Geoacoustic modeling for acoustic propagation in ...

24 downloads 0 Views 2MB Size Report
May 22, 2015 - This platelet aggregation results in card-house structures, for which a tentative quantitative model has been .... An effective Stern layer is formed.
Volume 23

http://acousticalsociety.org/

169th Meeting of the Acoustical Society of America Pittsburgh, Pennsylvania 18-22 May 2015

Acoustical Oceanography: Paper 2pAO3

Geoacoustic modeling for acoustic propagation in mud ocean-bottom sediments William L. Siegmann Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY; [email protected]

Allan D. Pierce PO Box 339, East Sandwich, MA; [email protected] This paper reviews research since 2007 developed at BU and RPI, with leadership by the late W.M. Carey, on acoustic properties of mud. Marine mud consists primarily of clay mineral platelets, comprised of crystalline layers and usually carrying charge because of isomorphous substitution. Because of resulting electrical forces, the physical nature of mud is considerably different from sandy sediments. In particular as platelets settle under gravity, electrical forces repel face-to-face contact, while strong van der Waals forces permit edge-toface attachment. This platelet aggregation results in card-house structures, for which a tentative quantitative model has been analyzed (J. O. Fayton, RPI Ph.D. thesis, 2013). The model preserves basic physics of platelet interactions and leads to low shear speed predictions that are consistent with observations. Reasonably accurate compressional sound speed estimates follow from the Mallock-Wood formula; improved estimates result from including an electrostatic correction (2pAO5, this session). The basic physical concepts and semiempirical formulas determined for compressional and shear attenuations and their frequency dependencies in sandy sediments do not apply to mud, nor do assumptions underlying the often cited Biot theory for poroelastic media. A summary is provided of physical and geoacoustic mud properties for which measurements are needed.

Published by the Acoustical Society of America © 2016 Acoustical Society of America [DOI: 10.1121/2.0000220] Received 17 June 2016; Published 14 July 2016 Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 1

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

This  presentation  is  a  review  of  the  developments  and  status  of  the  card-­‐house  theory  of  high   porosity  marine  mud  as  of  May  2015.    The  card-­‐house  research  was  initiated  in  2007  by  Allan   Pierce  and  William  Carey  at  BU,  joined  later  by  William  Siegmann  at  RPI,  and  continued  after  Dr.   Carey’s  passing  in  2012.      It  was  delivered  by  William  Siegmann  in  a  Special  Session  on  Acoustics   of   Fine   Grained   Sediments:     Theory   and   Measurement,   at   the   Acoustical   Society   of   America   meeting  in  Pittsburgh.       This   presentation   is   not   a   broadly   based   review   of   mud   geoacoustics,   but   rather   a   focused   description  of  the  ongoing  evolution  and  contributions  from  the  card-­‐house  theory.    Required   measurements   (both   field   and   laboratory)   for   confirmation   or   modification   of   the   theory   are   summarized,   along   with   research   directions   for   geoacoustic   mud   modeling.     For   a   comprehensive   review   of   the   physical,   chemical,   and   geoacoustic   properties   of   mud,   two   valuable  references  are  Jackson  &  Richardson  (2007)  and  Bennett,  Bryant,  &  Hulbert  (1991).         The  dominant  physical,  chemical,  and  electrical  characteristics  of  seabed  mud  are  essential  to   understanding   and   modeling   its   geoacoustic   features.     The   simplest   physical   model   is   a   suspension   that   neglects   the   details   of   mechanisms   that   could   cause   the   constituent   clay   particles  to  aggregate.    In  the  following  slides,  the  suspension  consists  of  only  clay  particles  in   water,   although   the   model   and   its   results   can   be   extended   to   include   additional   components   such  as  bubbles  and  organic  matter.    

