysosomes (Fig. 6D). Moreover, the effect of PKA or Epac activator on the production of NAADP and cyclic ADPR DIABETES, VOL. 57, APRIL 2008
B.-J. KIM AND ASSOCIATES
C
B
[Ca2+]i (nM)
A
800 600
GLP-1, Forskolin
NAADP 50 nM
400
GPN 50 µM
GLP-1, Forskolin
200 Bafilomycin A1 300 nM
Bafilomycin A1 Thapsigagin 300 nM 1 µM
200 s
600 NAADP 400
NAADP 10 µM
200 s
cADPR 1 µM
200 s
KCl 30 mM
H
G GPN 50 µM
Bafilomycin A1 300 nM
600 400
Forskolin 6 µM
200
F [Ca2+]i (nM)
GLP-1, Forskolin
10 µM
0
800
GLP-1 10 nM
E [Ca2+]i (nM)
D
200 s
200 s
PKA, Epac
PKA, Epac
NAADP 10 µM
PKA, Epac
200 200 s
200 s
200 s PKA specific activator Epac specific activator
I [Ca2+]i (nM)
800 Bafilomycin A1 GPN
600
NAADP
400 200 GLP-1 Forskolin Epac PKA
GLP-1 Forskolin Epac PKA
GLP-1 Forskolin Epac PKA
Basal
0
FIG. 3. NAADP induces Ca2ⴙ mobilization from acidic organelles and governs overall GLP-1–mediated Ca2ⴙ signal in -cells. A: Treatment of -cells with 300 nmol/l bafilomycin A1 hampers the NAADP-induced Ca2ⴙ signal (n ⴝ 10). B: Bafilomycin A1 obstructs GLP-1 – and forskolin-induced Ca2ⴙ signals (GLP-1, n ⴝ 14 and forskolin, n ⴝ 25). C: A total of 50 mol/l GPN obstructs GLP-1 – and forskolin-induced Ca2ⴙ signals (GLP-1, n ⴝ 10 and forskolin, n ⴝ 6). D: The effect of blocking NAADP receptor with 10 mol/l NAADP on GLP-1– and forskolin-induced Ca2ⴙ signals (GLP-1, n ⴝ 11 and forskolin, n ⴝ 17). E: Blocking of NAADP receptor with NAADP has no effect on cyclic ADPR-mediated Ca2ⴙ signal (n ⴝ 9). F: Bafilomycin A1 obstructs Epac- and PKA-mediated Ca2ⴙ signals (Epac, n ⴝ 8 and PKA, n ⴝ 20). G: GPN obstructs Epac- and PKA-mediated Ca2ⴙ signals (Epac, n ⴝ 17 and PKA, n ⴝ 18). H: Blocking of NAADP receptor with NAADP results in the absence of PKA- and Epac-induced Ca2ⴙ signals (Epac, n ⴝ 8 and PKA, n ⴝ 11). I: A direct comparison of mean [Ca2ⴙ]i during increases of [Ca2ⴙ]i. DIABETES, VOL. 57, APRIL 2008
873
GLP-1–INDUCED PRODUCTION OF Ca2ⴙ MESSENGERS
A Insulin secretion (ng/islet/h)
40
30
20 #
10
#
#
#
0 Glucose 2.8 mM Glucose 12 mM GLP-1 PKA activator Epac activator GPN Bafilomycin A1
Glucose 2.8 mM
Insulin secretion (ng/islet/h)
B
25
DISCUSSION 12 mM
20 15
# #
10 5 0
FIG. 4. cAMP-potentiated insulin secretion in response to 12 mmol/l glucose is essential to produce NAADP from acidic granule. A: Islets were stimulated with either 12 mmol/l glucose or 12 mmol/l glucose plus 10 nmol/l GLP-1, 100 mol/l PKA, or 100 mol/l Epac activator or a combination of PKA and Epac activator for 30 min. Preincubation with 50 mol/l GPN or 300 nmol/l bafilomycin A1 did not affect 12 mmol/l glucose-induced insulin secretion but completely inhibited insulin secretion mediated by 12 mmol/l glucose plus GLP-1, PKA or Epac. *P < 0.05 vs. 2.8 mmol/l glucose; **P < 0.005 vs. 12 mmol/l glucose; #P < 0.005 vs. 12 mmol/l glucose plus 10 nmol/l GLP-1. B: Islets were stimulated with 50 nmol/l NAADP containing 12 mmol/l glucose. NAADP-stimulated insulin secretion is completely blocked by 50 mol/l GPN or 300 nmol/l bafilomycin A1. *P < 0.01 vs. 12 mmol/l glucose; #P < 0.01 vs. 50 nmol/l NAADP.
