Granite plutonism of the Sierras Pampeanas; An inner ...

4 downloads 0 Views 8MB Size Report
Allmendinger, 1986). The basement rocks of the eastem Sierras Pampeanas con- ... group from the Sierra de Quilmes and Sierra de Ancasti al shown in Table 1.
Geological Society of America Special Paper 241 1990

Granite plutonism of the Sierras Pampeanas; An inner eordilleran Paleozoie are in the southern Andes Carlos W. Rapela Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Calle 1, No. 644, 1900 La Plata, Argentina Alejandro Toselli Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Casilla de Correo 91, Miguel Lillo 205, 4000 San Miguel de Tucumán, Argentina Larry Heaman Department 01 Mineralogy and Geology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 206, Canada Julio Saavedra U.EL Mineralogía Geoquímica, e.S.Le., Apartado 257, Salamanca, Spain

ABSTRACf The eastem zone of the Sierras Pampeanas in central and northwestem Argentina is characterized by a Paleozoic granitoid series emplaced at dift'erent structurallevels in polymetamorphic terranes. Three main plutonic groups have been recognized on the basis of their ages and their relation to the deformational history. Gl (Late Precambrian lo Cambrian): Scattered concordant bodies of gabbros, amphibolitized norites, amphibolites, diorites, and tonalites were intruded during an early deformation and regional metamorphism (DI, MI). This group is the only one to show tholeütic affinities. G2 (Ordovician to Early Devonian): Syn-D2 (Early Ordovician) and late D2 (Middle to Late Ordovician) subgroups consist of small batholiths, plutons, and concordant bodies of tonalitic to granitic composition that were intruded during or shortly alter the D2 and M2 (amphibolite to granulite facies) episode. These granitoids, characterized by their peraluminous chemistry, contain primary muscovite, spessartite gamet, and magmatic epidote. Most initial87Sr/86Sr ratios are between 0.705 and 0.707. Some Upper Ordovician units have initial 87Sr/86Sr ratios greater than 0.710, suggesting an important upper-crustal contribution. Minimum crystallization pressures of 4 to 5 kbar are inferred from the granitoid paragenesis. The melts are inferred to be water- and volatile-rich as they produced ubiquitous tourmaline-bearing pegmatite swarms during the final stages of crystaUization. This plutonism seems to be related to the Famatinian magmatic arc that was located 400 to 800 km east of the present Peru-Chile trench. These syn-D2 and late D2 granitoids are thought to be part of an inner back-arc zone of this early Paleozoic arco Post-D2 (Late Ordovician to Early Devonian) granitoids consist of large batholiths (e.g., Achala and Velasco batholiths) and widespread smaller plutons that were emplaced during the later stages of the early Paleozoic (Famatinian) orogeny. Common features of the larger bodies include the presence of muscovite, aluminum silicates, and a dominant porphyritic phase characterized by microcline microperthite megacrysts in a groundmass of medium- to coarse-grained quartz, oligoclase, and biotite. Mioeralized pegmatites (Li, Be, Nb, Ta) and U deposits related to post-D2 granites have high levels of LIL (large ion lithophiles: K, Rb, LREE) and HFS (high field strength: Y, Nb) elements. The post-D2 group exhibits compositional features similar to alkali-calcic arc granitoids developed at a great distance from the subduction margin, in Rapela, C. W., Toselli, A., Reaman, L., and Saavedra, J., 1990, Granite plutonism of the Sierras Pampeanas; An inner cordilleran Paleozoie are in tbe southem Andes, in Kay, S. M., and Rapela, C. W., eds., Plutonism from Antarctica to Alaska: Boulder, Colorado, Geological Society of America Special Paper 241.