                                                      Figure  1.    Primary  constituents  of  seabed  mud,  and  a  simple  suspension  model.       One  advantage  of  the  suspension  model  is  that  determination  of  its  predictions  is  convenient.       The  following  figures  show  clay-­‐particle  quantities  in  brown  and  mud  quantities  in  purple.      

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 2

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

             

                                                                                                          Figure  2.  Relation  between  porosity  and  mud  and  platelet  densities  in  the  suspension  model.       Using   a   suspension   model   for   a   mud   sample   presupposes   that   it   has   a   significant   volume   fraction  of  water.    Estimates  can  be  obtained  for  the  porosity,  although  it  is  unclear  at  the  start   how  large  its  value  should  be  for  the  model  to  be  useful.    Another  important  estimate  from  the   suspension  model  is  for  the  compressional  sound  speed.    

                                        Figure  3.  Relation  between  compressional  speed  ratio,  porosity,  and  platelet  density  from  the   suspension  model.  

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 3

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

    The   formula   for   the   compressional   speed   ratio   has   the   anticipated   behavior   with   respect   to   variations   of   mud   property   parameters.     A   recent   experiment   by   Ballard,   Lee,   &   Muir   (2014)   shows   close   agreement   with   estimates   from   the   formula.     For   field   data,   a   comprehensive   summary   for   silicielastic   sediments   is   contained   in   Table   5.1   of   Jackson   &   Richardson   (2007).       Part  of  these  data  is  for  sediments  consisting  of  all  or  mostly  clay,  providing  an  opportunity  to   test  compressional  speed  ratio  estimates  from  the  suspension  model.      

                                                                                  Figure  4.  Summary  of  sediment  physical  and  geoacoustic  properties  from  57  silicielastic  sites   [Table  5.1,  Jackson  &  Richardson  (2007)].    Properties  in  the  Table  which  have  been  discussed   are  compressional  speed  ratio  (col.  3),  porosity  (%,  col.  6),  and  mud  density  (g  cm-­‐3,  col.  7).     Note  that  the  data  are  ordered  by  mean  grain  size  (φ  log  units,  col.  5),  and  that  attenuation   (dB  m-­‐1,  col.  4)  tends  to  increase  with  mean  grain  size.           The   compressional   speed   ratio   from   the   eight   samples   of   predominantly   clay   data,   boxed   in   green   in   Fig.   4,   and   the   suspension   model   are   compared   versus   porosity   in   Fig.   5.     Note   that   additional  data  from  Table  5.1,  that  is,  data  samples  below  the  green  box  in  Fig.  4  which  are  not   primarily  clay,  may  also  be  compared  with  corresponding  model  predictions.  The  upshot  is  that   the   agreement   for   the   additional   samples   is   comparable   to   those   for   the   original   eight,   provided  that  the  porosity  is  larger  than  65%.    It  appears  that  high  porosity  sediments,  even  if   not   entirely   or   mostly   clay,   can   have   compressional   speed   ratios   that   are   consistent   with   predictions  of  the  suspension  model.         It  is  important  to  add  that  the  comparisons  in  Fig.  5  reveal  systematic  differences  between  data   and   model   estimates,   of   the   order   of   1%.     Although   this   percentage   is   small,   it   represents   significant  sound  speed  ratio  differences.     A  presentation  by  Pierce  &  Siegmann  (2015)  in  the   same   session   as   this   one   provides   a   physically-­‐based   hypothesis   for   these   differences.     The   hypothesis   relies   on   specifying   the   interaction   mechanism   of   the   clay   particles,   and   consequently  is  beyond  the  framework  of  the  simple  suspension  model.      

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 4

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

                                   

Geoacoustic modeling in mud sediments

  Figure  5.    Comparison  between  compressional  speed  ratio  versus  porosity  from   measurements  (green)  and  the  Mallock-­‐Wood  suspension  model  (magenta).    

