Hands-on Statistical Process Control In the Classroom

2 downloads 0 Views 11MB Size Report
Hands-on Statistical Process Control. In the Classroom. Southwest Center for. Microsystems Education. -SCME-. Dr. Matthias W. Pleil. See www.scme-nm.org for ...
Hands-on Statistical Process Control In the Classroom Southwest Center for Microsystems Education -SCMEDr. Matthias W. Pleil See www.scme-nm.org for more!

 

The  work  presented  was  funded  in  part  by  the  Na5onal  Science  Founda5on   Advanced  Technology  Educa5on  program,  Department  of  Undergraduate   Educa5on  grant:  DUE  1205138    

SCME  is  a  Na*onal  Science  Founda*on  Advanced  Technological   Educa*on  (ATE)  Program  at  the  University  of  New  Mexico.     We  offer  professional  development  and  educa*onal  materials  to  excite   and  engage  high  school,  community  college  and  university  students  in   the  field  of  Microsystems  (MEMS)  technology.      Support  for  this  work  was  provided  by  the  Na*onal  Science  Founda*on's   Advanced  Technological  Educa*on  (ATE)  Program  DUE  #1205138       SEM  of  Loop  and  Hinge  System  Courtesy  of  Sandia  Na5onal  Laboratories   www.scme-­‐nm.org  

Outline   •  What  is  SPC  and  why  would  we  care?   •  Founda*onal  Sta*s*cal  Stuff   –  Mean,  Median,  range,  Variance/Sigma,   Distribu*ons  

•  Control  Charts   –  UCL,  LCL   –  WECO  rules  

•  Measurement  Systems   •  SCME  Materials  Available!  

Volunteers!   •  During  the  presenta*on….   –  Take  10  resistance  measurements  of  a  single   pencil  lead  and  write  each  down   –  Determine  Average   –  Determine  range   –  Determine  variance  (sigma)   –  Pass  it  on  to  another  to  repeat  

Why  do  we  need  (SPC)   Sta*s*cal  Process  Control?  

Quality  Product  

Biochip  slide  for  tes/ng  protein  arrays     [Image  courtesy  of  Argonne  Na/onal  Laboratories]  

Drug-­‐elu5ng  Stent  by  Taxus  [Image  provided  by  the  FDA]    

Sta*s*cal  Process  Control  (SPC)   SPC  is  about  “control”.  

Process   Varia*on  

Target  

Inherent  or  Common  Cause   Varia*on  

Special  Cause  Varia*on   Tracking  Your  Gas  Mileage   Common  cause  varia*on   33  mpg   Target   MPG  

30  mpg   27  mpg   Special  Cause   Varia*on   Time  

Special  Cause  Variability   Process  Steps:   1.  Silicon  Nitride  Deposi*on   2.  Lithography  for  chamber   3.  Lithography  for  sensing  circuit   4.  Metal  deposi*on  for  circuit   5.  Metal  Removal   6.  Etch  reference  chamber  

How  do  you  track   all  of  these   sources  of   variability  and   detect  special   causes?  

Types  of  data   •  Variable  Data   –  Data  Based  upon  measurements   –  Length,  *me,  weight,  temperature,  pressure,  film  thickness  

•  Agribute  Data   –  Data  based  upon  counts  (discrete)     –  Either  there  or  not   –  Number  of  defects,  acceptable  or  unacceptable   33  mpg  

  Target   MPG  

30  mpg   27  mpg   Time  

Variability   Photoresist  Thickness   Machine#1  

Machine#2   1.1  µm  

1.0  µm  

0.9  µm  

Time  

Variability   Photoresist  Thickness  

1.1  µm  

1.0  µm  

0.9  µm  

Time  

Variability   Photoresist  Thickness   Out  of  Control  Scenario   Day#1  

Day#2   1.1  µm  

1.0  µm  

0.9  µm  

Time  

Common  Cause  Varia*on   Controlled  Varia*on  

Special  Cause  Varia*on   Uncontrolled  Varia*on  

Another  Example   Process  Temperature   Out  of  Control  Scenario  

Time  

Desired  Varia*on  

Can  you  think  of  a   product  where  significant   varia*on  is  acceptable?    

Desired  Varia*on  

Can  you  think  of  a   product  where  significant   varia*on  is  acceptable?    

Varia*on  in  Microsystems   Hinge  System  

[Image courtesy of Sandia National Laboratories]

Sta*s*cal  Process  Control  and   Varia*on  –  When  to  Respond?  