77

78

c. W. Rape/a and Others

the later stages of are evolution. G3 (Late Devonian to CarboniJe,ous): Homblendebiotite alkalic-like plutons culminate granitoid activity in the Sierras Pampeanas. These granitoids have high levels of HFS and LIL elements, and some have high initial 87Sr/86Sr ratios (0.710). The G3 granitoids are interpreted to be within-plate plutons indirectly related to the beginning of late Paleozoic subduction on the Gondwana margino INTRODUcnON

\ \

The Sierras Pampeanas in central and northwestem Argentina (Fig. 1) are a seriesof north-south-trending mountain blocks separated by tectonic valleys.The presentlandformsare the result of uplift on reverse faults during the upper Tertiary part of the Andean orogeny. The limits of the structural domain of the Sierras Pampeanas province are coincident with a nearly horizontal segment of the Nazca plate at the same latitude (e.g.,Jordan and Allmendinger, 1986). The basement rocks of the eastem Sierras Pampeanas consist primarily of phyllites, banded schists,gtleisses,and less commonly, marblesand amphibolites.The metamorphicgrade ranges from greenschist to amphibolite and, in a few cases, granulite facies.This metamorphic complex is intruded by numerous granitoids and less abundant mafic and ultramafic rock bodies. As recognized by Caminos (1979), the easOOmzone of the Sierras Pampeanas is distinct from the westem Sierras Pampeanas (Fig. 1). The westem zone is characterized by an absence of major batholiths; abundant ultramafic, mafic, and carbonate-bearing rocks; and metamorphic assemblages that generally indicate higher-pressuremetamorphism in the west than in the east. Although the Famatina sysOOm, located between the eastem and westem zones (Fig. 1), has not been considered part of the Sierras Pampeanas (Aceñolaza and others, 1972; Caminos, 1979; de Alba, 1979), the characteristicsof its early and middle Paleozoie magmatism can be correlated with Pampean igneous evolution. A remarkable feature of the Famatina sysOOmnot found in the Sierras Pampeanas is the voluminous cale-alkaline volcanics interlayered with marine fossiliferous sediments of Early Ordovieian Arenigian age (Aceñolaza and Toselli, 1984). Discontinuous outerops of Ordovician volcanics appear to the north ofthe Famatina Range, reaching the Argentine Puna (Aceñolaza and Toselli, 1984; Coira and others, 1982; see Fig. 1). Detailed studies in Sierra de Maz (Kilmurray and Dalla Salda, 1971a); Cerro Valdivia (Kilmurray and Dalla Salda, 1971b); Sierra de Quilmes (Rapela, 1976a); Sierra de San Luis (Kilmurray and Dalla Salda, 1977); Sierra de Ancasti (Willner and Miller, 1982);Sierra de Pie de Palo (Dalla Salda and Varela, 1982) and Sierra de Córdoba (Dalla Salda, 1984; 1987) show clear struetural evidence of several major metamorphie-tectonie episodes.An attempt to correlate the tectonicand igneoushistory of the central (Sierra de Ancasti) and northem (Sierra de Quilmes) regions of the eastem zone is presented in Figure 2. During the second metamorphie-tectonie event in the Early Ordovician (M2 and D2, see Fig. 2), the regional metamorphie

grade reaehed a maximum in some sectors (granulite facies partíal melting of metagraywackes and metapelites). Three main granitoid groups are recognized in the eas Sierras Pampeanas usingchronological eriteria (Fig. 2): G1, I Precambrian to Cambrian granitoids; G2, Ordovician to E Devonian (Famatinian) granitoids; and G3, Late Devoniar Carboniferous granitoids. A further subdivision of the G2 grc based on temporal relations with the second and m~ metamorphic-tectonie event (e.g.,syn-D2, laoo-D2,etc.) has bt used to describe the field occurrences of these granitoids (G. zález Donorino, 1950; Rapela and others, 1982). Gl (Late Precamb,ian lo Camb,ian granitoids) Small bodies of gabbro, homblendite, diorite, and tonal intruded the metamorphie complex before and during an eal deformational phase and regional metamorphism (D 1 and M Fig. 2) in the Sierra de Ancasti (e.g., Sehalamuek and othe: 1983; Lottner, 1986;Lottner and Miller, 1986). Relictsof this( event are aIso widespread in the northem sector of the Sierr; Pampeanas (e.g.,amphibolitizednorites of the Sierra de Quilme Toselli and others, 1978). Selected ehernical analyses of the G group from the Sierra de Quilmes and Sierra de Ancasti al shown in Table 1. G2 (Ordov;cian

to Early Devonian

granito;ds)