 

    In   contrast   to   the   compressional   speed   data,   observed   shear   speed   values   are   very   small   for   high   porosity   mud   sediments.     The   suspension   model   cannot   provide   an   explanation   for   this   fact.     For   example,   it   is   not   a   result   of   elasticity   of   the   platelets,   which   are   relatively   rigid   because  of  a  high  shear  modulus.        

                                                  Figure  6.  Status  of  field  and  laboratory  data  showing  small  shear  speed  versus  porosity  from   data;  the  Mallock-­‐Wood  suspension  model  predicts  much  larger  shear  speeds.  

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 5

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

A   different   mud   structure   model,   including   a   particle   aggregation   mechanism,   is   needed   to   account   for   the   small   shear   modulus.       One   such   is   an   aggregation   structure   based   on   clay   platelets   with   net   negative   charges   in   the   presence   of   positive   seawater   ions.     Detailed   considerations   by   Pierce   &   Carey   (2008)   lead   to   a   platelet   model   with   its   flat   surfaces   having   distributed  lateral  quadrupoles  that  cause  aggregation  into  card-­‐house  structures.    

                                           

Figure  7.    Key  principles  of  the  card-­‐house  structure  model  of  mud.  

 

    Because   the   marine   mud   of   interest   has   high   porosity,   one   can   ask   whether   card-­‐house   structures  have  relatively  large  values  of  this  parameter.    The  answer  to  this  question  leads  to   one  of  the  quantitative  successes  of  the  card-­‐house  model.    

                                                    Figure  8.    Estimates  of  porosity  from  the  card-­‐house  structure  model  of  mud.  

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 6

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

Detailed   specification   of   the   physics   of   the   platelet   aggregation   mechanism   in   card-­‐house   structures  is  essential  to  develop  other  quantitative  estimates  from  the  model.    It  is  important   to   mention   that   soil   scientists   were   aware   for   decades   of   card-­‐house   aggregates   in   mud.     However,   a   quantitative   and   physically-­‐based   determination   of   the   quadrupole   interaction   mechanism  is  a  relatively  new  contribution  on  which  all  recent  progress  is  based.        

  Figure  9.    Specification  of  the  electric  quadrupole  moment  density  Eq.  (4)  is  critical  for   modeling  platelet  aggregation  into  card-­‐house  structures.    An  effective  Stern  layer  is  formed   by  the  positive  ions  attracted  to  a  negatively-­‐charged  platelet  surface.       Using   Eq.   (4)   a   sequence   of   increasingly   detailed   models   (A   through   D)   were   developed   to   produce  estimates  for  the  shear  speed  in  high  porosity  marine  mud.      

                                             

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

 

Page 7

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

Figure  10.    The  first  physics-­‐based  Model  A  for  the  interaction  between  two  clay  mineral   platelets.  Calculation  of  the  interaction  energy  V  as  a  function  of  interaction  angle  is  lengthy,   and  the  result  is  in  Pierce  &  Carey  (2008).    

                                                Figure  11.    Model  B  accounts  for  quadrupoles  distributed  over  the  platelet  surface,  rather   than  a  quadrupole  charge  concentrated  at  one  location.    Because  this  model  allows  platelet   edges  to  come  in  physical  contact  with  platelet  faces,  a  singular  shear  modulus  arises  due  to   ignoring  the  finite  size  of  ions  attracted  to  the  charged  surface.    Model  C  accounts  for  the   thickness  of  the  ion  interaction  layer  and  produces  a  finite  value  for  the  shear  modulus.         These  models  omit  the  platelet  elasticity,  which  might  influence  the  shear  modulus  two-­‐platelet   interactions.     Model   D   shows   that   this   mechanism   has   negligible   effects.     The   final   shear   speed   result  in  Eq.  (5)  produces  values  that  are  sensitive  to  values  of  only  three  of  its  parameters.  

                                        Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

  Page 8

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

  Figure  12.    Predictions  from  the  final  formula  for  shear  speed,  Eq.  (5),  are  relatively  sensitive   to  the  values  of  three  of  its  six  parameters.  