showed specificity for the organelles; both PKA and Epac stimulated the generation of NAADP in the lysosomes only (Fig. 6E). Epac activated the cyclic ADPR production in both plasma membranes and secretory granules, and PKA stimulated the cyclic ADPR formation only in the plasma membranes (Fig. 6F). These data indicate that activation of CD38/ADPR cyclase(s) by GLP-1 depends on their intracellular localization, where assembly of cognate signaling proteins such as PKA and Epac may be different. Production of NAADP and cyclic ADPR in Cd38ⴚ/ⴚ islets is reduced in response to GLP-1 without alteration of insulin secretion. To further confirm the above observations that enzymes producing NAADP and/or cy874
clic ADPR exist in -cells, -cells isolated from CD38 knockout mice (Cd38⫺/⫺) and the littermates (Cd38⫹/⫹) were used. In the presence of 12 mmol/l glucose, GLP-1– mediated Ca2⫹ signals in these -cells were somewhat different. The early Ca2⫹ increases were similar to each other; however, the late phase of Ca2⫹ signals in Cd38⫺/⫺ -cells was gradually decreased while the Ca2⫹ signals in Cd38⫹/⫹ -cells were sustained (Fig. 7A). When the production of NAADP and cyclic ADPR was determined, no alterations in the levels of NAADP and cyclic ADPR were observed in the presence of 12 mmol/l glucose only. However, GLP-1–stimulated production of NAADP and cyclic ADPR in Cd38⫺/⫺ islets was substantially higher than that with glucose alone and significantly reduced compared with that in Cd38⫹/⫹ islets (Fig. 7B). Insulin secretion of Cd38⫺/⫺ islets stimulated by glucose or GLP-1 was similar to that of Cd38⫹/⫹ islets (Fig. 7C). These findings clearly demonstrate that ADPR cyclase(s)/ NAADP-producing enzyme(s) other than CD38 exists in -cells. In this study, we showed that GLP-1 elevates Ca2⫹ via stimulation of NAADP and cyclic ADPR production and that NAADP-induced Ca2⫹ mobilization from acidic stores contributes to the GLP-1–stimulated Ca2⫹ signal. The action of GLP-1 is complex, with multiple kinetic components shaping the Ca2⫹ response. Our results firmly established a role of thapsigargin- and ryanodine-sensitive stores and also provide new data implicating a source of Ca2⫹ in acidic organelles. Many equivocal results have been reported (9,13,14) on the possible role of CD38 and/or cyclic ADPR in glucose signaling in -cells. Our results showed that high glucose concentrations alone could elevate cyclic ADPR and NAADP levels (Fig. 5C). Consistent with our observations, Masgrau et al. (17) showed that high glucose levels (20 mmol/l) increase NAADP levels in MIN6 cells, a clonal pancreatic -cell line. However, the glucose-induced production of NAADP and cyclic ADPR was not altered in Cd38⫺/⫺ islets compared with that in Cd38⫹/⫹ islets (Fig. 7B). These findings together with immunoprecipitation (Figs. 6B and C) and reconstitution studies (Fig. 6D) suggest that additional ADPR cyclase(s) and/or NAADPproducing enzyme(s) besides CD38 exist in islets. Recently, an existence of enzymes capable of generating NAADP and/or cyclic ADPR beside CD38 has been reported in various tissues (37). Interestingly, at low concentrations of glucose (2.8 mmol/l), none of the following molecules generate Ca2⫹ signals in -cells: GLP-1, forskolin, activators of PKA and Epac, and NAADP. These molecules generate Ca2⫹ signals only under the condition of high glucose–induced elevated basal Ca2⫹ level (Fig. 1B). In agreement with our observations, several studies have also reported that GLP-1 has no significant effects on -cells at low concentrations of glucose (38,39). However, the reasons for the insensitivity of GLP-1 and other downstream signaling molecules at low concentrations of glucose remain completely unknown. Intriguingly, KCl-induced Ca2⫹ signals could not substitute for the effect of high glucose concentrations in triggering GLP-1–induced Ca2⫹ signals (online appendix Fig. 9). Glucose-induced Ca2⫹ signals as well as metabolites of glucose may coordinate the cognate signaling molecules and/or organelles for the effective responses to subsequent stimuli in -cells. DIABETES, VOL. 57, APRIL 2008