Upper  Control  Limit  

Centerline  

Lower  Control  Limit  

Communica*on  is  KEY!   Operators  

Management  

Communica6on  

Engineers  

Technicians  

Sta*s*cs  for  Sta*s*cal  Process  Control   •  Sta*s*cs  for  Central  Tendency   –  Sample  Median   –  Sample  Mean  

•  Sta*s*cs  for  Variability   –  Sample  Range   –  Sample  Variance   –  Sample  Standard  Devia*on  

Sample  Median  –  Central  Tendency   Sample  Median     –  Represents  the  data  value  that  is  “physically”  in  the   middle  of  the  sample  set  when  arranged  in  numerical   order.     Example:   –  Given  the  data  set:  2,4,1,5,3   –  Order  the  data:  1,2,3,4,5  

–  Ques6on:  What  is  the  Median?  

Sample  Median  –  Central  Tendency   Sample  Median     –  Represents  the  data  value  that  is  “physically”  in  the  middle  of   the  sample  set  when  arranged  in  numerical  order.     Example:   –  Given  the  data  set:  2,  4,  1,  5,  3   –  Order  the  data:  1,2,3,4,5     Example:   –  Given  the  data  set:  2,  4  ,1,  5,  1  ,3   –  Order  the  data:  1,  1,  2,  3,  4,  5   –  Median  is  the  average  of  the  2  middle  #’s:  2  and  3   –  Median  =  2.5  

Sample  Mean  –  Central  Tendency   Mean   •  Universal  or  Arithme*c  Mean  =  µ   •  Sample  Mean  =  X   •  Mean  of  a  collec*on  of  sample  Means  =  X  

Σ!! != !

Calcula*on  of  Mean       5  Resist  Thickness  Values:  2.87,  2.99,  3.01,  3.15,  2.98  Microns      

µ ~  X  =  2.87  +  2.99+  3.01+  3.15  +  2.98   =    3.00  microns   5  

Sample  Mean  

What  is  X  ?  

Wafer 2.48 3.23 2.99 3.09 1.90 4.82 2.74 4.16 4.54 2.11 Wafer  #1  Sample  Mean  

X  =  3.48   microns  

Wafer Wafer 3.43 3.74 X   4.29 2.01 1.95 1.58 4.55 4.89 2.37 1.38 Wafer  #2  Sample  Mean   Wafer  #3  Sample  Mean  

X  =  3.32   microns  

X  =  3.48  +  3.32  +  2.72  +  2.49   =    3.00  microns   4  

X  =  2.72   microns  

Wafer#4 2.52 2.49 1.68 4.18 1.61 Wafer  #4  Sample  Mean  

X  =  2.49   microns  

 Sample  Range   Sta*s*cs  for  Variability   Sta*s*cs  for  Variability   –  Sample  Range   –  Sample  Variance   –  Sample  Standard  Devia*on  

•  Sample  Range   –  The  difference  between  the  maximum  value  minus  the   minimum  value.             2.87,  2.99,  3.01,  3.15,  2.98  

Ques6on  –  What  is  the  Sample  Range?  

 Sample  Range   Sta*s*cs  for  Variability   Sta*s*cs  for  Variability   –  Sample  Range   –  Sample  Variance   –  Sample  Standard  Devia*on  

•  Sample  Range   –  The  difference  between  the  maximum  value  minus  the   minimum  value.             2.87,  2.99,  3.01,  3.15,  2.98  

  3.15  –  2.87  =  0.28  Sample  Range  

Sample  Variance   Sta*s*cs  for  Variability   •  Sample  Variance   –  How  far  a  set  of  numbers  are  spread  out.  

!! =

! !!! (!!

− !)! !−1

•  5  Resist  Thickness  Values:  2.87,  2.99,  3.01,  3.15,  2.98  microns   •  Mean  =  3.00  micros  

•  σ2  =  0.01  Square  Microns    

Sample  Standard  Devia*on   Sta*s*cs  for  Variability   •  Sample  Standard  Devia5on   –  Measurement  of  how  the  data  are  distributed  around  the  sample   mean  and  within  a  range  of  values.  

!=

!! =

–  σ2  =  0.01  micron2   –  σ  =  0.1  micron  

     

! !!! (!!