    The  ranges  of  shear  speed  values  from  Eq.  (5)  are  shown  in  Fig.  13  for  typical  ranges  of  property   values   of   two   common   minerals,   kaolinite   and   smectite,   from   Fayton   (2013).     Values   for   kaolinite   are   shown   in   red,   and   values   for   smectite   are   shown   in   blue.     Along   with   ranges   of   values,  some  representative  values  for  the    parameters  are  shown.        

                                       

    Figure  13.  Parameter  values  for  properties  of  two  clay  minerals  are  provided.    The  ranges  of   values  (column  3)  and  representative  values    (column  2)  of  physcial  interest  are  shown  in  rows   2-­‐4.    These  values  are  used  in  Eq.  (5)  to  produce  ranges  of  shear  speed  estimates  (column  4)   and  repersentative  shear  speed  estimates  (row  5).    These  estimates  are  close  to  those  from   field  data  in  Fig.  6  (Jackson  &  Richardson  (2007))  and  from  laboratory  measurements  (Ballard,   et  al.  (2014)).       A   list   of   achievements   of   the   card-­‐house   model   as   of   mid-­‐2015   is   provided   next.     It   is   emphasized  that  this  model  has  an  entirely  different  basis  from  the  well-­‐known  model  of  Biot   (1956)   for   poro-­‐elastic   materials.     In   the   latter,   contact   forces   play   the   key   role   in   particle   interactions,  while  in  the  former,  electrical  and  Van  der  Waals  forces  are  critical  in  interactions.     Geoacoustic   consequences   of   this   fundamental   difference   arise   in   the   corresponding   estimates   for   both   compressional   and   shear   wave   speeds   as   well   as   compressional   and   shear   wave   attenuations.        

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 9

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

                                         

    Figure  14.    Achievements  of  the  card-­‐house  theory.         The   status   of   understanding   of   compressional   and   shear   wave   attenuation   in   mud,   and   some   experimental  results,  are  indicated  in  Figs.  15  and  16.      

                                        Figure  15.  Estimates  of  compressional  attenuation  αpm  of  mud  are  seen  to  vary  over  almost   two  orders  of  magnitude.    Its  dependence  on  frequency  is  uncertain  but  believed  to  be   roughly  linear.        

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 10

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

                                          Figure  16.  Estimates  of  shear  attenuation  αsm  of  mud  are  also  seen  to  vary  over  almost  two   orders  of  magnitude.    Little  is  known  about  its  value  and  frequency  dependence  other  than  its   value  is  expected  to  be  large  relative  to  αpm  .       In   conclusion,   Figs.   17   and   18   suggest   measurements   needed   and   research   directions   for   improved  modeling  of  mud.        

                                            Figure  17.    Field  and  laboratory  measurements  needed  for  testing  the  card-­‐house  theory  and   for  further  improvements  in  modeling  seabed  mud.  

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 11

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

 

                                            Figure  18.    Research  directions  for  improving  current  models  and  developing  extended   geoacoustic  models  of  seabed  mud.       ACKNOWLEDGEMENTS     Sincere   appreciation   to   the   Ocean   Acoustics   Program   of   the   Office   of   Naval   Research   for   encouragement  and  funding  to  support  this  research.       REFERENCES     Ballard,  M.  S.,  Lee,  K.  M.,  and  Muir,  T.  G.  (2014).    “Laboratory  P-­‐  and  S-­‐wave  measurements  of  a   reconstituted  muddy  sediment  with  comparison  to  card-­‐house  theory,”  J.  Acoust.  Soc.  Am.  136,   2941-­‐2946.     Bennett,   R.   H.,   Bryant,   W.   R.,   and   Hulbert,   M.   H.,   Eds.   (1991).   Microstructure   of   Fine-­‐Grained   Sediments  (Springer-­‐Verlag,  New  York),  pp.  3-­‐566.     Biot,  M.  (1956).    “Theory  of  deformation  of  a  porous  viscoelastic  anistropic  solid,”  J.  Appl.  Phys.   27,  459-­‐467.     Bundy,   W.   M.,   and   Harrison,   J.   L.     (1986).     “Nature   and   utility   of   hexamethylenediamine-­‐ produced  kaolin  floc  structure,”  Clays  Clay  Miner.  34,  81-­‐86.       Conley,  R.  F.  (1966).    “Statistical  distribution  patterns  of  particle  size  and  shape  in  the  Georgia   kaolins,”  Proc.  14th  National  Conf.  Clays  and  Clay  Minerals,  Berkeley,  CA,  317-­‐344.    