B.-J. KIM AND ASSOCIATES
8
*
6
*
*
*
10
* *
8
*
*
*
4
6 4
2 0
30
60
90
120
cADPR concentration (pmole/mg)
* *
B
12 cADPR concentration (pmole/mg)
10
NAADP concentration (pmole/mg)
A
2
- Ca2+
4
**
2
* *
40
# #
# #
0 Calcium 2 mM Glucose 2.8 mM
12 Concentration (pmole/mg)
Concentration (pmole/mg)
**
8
NAADP 50 nM
2.0
80
120
Time (sec)
D
10
+ Ca2+
3.0
0
14 12
*
*
*
4.0
Time (sec)
C
*
5.0
10
*
*
8 6 4
# #
2 0
Glucose 12 mM GLP-1 10 nM FIG. 5. GLP-1 signaling stimulates production of NAADP and cyclic ADPR. A: The effect of 10 nmol/l GLP-1 on the production of NAADP and cyclic ADPR. Islets were preincubated for 40 min with KRBB containing 12 mmol/l glucose and were stimulated for different periods of time with GLP-1. *P < 0.01 vs. 0 time. B: A total of 50 nmol/l NAADP induces the production of cyclic ADPR in the presence of 2 mmol/l extracellular Ca2ⴙ. *P < 0.001 vs. without extracellular Ca2ⴙ condition. C: GLP-1–stimulated NAADP and cyclic ADPR requires extracellular Ca2ⴙ and high concentration of glucose. *P < 0.05 vs. 2.8 mmol/l glucose; **P < 0.05 vs. 12 mmol/l glucose; #P < 0.05 vs. 12 mmol/l glucose plus GLP-1. D: GLP-1–stimulated NAADP and cyclic ADPR production is inhibited by disrupting acidic organelles with 300 nmol/l bafilomycin A1. *P < 0.002 vs. vehicle; #P < 0.01 vs. vehicle plus GLP-1. Data represent means ⴙ SE from three independent experiments. C and D: f, NAADP; 䡺, cADPR.
In the present study, exogenous NAADP could be a useful tool for analyzing NAADP-mediated Ca2⫹ signaling by virtue of the property of NAADP transport into -cells. The characteristics of NAADP transport were very similar to those observed in RBL-2H3 cells, which were originally observed (30). However, the exact mechanisms involved in the transport of NAADP in pancreatic islets remain to be clarified. Dependencies of the NAADP transport on high glucose and external Ca2⫹ are the important issues to be solved in conjunction with the Ca2⫹ signals in -cells. Our data (Fig. 1E) show that thapsigargin greatly reduced the overall Ca2⫹ response, while leaving Ca2⫹ transient. Previously, Holz et al. (40) demonstrated that GLP-1, as well as cAMP (through Epac), mobilized Ca2⫹ from intracellular Ca2⫹ stores, which was abolished by thapsigargin. Our data suggest that Ca2⫹ signaling induced by GLP-1 consists of transient and sustained components and that the former is thapsigargin insensitive and the latter is sensitive to thapsigargin or ryanodine. Furthermore, we could differentiate the effects of bafilomycin or GPN on the transient and sustained Ca2⫹ by GLP-1; DIABETES, VOL. 57, APRIL 2008
bafilomycin or GPN pretreatment had no effects on cyclic ADPR–induced Ca2⫹, which represents sustained Ca2⫹ (online appendix Fig. 6), while completely blocking the NAADPinduced Ca2⫹, which represents transient Ca 2⫹ (Fig. 3A). Mitchell et al. (34) showed that NAADP decreased free Ca2⫹ concentrations of dense-core secretory vesicles in permeabilized MIN6 -cells. Duman et al. (41) reported also that dense-core secretory granules comprise a GPNsensitive acidic Ca2⫹ store. Our results also showed a similar result in that 50 mol/l GPN released Ca2⫹ from secretory granule– containing fractions and lysosome-containing fractions (online appendix Fig. 10). Therefore, further studies are needed to clarify these NAADP-responsive Ca2⫹ stores in -cells. Johnson and Misler (16) suggested that NAADP initiates subsequent oscillatory Ca2⫹ signaling in insulin signaling in human -cells. However, their results are quite different from ours in two aspects: 1) Ca2⫹-free solutions did not affect initial Ca2⫹ rise in the insulin-mediated Ca2⫹ signals, whereas GLP-induced Ca2⫹ signals were completely blocked in the Ca2⫹-free solutions (data not shown), and 875