The most extensive granitoid group of the Sierras Pampea nas was emplaced during the deformational and metamorphil events (Fig. 2) known as the Famatinian eycle of the Famatiniar orogeny (Aceñolaza and Toselli, 1976). The compositional an, field eharaeteristicsof the Famatinian granitoids depend on theil emplacement relation with the most penetrative deformation (D2). Syn-D2 g,anitoids. Th~ small concordant bodies have typically lenticular outlines (e.g., Tolombón tonalite, Rapela, 1976a; La Pampa-Unquillo granitoids, Knüver and Miller, 1982). They commonly have a foliation orienOOdparallel to the regional fabric in the country rocks. Although most are biotite and two-mica (peraluminous) tonalites, their modal composition can vary from tonalite to granite (Fig. 3 and Table 1). Late-D2 g,anitoids. These granitoids vary in size from rather homogeneous plutons (e.g., Cuehiyaco granodiorite,Rapela, 1976b; El Alto granite, Reissinger, 1983; Loma Pelada gran-

Granite plutonism

79

01 the Sie"OS Pampeanas

j i

i i i \c(

\z H= LLI~Z LLI -( CJ ::E: a: ~c(

,

ItA~AJ Faja eruptiva 01 the Puna

~vvVvlOrdovicianvolcanism Et:;)Granitoids rocks

§

;,--- Caminos 1979

,

LA RIOJA

SAN

'

JUAN

·

32°S

Metamorphic rocks Limits between zones

~

Reverse faults

~

EASTERN SIERRAStJ~ PAMPEANAS\~J ~+

\ ~

\~~ ,\:~

~

-

-

+ ++

~

1/ h

'\

~

\~

e

4

o I

50 I

100

~~ SAN LUIS Figure 1. Generalized geologica1map of Lower Paleozoic rocks in central and northwestem Argentina. 1, Achala batholith; 2, Sierra de Córdoba; 3, Alpa Corral batholith; 4, Sierras de San Luis; 5, Sierra Norte batholith; 6, Sierra de Velasco; 7, Famatina system; 8, Sierra de Ancasti; 9, Sierra de Ambato; 10, Capillitas batholith; 11, Cumbres calchaquíes; 12, Sierra de Quilmes. Principal structural features after Jordan and Allmendinger(1986).

dib,

150km.

80

c. w: Rape/a ami Others Carboniferous

Late Precambrian

01. Isoclinal foldlng. Development of planar fabrico 02:NNW-SSE folding. Schistoaity and foliation oblique to 01 structurea. 1>,).Large scale flexures related to batholltic emplacements in upper levels. D4>Folding.Chlorite growthdeveloped a 04 schiatoaity. Rotation of Ma porphyroblasts. Oso Mylonitization.

Deformation (a)

Metamorphism

Me

M1.Medium to low grade regional metamorphlsm. M2. Medium to high grade lupper amphibolite and granulite facies) regional metamorphlsm. Widespread synkinematic anatexis inthe cord-Kfap-siU Ma. Retrograde chlorite and muscovite. Mc: Local contact metamorphism related to late and post-kinematic Ipost-D2) granitic emplacement.

(b) SedimentatlonChlefly eugeosyncll Sediments-

Rb-Sr Isochron ages (granitolds roeks) O.71S~ (e)

Open symbols: Sierra de Ancaati. 1 : Sierra de Quilmea 2.6.Cumbres Calchaqules a. Achala batholith 4. Velasco batholith S.Caplllitas batholith

:! :5

0.710~

zone.

...

o.705~ ~ IIHn .0.$0... o 00 O 0eI'

00

!!.!!.EBMi

65

70

75

Si02(%) Figure 7. Si02 variation diagram for Nb, Y, Zr, La, te, Rb, and K20 from selectedgranitoid unitsofthe Sierras Pampeanas. Symbols as in Figure 5. Sources of data: Acbala batholith and Capillitassyenogranite (Rapela and Heaman, 1982); Cerro Amarillo granite, Cafayate granite, Tolombón tonalite (Rapela, unpublisbed XRF determinations); Loma Pelada granite (Saavedra, unpublisbed Y, Rb, and Zr XRF determinations).

