Grades 3-8 Chemistry Datasheet

78 downloads 70 Views 657KB Size Report
Lesson Plan 3 for Chemistry: Electrochemistry and Galvanic Cells. For technical assistance ... Lesson Plan for Grades 3 – 8. 1. Objectives: Students will be able ...
Lesson  Plan  3  for  Chemistry:  Electrochemistry  and  Galvanic  Cells      

Objectives:    Students  will  be  able  to:   • Define  oxidation  and  reduction  in  terms  of  loss  or  gain  of  electrons   • Describe  the  operation  of  a  galvanic  cell  (using  such  terms  as  anode,  cathode,  electron  flow,   salt  bridge,  and  ions)   • Interpret  the  activity  series  in  terms  of  elements  that  are  more  or  less  easily  oxidized   • Relate  cell  potential  to  the  activity  series   • Build  simple  galvanic  cells  and  measure  cell  potential    

California  Content  Standards:   Physical  Sciences:     Grade  3:   1.b.   Students   know   sources   of   stored   energy   take   many   forms,   such   as   food,   fuel,   and   batteries.       1.h.   Students   know   all   matter   is   made   of   small   particles   called   atoms,   too   small   to   see   with   the  naked  eye.    

  Grade  5:   1.d.   Students  know  that  each  element  is  made  of  one  kind  of  atom  and  that  the  elements   are  organized  in  the  periodic  table  by  their  chemical  properties.    

  Grade  8:   3.a.   Students   know   the   structure   of   the   atom   and   know   it   is   composed   of   protons,   neutrons,  and  electrons.       5.a.   Students  know  reactant  atoms  and  molecules  interact  to  form  products  with  different   chemical  properties.       5.b.   Students   know   the   idea   of   atoms   explains   the   conservation   of   matter.   In   chemical   reactions   the   number   of   atoms   stays   the   same   no   matter   how   they   are   arranged,   so   their  total  mass  stays  the  same.    

Investigation  &  Experimentation:       Grade  3:   5.c.   Use  numerical  data  in  describing  and  comparing  objects,  events,  and  measurements.       5.d.   Predict   the   outcome   of   a   simple   investigation   and   compare   the   result   with   the   prediction.    

  Grade  4:   6.d.   Conduct   multiple   trials   to   test   a   prediction   and   draw   conclusions   about   the   relationships  between  predictions  and  results.    

  Grade  5:   6.f.   Select   appropriate   tools   (e.g.,   thermometers,   meter   sticks,   balances,   and   graduated   cylinders)  and  make  quantitative  observations.    

  Grade  6:   7.b.   Select   and   use   appropriate   tools   and   technology   (including   calculators,   computers,   balances,  spring  scales,  microscopes,  and  binoculars)  to  perform  tests,  collect  data,  and   display  data.    

Reference:     Institute   for   Chemical   Education   (Chemistry   Fundamentals),   Mt.   San   Antonio   College,     Walnut  CA,  1995.    

Before  you  begin,  you  may  want  to  watch  the  DSSC  videos  to  prepare  the  lab:   http://www.youtube.com/caltech    and  click  on  “Resources  for  Teachers”  on  the  right.  

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]   Lesson  Plan  for  Grades  3  –  8    

1  

Lesson  Plan  3  for  Chemistry:  Electrochemistry  and  Galvanic  Cells      

Background:   One  of  the  most  important  types  of  chemical  reactions  is  the  oxidation–reduction  (redox)  reaction.    An   oxidation–reduction   reaction   involves   the   transfer   of   one   or   more   electrons   from   one   species   to   another.    The  substance  that  loses  electrons  is  oxidized;  the  substance  that  gains  electrons  is  reduced.     All   reduction   reactions   must   occur   with   a   corresponding   oxidation   (i.e.   the   electrons   must   come   from   somewhere).     It   is   often   useful   to   consider   redox   reactions   in   two   parts   called   half   reactions.     Added   together,  these  two  half  reactions  make  up  the  overall  oxidation–reduction  redox  reaction:    

     

A+      +    e-­‐      à    A     +   -­‐ B      à        B  +    e     B    +    A+      à    B+    +    A    

(reduction)   (oxidation)   (overall  reaction)  

 

Single  replacements  are  common   examples  of  redox  reactions.    For  these  types  of  reactions  the   activity   series   of   metals   is   used   to   determine   whether   a   particular   reaction   occurs.     In   such   reactions,   a   metal   in   a  salt  is  replaced  by  an  elemental  metal  that  is  higher  on  the  series  or  “more  active.”    “More  active”  in   this  case  means  more  readily  oxidized.    

A  galvanic  cell  is  an  electrochemical  device  that  can  produce  electrical  energy  from  spontaneous  single-­‐ replacement   redox   reactions.     All   electrochemical   cells   have   two   electrodes,   a   cathode   and   an   anode.     Solution   species   are   always   reduced   at   the   cathode,   and   oxidized   at   the   anode.     In   galvanic   cells   the   cathode   is   then   charged   positive   and   the   anode   negative.     When   two   different   metals   are   used,   the   identity  of  which  is  the  anode  and  which  is  the  cathode  is  determined  by  their  relative  position  in  the   activity  series.    The  electrode  that  is  higher  in  the  series  (more  easily  oxidized)  is  the  anode.    