GLP-1–INDUCED PRODUCTION OF Ca2ⴙ MESSENGERS
160
Sucrose (M)
1.5
120
8
1.0
80
4
0.5
500
40
400 300 200
Insulin (ng)
Na+/K+ATPase (AU)
12
β-D-Galactosidase activity (RFU)
A
100 0
0
0
500
Lys
Mem
C
SG
400 300 200 100 0 6
8 Lys
10
12
14
SG
6 4
8 4
2
0
0 0
2
4
6 8 10 12 14 Fraction number
60 40 20
16
E
F 25
Mem
Lys
SG
12
cADPR concentration (pmole)
NAADP concentration (pmole)
Supernatant
0
16
12
CD38 Abs
cADPR concentration (pmole)
2 4 Mem
D NAADP concentration (pmole)
Origin
Specific NADase Activity (%)
Specific NADase activity (RFU)
B
20 15 10 5 0 2
4
6 8 10 12 14 16 Fraction number
Mem
Lys
SG
8 4 0 2
4
6 8 10 12 14 16 Fraction number
FIG. 6. Localization of CD38/ADPR cyclase in the cellular organelles. A: Distribution of the organelles was assessed in each fraction by the measurements of Naⴙ/Kⴙ ATPase (Mem, plasma membranes), -D-galactosidase (Lys, lysosomes), and insulin (SG, secretory granules). B and C: NADase activity in each fraction (F, Origin). Localization of CD38 was assessed by measuring NADase activity of CD38 immunoprecipitate of each fraction (‚, CD38 Abs). Control immunoprecipitates using anti-mouse IgG were measured for NADase activity (E, Control Abs). Unbound NADase activity was determined by measurement of NADase activity in the supernatant (f). D: Production of NAADP and cyclic ADPR in organelles. Each fraction was reconstituted with the lysate prepared from islets stimulated with 10 nmol/l GLP-1. NAADP and cyclic ADPR levels were determined. E: Epac- and PKA-mediated NAADP production in orgarnelles. F: Epac- and PKA-mediated cyclic ADPR in organelles. Each fraction was reconstituted with equal amount of the lysate prepared from islets that were stimulated with Epac or PKA activator. The production of NAADP and cyclic ADPR was measured as described above. Data represent means ⴞ SE from three independent experiments. ‚, Epac-specific activator; E, PKA-specific activator.
2) thapsigargin resulted in a complete abolishment of the insulin-mediated Ca2⫹ signals, while the agent inhibited the late phase of GLP-1–induced Ca2⫹ signals but not the initial Ca2⫹ spike (Fig. 1E). Indeed, stimulation of mouse -cells with 200 nmol/l insulin under the same conditions used by Johnson and Misler did not affect NAADP levels (online appendix Fig. 11). 876
In conclusion, our results revealed for the first time that GLP-1 elevates [Ca2⫹]i via stimulation of NAADP and cyclic ADPR production and that NAADP acts as an initiator for GLP-1–mediated Ca2⫹ signals and effectively increases insulin secretion as much as GLP-1 does. Our results also indicated that the downstream modulators for GLP-1 consist of CD38 and hitherto unidentified ADPR DIABETES, VOL. 57, APRIL 2008
B.-J. KIM AND ASSOCIATES
A
[Ca2+]i (nM)
1000 800
GLP-1 10 nM
600 400 200 0
Cd38 +/+ Cd38 -/-
200 s
C 12 10 8
Cd38 +/+
Cd38 -/50
* #
*
*
6 * 4 2
Insulin secretion (ng/islet/h)
Concentration (pmole/mg)
B
40
Cd38+/+ *
Cd38-/*
30 20 10
0
FIG. 7. GLP-1 signaling in Cd38ⴙ/ⴙ and Cd38ⴚ/ⴚ -cells is not impaired. A: GLP-1–induced increase in [Ca2ⴙ]i. (Cd38ⴙ/ⴙ, n ⴝ 8 and Cd38ⴚ/ⴚ, n ⴝ 12). B: Production of NAADP and cyclic ADPR in response to GLP-1 (10 nmol/l) in the presence of 12 mmol/l glucose. *P < 0.01 vs. 12 mmol/l glucose; #P < 0.05 vs. NAADP concentration of Cd38ⴙ/ⴙ induced by GLP-1; §P < 0.01 vs. cyclic ADPR concentration of Cd38ⴙ/ⴙ induced by GLP-1. f, NAADP; 䡺, cADPR. C: Insulin secretion from Cd38ⴙ/ⴙ and Cd38ⴚ/ⴚ islets in response to 10 nmol/l GLP-1 in the presence of 12 mmol/l glucose. *P < 0.01 vs. 12 mmol/l glucose. Data represent means ⴞ SE from three independent experiments.
cyclase(s)/NAADP–producing enzyme(s), which produces NAADP and cyclic ADPR spatiotemporally or differentially. Finally, consistent with previous findings (42,43) of GLP-1– evoked interrelationships between cAMP and Ca2⫹, our results indicate that both NAADP and cyclic ADPR may act as key modulators interdependent of [cAMP]i and [Ca2⫹]i oscillation.