Granite plutonism 01 the Sierras Pampeanas

87

100

Nb (ppm)

WPG VAG+syn-coIG

+ +

. 10

-

~ Syn D2

ORG

Sierra de Quilmes (Tolombon tonalite,

G2 . Late-D2 } Cafayate granite) x Post -D2 Sierra de Cordoba { ~Achalabatholith) + Cumbres Calchaquíes (Cerro Amarillo granites) G 3 e Capillitas Batholith [ (syenogranitic facies) 1.0 10

100

y (ppm) Figure 8. Nb-Y discrimination diagram for volcanie are granites (VAG), syn-collision granites (synCOLG), within-plate granites (WPG), and ocean-ridge granites (ORG) (Pearce and others, 1984). Source of data as noted in Figure 5.

subduction-related batholiths. The remnants of the Ordovician volcanicscould define the approximate location of the axis ofthe Famatinian arc (Fig. 1). Some plutons of the post-D2 G2 group show geochemical affinitieswith anorogenic granitoids (e.g., Martin and Piwinskii, 1972, 1974) in noncompressional tectonic settings.Nevertheless, these granitoids are not true alkalic granites (Rapela, 1982). Instead, they are high-K granitoids that are enriched in LIL and HFS elements.On the Nb versosY and Rb versosNb+y discriminationdiagrarns(Figs.8 and 9) of Pearce and others (1984), they plot in the within-plate and collision fields.Their characteristics are like those of alkali-calcic granitoids that develop at great distances from the subduction margin in the later states of arc evolution(Brown and others, 1984). Late Devonian to Carboniferoos plutons (e.g., Capillitas syenogranite,Cerro Amarillo granite, G3 Group) primarily plot in or near the within-plate fieldon the discrimination diagrarnsin Figures 8 and 9. These granites are not related to the Famatinian compressivephases and are probably geneticallydistinct. During the late Paleozoic,a magmatic arc was located west of the Sierras Pampeanas in the high Andean Cordillera and the Coast Range (cf.,Parada, this volume). Therefore, the G3 group may represent intracratonic plutonic activity of a new subduction regime that was established on the Gondwana margin during the late Paleozoic.

Models for the tectonic evolution of the Paleozoic terranes in northwestem and central Argentina all suggest an eastwarddipping subduction regime,but the proposed modelsare different in many important aspects. Willner and others (1985) consider that the Cambrian Pacific margin of Gondwanaland changed from a passive to an active margin, with a flat subduction zone that became somewhat steeper north of present-day 26°S. The position of the trench was not far from that of the Andean (Mesozoic-Cenozoic) regime. A major drawback of this model is that magmatism in modem flat-slabanalogs in the Andes between 28 and 33° (Kay and others, 1987) is very different from Pampean plutonismo

The model developed by Ramos and others (1984, 1986) suggeststhat an early Paleozoictrench was located on the westem side of the modem Precordillera in Argentina on the eastem side of the present Andean chain. The 300-km-wide belt of rocks presentlybetween the Precordilleraand the Chilean trench would have been added (Chilenia terrane) to the South American conti. nentby the LateDevonian(Ramosand others,1984,1986).

The lack of precise isotopic and geochemical data, in general, but mainly in the westem Sierras Pampeanas prohibits further elaboration of these proposed tectonic models. The petrological and geochemical characteristics of the OrdovicianSilurian granitoids in the Sierras Pampeanas suggest that they represent a back-arc counterpart of the Famatinian early Paleo-

88

C. Jv. Rapela and Others

1000

syn-COLG

Rb (ppm)

WPG x

.