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 12

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22

W. L. Siegmann and A. D. Pierce

Geoacoustic modeling in mud sediments

  Fayton,   J.   O.   (2013).     Estimation   of   Geoacoustic   Parameters   of   Marine   Mud     (Ph.D.   Thesis,   Rensselaer  Polytechnic  Institute,  Troy,  NY).         Hillel,  D.  (1980).    Fundamentals  of  Soil  Physics  (Academic  Press,  New  York),  p.  58.     Huang,  H.  (1993).    “Porosity-­‐size  relationship  of  drilling  mud  flocs:  fractral  structure,”  Clays  Clay   Miner.  41,  373-­‐379.     Jackson,   D.   R.,   and   Richardson,   M.   D.   (2007).     High-­‐Frequency   Seafloor   Acoustics   (Springer-­‐ Verlag,  New  York),  pp.  29-­‐170.     Lambe,  T.  W.  (1951).    Soil  Testing  for  Engineers  (Wiley,  New  York),  p.  35.    [See  also  Hall,  C.  E.   (1950).     “Fundamental   study   of   clay:     X,   water   films   in   monodisperse   kaolinite   functions,”   J.   Amer.  Ceramic  Soc.  37,  211-­‐218.]     Lambe,  T.  W.  (1958).    “The  engineering  behaviour  of  compacted  clay”,  ASCE  JSMFD,  84,  1665-­‐1-­‐ 35.     Ma,  C.,  and  Eggleton,  R.  A.  (1999).    “Cation  exchange  capacity  of  kaolinite,”  Clays  Clay  Miner.   47,  174-­‐180.     Mallock,  A.    (1910).    “The  damping  of  sound  by  frothy  liquids,”  Proc.  Royal  Soc.  London  Series  A,   84,  391-­‐395.     McCarthy,   D.   F.   (2007).     Essentials   of   Soil   Mechanics   and   Foundations,   7th   Ed.   (Prentice   Hall,   New  Jersey),  p.  83.     Mitchel,  J.  K.,  and  Soga,  K.   (2007).  Fundamentals  of  Soil   Behavior  (Wiley,  New  York),  pp.   109-­‐ 119.       Pierce,  A.  D.,  and  Carey,  W.  M.  (2008).    “Acoustical  characteristics  of  muddy  sediments,”  Proc.   Mtgs.  Acoust.  5,  07002.     Pierce,   A.   D.,   and   Siegmann,   W.   L.   (2015).   “Tentative   acoustic   wave   equation   that   includes   relaxation  processes  for  mud  sediments  in  the  ocean,”  J.  Acoust.  Soc.  Am.  137,  2282(A).       Wood,  A.  B.  (1941).    A  Textbook  of  Sound,  2nd  Ed.  (Macmillan,  NY),  pp.  360-­‐363.       Wood,   A.   B.,   and   Weston,   D.   E.   (1964).     “The   propagation   of   sound   in   mud,”   Acoustica   14,   156-­‐ 162.                      

Proceedings of Meetings on Acoustics, Vol. 23 005003 (2016)

Page 13

Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 71.174.147.17 On: Fri, 09 Sep 2016 12:15:22