2004-005-E00108, a fund of International Collaboration Study from Chonbuk National University (U.-H.K.), and a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare of Korea (0620220-1) (C.-Y.Y.) We thank Sang-Hee Yu for the excellent technical support. REFERENCES
ACKNOWLEDGMENTS
M.-J.I. and B.-J.K. are the recipients of the BK21 Program of the Ministry of Education of Korea. This work was supported by Korea Research Foundation Grant KRFDIABETES, VOL. 57, APRIL 2008
1. Wollheim CB, Blondel B, Trueheart PA, Renold AE, Sharp GW: Calciuminduced insulin release in monolayer culture of the endocrine pancreas. Studies with ionophore A23187. J Biol Chem 250:1354 –1360, 1975 2. Rojas E, Carroll PB, Ricordi C, Boschero AC, Stojilkovic SS, Atwater I: Control of cytosolic free calcium in cultured human pancreatic beta-cells 877
GLP-1–INDUCED PRODUCTION OF Ca2ⴙ MESSENGERS
occurs by external calcium-dependent and independent mechanisms. Endocrinology 134:1771–1781, 1994 3. Cancela JM, Petersen OH: Regulation of intracellular Ca2⫹ stores by multiple Ca2⫹ releasing messengers. Diabetes (Suppl. 3):S349 –S357, 2002 4. Rutter GA: Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol Aspects Med 22:247–284, 2001 5. Hinke SA, Hellemans K, Schuit FC: Plasticity of the beta cell insulin secretory competence: preparing the pancreatic beta cell for the next meal. J Physiol 558:369 –380, 2004 6. Ammala C, Larsson O, Berggren PO, Bokvist K, Juntti-Berggren L, Kindmark H, Rorsman P: Inositol trisphosphate-dependent periodic activation of a Ca2⫹-activated K⫹ conductance in glucose-stimulated pancreatic beta-cells. Nature 353:849 – 852, 1991 7. Okamoto H: The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol Cell Biochem 193:115–118, 1999 8. Rah SY, Park KH, Han MK, Im MJ, Kim UH: Activation of CD38 by interleukin-8 signaling regulates intracellular Ca2⫹ level and motility of lymphokine-activated killer cells. J Biol Chem 280:2888 –2895, 2005 9. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M: TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804 –1815, 2006 10. Churchill GC, Galione A: Spatial control of Ca2⫹ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J Biol Chem 275:38687–38692, 2000 11. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 270:30327–30333, 1995 12. Chini EN, Chini CC, Kato I, Takasawa S, Okamoto H: CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues. Biochem J 362:125–130, 2002 13. Kato I, Takasawa S, Akabane A, Tanaka O, Abe H, Takamura T, Suzuki Y, Nata K, Yonekura H, Yoshimoto T, Okamoto H: Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells: enhanced insulin secretion in CD38expressing transgenic mice. J Biol Chem 270:30045–30050, 1995 14. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S, Okamoto H: CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2⫹]i, and insulin secretion. J Biol Chem 274:1869 –1872, 1999 15. Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H: Cyclic ADP-ribose and inositol 1,4,5trisphosphate as alternate second messengers for intracellular Ca2⫹ mobilization in normal and diabetic beta-cells. J Biol Chem 273:2497–2500, 1998 16. Johnson JD, Misler S: Nicotinic acid-adenine dinucleotide phosphatesensitive calcium stores initiate insulin signaling in human beta cells. Proc Natl Acad Sci U S A 99:14566 –14571, 2002 17. Masgrau R, Churchill GC, Morgan AJ, Ashcroft SJ, Galione A: NAADP: a new second messenger for glucose-induced Ca2⫹ responses in clonal pancreatic beta cells. Curr Biol 13:247–251, 2003 18. Yamasaki M, Masgrau R, Morgan AJ, Churchill GC, Patel S, Ashcroft SJ, Galione A: Organelle selection determines agonist-specific Ca2⫹ signals in pancreatic acinar and beta cells. J Biol Chem 279:7234 –7240, 2004 19. Kieffer TJ, Habener JF: The glucagon-like peptides. Endocr Rev 20:876 – 913, 1999 20. Holz GG, Chepurny OG: Diabetes outfoxed by GLP-1? Sci STKE 2005 (268):pe2, 2005 21. Delmeire D, Flamez D, Hinke SA, Cali JJ, Pipeleers D, Schuit F: Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 46:1383–1393, 2003 22. Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG: A cAMP and Ca2⫹ coincidence detector in support of Ca2⫹-induced Ca2⫹ release in mouse pancreatic beta cells. J Physiol 566:173–188, 2005 23. Holz GG: New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res 36:787–794, 2004