VAG

ORG

10

Sierra de Quilmes (Tolombón tonalite, G2 . Late -D2 } Cafayate granite) x Post-D2 Sierra de Cordoba (Achala batholith) {

~ Syn-D2

G

+ Cumbres Calchaqules (Cerro Amarillo granite) 3 . Capillitas Batholith { (syenogranitlc facies) 100

10

1000

y + Nb(ppm) Figure 9. Rb-Y+Nb discrimination diagram for volcanie are granites (VAG), syn-coIlisiongranites (syn-COLG), within-plate granites(WPG), and ocean-ridgegranites(ORG) (Pearce and others, 1984). Source of data as noted in Figure 5.

zoic arc. This pre-Andean subduction regime developed a wide north-northwest/south-southeast-trending magmatic arc that is located some 400 to 800 km east of the modero Pero-Chile trench.

REFERENCES CITED Aceñolaza, F. G., and Toselli, A. J., 1976, Consideraciones estratigráfi~ tectónicas sobre el Paleozoico inferior del Noroeste argentino: 11Congrl -

ACKNOWLEDGMENTS

Latinoamericano de Geología, Tomo 2, p. 755-763. , 1984, Lower Ordovician volcanism in northwest Argentina, in Brut, D. L., OO., Aspects of the University

Aceñolaza,

This paper benefited from helpful reviews by Calvin Miller, Travis Hudson, Denis Shaw, and Victor Ramos. At various stages this work has been supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), and the National Research Council of Canada (Grant A0155 to D. M. Shaw and Grant 2659 to R. H. McNutt). This work is a contribution to the IGCP Project 249.

of the Ordovician

system:

Paleontological

of 0510, no. 295, Universitetsforlaget,

F. G., Gonzalez,

Contributic

p. 203-209.

R., and Toselli, A., 1972, Las Sierras Tra

pampeanas como orógeno Eopaleozoico: 1st Congreso Hispano-Lu Americano, section 1, teil 2, p. 645-659. Atherton, M. P., and Sanderson, L. M., 1987, Tbe Cordillera Blanca batholith study of granite intrusion and the relation of crustal thickening to peralw nosity: Geologische Rundschau, v. 76, no. 1, p. 213-232. Bachmann, G., Grauert, B., and MilIer, H., 1986, lsotope dating of polyml morphic metasediments from northest Argentina: Zentralblat für Geolo und Paliiontologie, teill, heCt9/10, p. 1257-1268.

Granite plutonism 01 the Sie"as Pampeanas Bonalumi, A. A., 1988, Caracteristicas petrológicas y geoquímicas de los granitoides asociados a la mineralización de manganeso de la provincia de Córdoba y sur de Santiago del Estero, República Argentina: Quinto Congreso Geológico Chileno, Tomo 11, E47-E61. Brogioni, N., 1987, El batolito de Las Chacras-Piedras Coloradas, provincia de San Luis, Geología y Edad: 10th Congreso Geológico Argentino International Symposium on Circum-Pacific Phanerowic Granites, Actas 4, p. 115-118. Brown, G. C., Thorpe, R. S., and Webb, P. C., 1984, The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources: Journal ofthe Geological Society ofLondon, v. 141, p. 413-426. Caminos, R., 1979, Sierras Pampeanas de Juan, in Leanza, A. F., ed., Geologia tina, Academia Nacional de Ciencias Cingolani, C. A., and Varela, R., 1975, rocas ígneas y metamórficas República Argentina: nómica, v. 1, p. 9-36.

Tucumán, Catamarca, La Rioja y San Regional Argentina: Córdoba, Argende Córdoba, p. 41-80. Geocronología Rubidio-Estroncio de

de las sierras Chica y Grande de Córdoba,

2nd Congreso

lbero-Americano

de Geología Eco-

Asociación Geológica Argentina, v. 39, p. 38-51. -

, 1987, Basement tectonics of the southern Pampean Ranges, Argentina: Tectonics, v. 6, p. 249-260. Dalla Salda, L., and Varela, R., 1982, La estructura del basamento del tercio sur