In  this  experiment  you  will  construct  a  series  of  galvanic  cells  using  metals  and  metal  salt  solutions.    Each   cell   will   consist   of   two   half   cells,   each   containing   a   metal   electrode   and   its  corresponding   ion   in   solution   (e.g.  a  piece  of  copper  in  a  Cu2+  solution).    Pairs  of  half  cells  will  be  connected  together  by  a  salt  bridge   which  will  supply  inert  cations  and  anions  to  each  of  the  half  cells,  providing  a  pathway  for  ion  flow  (see   diagram  below).    By  examining  your  results  you  will  be  able  to  place  three  metals  on  a  list,  which  should   correspond  to  the  activity  series.    

Materials:   Per  Class   • 2  Multimeters  with  probes*   • 4  Alligator  clips*    

Per  group  of  2  students   • 1  twelve-­‐well  reaction  plate*   • Many  2  cm  strips  of  Whatman®  #1  filter  paper*   • 1   small   beaker   for   KCl   (~1M   as   1.03g/16mL)*   solution#   • 1  Plastic  Tweezer*   • Many  1  –  2  cm  strips  of  Zn,  Cu,  and  Sn  metal*   • 15  drops  of  each  of  the  following  solutions:   ZnSO4  (~0.1M  as  0.46g/16mL)*   CuSO4  (~0.1M  as  0.40g/16mL)*   SnCl2  (~0.1M  as  0.36g/16mL)*     *Provided  in  the  Juice  from  Juice  kit   # • 1  piece  of  sandpaper  (fine)#       Fewer  can  be  used  as  groups  can  share   For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]   Lesson  Plan  for  Grades  3  –  8    

2  

Lesson  Plan  3  for  Chemistry:  Electrochemistry  and  Galvanic  Cells      

STUDENT  LABORATORY  PROCEDURE     SAFETY   NOTE:   Prudent   lab   safety   practices   are   required   in   performing   this   lab.     The   solutions   contain   heavy  metal  ions  and  care  should  be  taken  in  their  handling.    Put  on  your  goggles!     1. Split  the  students  up  into  groups  of  two,  for  up  to  30  students  in  total.   2. Fill  the  wells  you  will  use  with  15  drops  of  the  appropriate  metal  ion  solution,  in  the  recommended   arrangement  below:  

   1  

     2  

Cu  

 Zn  

   5  

   9  

 Sn  

     3  

   4  

   6  

   7  

   8  

 10  

 11  

 12  

  3. Identify  each  of  the  three  metals  you  will  use  in  the  experiment.   4. Clean   each   of   the   metal   strips   with   sandpaper   and   place   them   on   a   piece   of   paper.     Label   the   paper   near  each  strip  with  the  metal’s  name  so  that  you  know  which  metal  is  which.   5. Make   a   salt   bridge   by   soaking   a   2   cm   strip   of   filter   paper   in   the   KCl   solution.     Use   the   tweezers.     Make  separate  salt  bridges  for  each  cell.   6. Select  the  two  wells  to  be  tested  and  place  the  salt  bridge  so  that  it  is  immersed  in  both  solutions.   7. Attach  the  alligator  clips  from  the  multimeter  to  the  metal  strips  of  the  corresponding  solutions.   8. Immerse  the  metal  electrodes  into  their  metal  ion  solutions  and  record  the  voltage.    (Note:  Be  sure   to  use  the  correct  metal  electrode  for  each  solution.)   9. When  finished,  test  whether  the  electrode  area  or  time  immersed  affects  the  cell  voltage  or  current.   10. When  finished,  dilute  the  well  with  water  and  test  whether  the  electrolyte  concentration   affects  the   cell  voltage  or  current.   11. What  other  factors  might  affect  the  cell?      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]   Lesson  Plan  for  Grades  3  –  8    

3  

Lesson  Plan  3  for  Chemistry:  Electrochemistry  and  Galvanic  Cells      

Fill  out  the  following  tables.     Potentials  (V)  of  all  possible  combinations   black    /    red   Cu   Sn   Zn         Cu    

 

 

 

 

 

Sn  

Zn     Cell  

Anode   (Black  -­‐)  

Cathode   (Red  +)  

Potential   (Volts)  

A  

Cu  

Zn  

 

B  

Zn  

Cu  

 

C  

Cu  

Sn  

 

D  

Sn  

Cu  

 

E  

Zn  

Sn  

 

F  

Sn  

Zn  

 

                             

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]   Lesson  Plan  for  Grades  3  –  8    

4  

Lesson  Plan  3  for  Chemistry:  Electrochemistry  and  Galvanic  Cells      

Checking  for  Understanding:  Analysis  Questions  to  Ask  Your  Students.     1. Which  cell  produced  the  highest  (positive)  voltage?    Lowest  (positive)  voltage?         Deduce  from  your  data  the  next  easiest  to  reduce,  the  next,  and  so  on.    In  this  way  you  can  build  the   activity  series  of  single  replacement  reactions  for  these  three  metals/cations.         2. Examine  your  data.    Was  there  a  metal  which  was  oxidized  by  each  of  the  others   (i.e.  an  anode  in  a   cell  producing  a  positive  voltage  with  all  other  metals)?         Compare  the  voltages  for  the  cells  above  and  arrange  the  metals  in  order,  from  most  easily  oxidized   (most  “active”)  to  least.           3. Why  is  the  salt  bridge  necessary?         4. Explain  cells  A  and  B.         5. Draw  a  diagram  for  cell  C.    Write  the  anode  and  cathode  reactions.             6. Describe,  write,  and  balance  anode  and  cathode  half  reactions  for  cells  A,  C,  and  E.             7. Wreckage  of  the  iron  (Fe)  ship  Monitor  was  discovered  in  1987,  and  scientists  attached  Zn  anodes  to   protect  it  from  corrosion.    Why  would  this  protect  it?           For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]   Lesson  Plan  for  Grades  3  –  8    

5