878
24. Kim HL, Yoon HJ, Ha JY, Lee BI, Lee HH, Mikami B, Suh SW: Crystallization and preliminary X-ray crystallographic analysis of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr 60:948 –949, 2004 25. Institute of Laboratory Animal Research, Commission of Life Sciences, National Research Council: Guide for the Care and Use of Laboratory Animals. Washington, DC, National Acamedy Press, 1996 26. An NH, Han MK, Um C, Park BH, Park BJ, Kim HK, Kim UH: Significance of ecto-cyclase activity of CD38 in insulin secretion of mouse pancreatic islet cells. Biochem Biophys Res Commun 282:781–786, 2001 27. Gilon P, Henquin JC: Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565– 604, 2001 28. Cancela JM, Churchill GC, Galione A: Coordination of agonist-induced Ca2⫹-signalling patterns by NAADP in pancreatic acinar cells. Nature 398:74 –76, 1999 29. Lee HC: Multiple calcium stores: separate but interacting. Sci STKE 2000:PE1, 2000 30. Billington RA, Bellomo EA, Floriddia EM, Erriquez J, Distasi C, Genazzani AA: A transport mechanism for NAADP in a rat basophilic cell line. FASEB J 20:521–523, 2006 31. Patel S, Churchill GC, Galione A: Coordination of Ca2⫹ signalling by NAADP. Trends Biochem Sci 26:482– 489, 2001 32. Brailoiu E, Hoard JL, Filipeanu CM, Brailoiu GC, Dun SL, Patel S, Dun NJ: Nicotinic acid adenine dinucleotide phosphate potentiates neurite outgrowth. J Biol Chem 280:5646 –5650, 2005 33. Boittin FX, Galione A, Evans AM: Nicotinic acid adenine dinucleotide phosphate mediates Ca2⫹ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ Res 91:1168 –1175, 2002 34. Mitchell KJ, Lai FA, Rutter GA: Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2⫹ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 278:11057–11064, 2003 35. Stiernet P, Guiot Y, Gilon P, Henquin JC: Glucose acutely decreases pH of secretory granules in mouse pancreatic islets: mechanisms and influence on insulin secretion. J Biol Chem 281:22142–51, 2006 36. Churchill GC, Galione A: NAADP induces Ca2⫹ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2⫹ stores. EMBO J 20:2666 –2671, 2001 37. Soares S, Thompson M, White T, Isbell A, Yamasaki M, Prakash Y, Lund FE, Galione A, Chini EN: NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells. Am J Physiol Cell Physiol 292:C227–C239, 2007 38. Holz GG, Kuehtreiber WM, Habner JF: Panreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagons-like peptide-1 (7–37). Nature 361:362–365, 1993 39. Yada T, Itoh K, Nakata M: Glucagon-like peptide-1-(7–37) amide and a rise in cyclic adenosine 3⬘,5⬘-monophosphate increase cytosolic free Ca2⫹ in rat pancreatic -cells by enhancing Ca2⫹ channel activity. Endocrinology 133:1685–1692, 1993 40. Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF: cAMPdependent mobilization of intracellular Ca2⫹ stores by activation of ryanodine receptors in pancreatic -cells. A Ca2⫹ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7–37). J Biol Chem 274:14147–14156, 1999 41. Duman JG, Chen L, Palmer AE, Hille B: Contributions of intracellular compartments to calcium dynamics: implicating an acidic store. Traffic 7:859 – 872, 2006 42. Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, Rutter GA: Glucagon-like peptide-1 mobilizes intracellular Ca2⫹ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J 369: 287–299, 2003 43. Dyachok O, Isakov Y, Sågetorp J, Tengholm A: Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439:349 –352, 2006
DIABETES, VOL. 57, APRIL 2008