de la Sierra de Pie de Palo, Provincia de San Juan, Argentina: 5th Congreso Latino-Americano de Geologia, Argentina, Actas 1, p. 451-468. de Alba, E., 1979, Sistema del Famatina, in Leanza, A. F., ed., Geología Regional Argentina: Córdoba, Argentina, Academia Nacional de Ciencias de Córdoba, p. 349-395. Frenguelli, J., 1937, Investigaciones geológicas en la wna salteña del valle de Santa María: Obra Cincuentenario Museo La Plata, v. 2, p. 215-576. Gonzalez Bonorino, F., 1950, Algunos problemas geológicos de las Sierras Pampeanas: Revista Asociación Geológica Argentina, v. 3, p. 81-110. González, R., and 7 others, 1985, La actividad eruptiva en Sierras Pampeanas; Esquematización geográfica y temporal: Acta Geológica Lilloana, v. 16, p.289-318. Halpern, M., and Linares, E., and Latorre, C. O., 1970, Estudio preliminar por el método estroncio-rubidio de rocas metamórficas y graníticas de la provincia de San Luis, República Argentina: Revista Asociación Geológica Argentina, v. 25, p. 293-300. Harrington, H. J., 1956, Argentina, in Jenks, W. F., ed., Handbook of South American geology; An explanation of the geologic map of South America: Geological Society of America Memoir 65, p. 129-166. Irvine, T. N., and Baragar, W.R.A., 1971, A guide to chemical characterization of volcanic rocks: Canadian

Kittl, E., 1965, Edad de las rocas graníticas y los ciclos metalogénicos de la Argentina: Academia Nacional Ciencias República Argentina Boletin 44, p.98-103. Knüver, M., 1983, Dataciones radimétricas de rocas plutónicas y metamórficas; Geología de la Sierra de Ancasti: Münstersche Forschungen zur Geologie und Paliiontologie, v. 59, p. 201-218. Knüver, M., and Miller, H., 1982, Rb-Sr geochronology of the Sierra de Ancasti (Pampean Ranges, NW Argentina): 5th Congresso Latino-Americano Geología, Argentina, Actas 3, p. 457-471. Lameyre, J., and Bowden, P., 1982, Plutonic rocks series; Discrimination of various granitoid series and related rocks: Journal of Volcanology and Geothermal Research, v. 14, p. 169-186. Linares, E., 1959, Los métodos geocronológicos y algunas edades de minerales de la Argentina por medio de la relación plomo-uranio: Revista Asociación Geológica Argentina, v. 16, p. 3-4. -

, 1968, Datación geológica de las rocas graníticas de la provincia de Córdoba: Terceras Jornadas Geológicas Argentinas 2, Comodoro Rivadavia,

p. 199-206.

Coira, B. L., Davidson, J. D., Mpodozis, C., and Ramos, V. A., 1982, Magmatic evolution of the Andes in northern Argentina and Chile: Earth Science Reviews, v. 18, p. 303-332. Dalla Salda, L., 1984, La estructura íntima de las Sierras de Córdoba: Revista

the common p. 523-548.

89

Journal

of Earth Sciences, v. 8, .

Jordan, T. E., and Allmendinger, R. W., 1986, The Sierras Pampeanas of Argentina; A modern analogue of the Rocky Mountain foreland deformation: American Journal ofScience, v. 286, p. 737-764. Kay, S. M., Maksaev, V., Moscoso, R., Mpodozis, C., and Nasi, C., 1987, Probing the evolving Andean lithosphere; Mid-Iate Tertiary magmatism in Chile (29°30030'S) over the modern wne of subhoriwntal subduction: Journal of Geophysical Research, v. 92, p. 6173-6189.

Linares, E., and Cordani, U. G., 1976, Edades potasio-argón de anfibolitas de la provincia de Córdoba, República Argentina: 6th Congreso Geológico Argentina, v. 1, p. 501-509. Linares, E., and Latorre, C. 0.,1969, Edades potasio-argón y plomo-alfa de rocas graníticas de la provincias de Córdoba y San Luis: 4th Jornadas Geológicas Argentinas, Mendoza, Actas 2, p. 195-204. López de Luchi, M., 1987, Caracterización geológica y geoquimica del plutón La Tapera y del batolito de Renca, provincia de San Luis, República Argentina: 10th Congreso Geológico Argentino Symposium on Circum-Pacific Phanerowic Granites, Actas 4, p. 84-87. Lottner, U. S., 1986, Strukturgebundene Magmentntwicklung in Altpaliiowischen Grundgebirge NW-Argentiniens am Beispiel der Sierra de Ancasti (Provinz Catamarca): Münstersche Fokrschungeen zur Geologie und Paliiontologíe, v. 65, 180 p. Lottner, U. S., and Miller, H., 1986, The Sierra de Ancasti as an example of the structurally controlled magmatic evolution in the Lower Paleowic basement of the NW-Argentine Andes: Zentralblatt für Geologie und Paliiontologie, teill, heCt9/10, p. 1269-1281. Martin, R. F., and Piwinskii, A. J., 1972, Magmatism and tectonic setting: Journal of Geophysical Research, v. 77, p. 4955-4975. , 1974, The contrasting origin of orogenic and non-orogenic granitoid rocks, in lA VCEI Proceedings of a Symposium on Andean Antarctic Volcanology Problerns: Santiago, Ed. O. Gonzalez, p. 482-496. McBride, S., Caelles, J. C., Clark, A., and Farrar, E., 1976, Paleowic radiometric age provinces in the Andean basement, latitudes 25°-30OS: Earth and Planetary Science Letters, v. 29, p. 373-383. McCourt, W. J., 1981, The geochemistry and petrography ofthe Coastal batholith of Peru, Lima segment: Journal of the Geological Society of London, v. 138, p. 407-420. Moore, N. D., and Agar, R. A., 1985, Variations along a batholith; The Arequipa segment ofthe Coastal batholith ofPeru, in Pitcher, W. S., Altherton, M. P., Cobbing, E. J., and Beckinsale, R. D., eds., Magmatism at a plate edge; The Peruvian Andes: Blackie, John Wiley, p. 108-118. Pastore, F., 1932, Hoja 20i del mapa geológico de la Argentina: Ministerio Agricultura Dirección Minería y Geología Boletín 36, 67 p. Pearce, J. A., Harris, N.B.W., and Tindle, A. G., 1984, Trace element discrimination diagrarns for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956-983. Pitcher, W. S., 1983, Granite type and tectonic environment, in Hsü, K., ed.,

Kilmurray, J. O., and Dalla Salda, L., 1971a, Las fases de deformación y metamorflSmo en la Sierra de Mal, provincia de La Rioja, República Argentina: Revista Asociación Geológica Argentina, v. 26, p. 245-263. , 1971 b, Las fases de deformación y metamorfismo en el área del cerro Valdivia, provincia de San Juan, República Argentina: Revista Asociación Geológica Argentina, v. 26, p. 25-39.

Mountain building processes: London, Academic Press, p. 19-40. Pitcher, W. S., Atherton, M. P., Cobbing, E. J., and Beckinsale, R. D., eds., 1985,

-

Ramos, V. A., and 50thers,

, 1977, Caracteres estructurales y petrológicos de la región central y sur de la Sierra de San Luis: Obra Centenario Museo La Plata, v. 4, p. 167-178.

Magmatism

at a plate edge; The Peruvian Andes: Blackie, John Wiley,

328 p. paleowica

1984, Chilenia; Un terreno alóctono en la evolución

de los Andes Centrales: 9th Congreso Geológico Argentino,

90

C. fv. Rapela and Others

Actas 2, p. 84-106. Ramos, V. A., and 6 others, 1986, Paleozoic terranes of the central ArgentineChilean Andes: Tectonics, v. 5, p. 855-881. Rapela, C. W., 1976a, El basamento metamórfico de la región de Cafayate, provincia de Salta; Aspectos petrológicos y geoquímicos: Revista Asociación Geológica Argentina, v. 31, p. 203-222. , 1976b, Las rocas graníticas de la regón de Cafayate, provincia de Salta; Aspectos petrológicos y geoquímicos: Revista Asociación Geológica Argentina,v. 31,p. 260-278. , 1982, Aspectos geoquímicos y petrológicos del batolito de Achala, provincia de Córdoba: Revista Asociación Geológica Argentina, v. 37, p. 313-330. Rapela, C. W., and Heaman, L., 1982, Composición química de granitos batolíticos de las Sierras Pampeanas: Revista Museo La Plata, Sección Geología, Tomo IX, no. 75, p. 89-96. Rapela, C. W., and LIambias, E., 1985, Evolución magmática y relaciones regionales de los complejos eruptivos de La Esperanza, provincia de Rio Negro: Revista Asociación Geológica Argentina, v. 40, p. 4-25. Rapela, C. W., and Shaw, D. M., 1979, Trace and major element models of granitoid genesis in the Pampean Ranges, Argentina: Geochimica et Cosmochimica Acta 43, p. 1117-1129. Rapela, C. W., Heaman, L., and McNutt, R. H., 1982, Rb-Sr geochronology of granitoid rocks from the Pampean Ranges, Argentina: J(>umal of Geology, v. 90, p. 574-582. Rossi de Toselli, J., Toselli, A. J., Willner, A., and Medina, M. E., 1987, Geotermobarometria de granate-biotita-cordierita en los gneises de alto grado entre las regiones de Cafayate y Colalao del Valle, Sierra de Quilmes, Argentina: 10th Congreso Geológico Argentino, Actas 3, p. 25-30. Reissinger, M., 1983, Evolución geoquímica de las rocas plutónicas: Münstersche Forschungen zur Geologie und Palaontologie, v. 59, p. 101-112. Saavedra, J., Toselli, A., and Rossi de Toselli, J. N., 1984, Aspectos geológicos y geoquímicos del granito peralumínico de Loma Pelada, Tafi del Valle, Tucumán: Revista Asociación Geológica Argentina, v. 39, p. 12-27.

Saavedra, J., Rossi de Toselli, J., Toselli, A., and García Sanchez, A., 1985, The origin of the two-mica granites of the Loma Pelada pluton, northwest Argentina: Lithos, v. 18, p. 179-185. Saavedra, J., Toselli, A. Rossi de Toselli, J. N., and Rapela, C. W., 1987, Role of tectonism and fractional crystallization in the origin of lower Paleozoic epidote-bearing granitoids, northwestem Argentina: Geology, v. 15; p.709-713. Schalamuck, l., Dalla Salda, L., Angelelli, V., Fernandez, R., and Etcheverry, R., 1983, Rocas máficas y ultramáficas; Petrología y mineralización; Geología de la Sierra de Ancasti: Münstersche Forschungen zur Geologie und Palaontologie, v. 59, p. 113-136. Toselli, A. J., Rossi de Toselli, J. N., and Rapela, C. W., 1978, El basamento metamórfico de la Sierra de Quilmes: Revista Asociación Geológica Argentina, v. 33, p. 105-121. Toselli, A., Reissinger, M., Durand, F. R., and Bazan, C., 1983, Rocas graníticas; Geología de la Sierra de Ancasti: Münstersche Forschungen zur Geologie und Palaontologie, v. 59, p. 79-99. Toselli, A., Rapela, C., and Saavedra, J., 1987, Granitos Fanerowicos CircumPacificos; Field Trip Guide, Northern Pampean Ranges: 10th Congreso Geológico Argentino, Project IGCP 249, Andean Magmatism and its Tectonic Setting, Tucumán: Universidad de Tucumán, 46 p. Willner, A., 1983, Evolución metamórfica; Geología de la Sierra de Ancasti: Münstersche Forschungen zur Geologie und Palaontologie, v. 59,

p. 189-200. Willner, A. P., and Miller, H., 1982, Polyphase metamorphism

in the Sierra de

Ancasti (Pampean Ranges, NW Argentina) and its relation to deformation: 5th Congreso Latino-Americano Geología, Argentina, Actas 3, p. 441-455. Willner, A. P., Miller, H., and Lottner, U. S., 1985, The evolution ofthe Andean convergent plate margin in the early Paleowic between latitudes 15"5 and 34"5: Comunicaciones, v. 35, p. 257-259. MANUSCRIPT ACCEPTED BYTHE SOCIETY APRIL 18, 1989

Printed

in U .S.A.