− !)! !−1

Let’s  Have  Fun  with  Control  Charts!   X  -­‐Chart   Upper  Control  Limit  

X   Centerline   (Target)  

Lower  Control  Limit  

Normal  Distribu*on    

     

σ

σ

σ

σ

σ

σ

Control  Chart  Basics   X  -­‐Chart  



Upper   Control  Limit  

µ  + 3σ

     

µ + 2σ

µ + 1σ

Target  

X  

µ - 1σ µ - 2σ

µ  - 3σ Lower  Control  Limit  

Control  Chart  Basics   •  X  axis  is  *me  based  –  enter  data  as  it  is  collected  (why?)   •  Monitors  process  to  detect  special  cause  varia*on  and  manage   common  cause  varia*on    •  Common  Cause  Varia*on   –  Due  to  room  temperature   change   –  Line  personnel  

      •  Special  Cause  Varia*on   –  Changes  in  process   –  Unexpected  events   –  Change  in  vendors  of  a   product  ingredient   –  Leaks  in  a  vacuum  line  

! Upper"Control"Limit"

µ  + 3σ ! µ + 2σ! µ + 1σ! Centerline"

µ



µ

2σ !

µ 



X"

Lower"Control"Limit"

Control  Chart  Basics   X  -­‐Chart  

Control  Chart  Basics   X  -­‐Chart  

UCL

µ  + 3σ

Target  

LCL

µ  - 3σ

X  

Control  Chart  Basics   X  or  µ

=  3.00  microns   σ

=  0.1      microns  

X  -­‐Chart  

UCL

µ  + 3σ

3 + (3*0.1)= 3.03

Target  =  3.00  

X  

LCL

µ  - 3σ

3 - (3*0.1)= 2.97

Control  Chart  Basics   X  or  µ

=  3.00  microns   σ

=  0.1      microns        

X  -­‐Chart  

UCL

µ  + 3σ

3 + (3*0.1)= 3.03

µ + 2σ

µ + 1σ

Target  =  3.00  

X  

µ - 1σ µ - 2σ

LCL

µ  - 3σ

3 - (3*0.1)= 2.97

Control  Chart  Basics   X  or  µ

=  3.00  microns   σ

=  0.1      microns        

X  -­‐Chart  

UCL

µ  + 3σ

3 + (3*0.1)= 3.03

µ + 2σ

µ + 1σ

Target  =  3.00  

X  

µ - 1σ µ - 2σ

LCL

µ  - 3σ

3 - (3*0.1)= 2.97

Control  Chart  Basics   X  or  µ

=  3.00  microns   σ

=  0.1      microns        

X  -­‐Chart  

UCL

µ  + 3σ

3 + (3*0.1)= 3.03

µ + 2σ

µ + 1σ

Target  =  3.00  

X  

µ - 1σ µ - 2σ

LCL

µ  - 3σ

3 - (3*0.1)= 2.97

Control  Chart  Basics   Average

     

UCL,  LCL  Determined  from  historical  data  

Shewhart  Rules  

aka  Western  Electric  Rules  (WECO)   8  Rules  to  Signal  an  Out  of  Control  Process   –  Developed  by  a  Western  Electric  Engineer  –  Walter  Shewhart   •  •  •  •  •  •  •  •   

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  Two  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  3:  Four  out  of  five  successive  points  outside  μ±1σ  zone.   Rule  4:  Eight  or  more  successive  numbers  either  strictly  above  or  strictly   below  the  mean  (the  center).   Rule  5:  Six  or  more  successive  numbers  showing  a  con*nuous  increase  or   con*nuous  decrease.   Rule  6:  Fourteen  or  more  successive  numbers  that  oscillate  in  size  (i.e.   smaller,  larger,  smaller,  larger)   Rule  7:  Eight  or  more  successive  numbers  that  avoid  μ±1σ  zone.   Rule  8:  Fiteen  successive  points  fall  into  μ±1σ  zone  only,  to  either  side  of  the   centerline.  

A   B   C   C   B   A  

Shewhart  Rules  –  Rule  #1  

Rule  1:  The  existence  of  a  number  that  is  not  in  any  of  the  zones   labeled  A,  B,  and  C.  (See  special,  encircled  point  above.)    This   would  be  a  single  point  outside  the  μ±3σ  zone.  

A   B   C   C   B   A  

Shewhart  Rules  –  Rule  #2  

Rule  2:  Two  out  of  three  successive  numbers  in  a  zone  A  or   beyond  (by  beyond  we  mean  away  from  the  mean).    This  would  be   two  out  of  three  successive  points  outside  μ±2σ  zone.  

A   B   C   C   B   A  

Shewhart  Rules  –  Rule  #3  

Rule  3:  Four  out  of  five  successive  numbers  in  a  zone  B  or  beyond.   This  would  be  four  out  of  five  successive  points  outside  μ±1σ  zone.  

Shewhart  Rules  –  Rule  #4  

A   B   C   C   B   A  

Rule  4:  Eight  or  more  successive  numbers  either  strictly  above  or   strictly  below  the  mean  (the  center).  

A   B   C   C   B   A  

Shewhart  Rules  –  Rule  #5  

Rule  5:  Six  or  more  successive  numbers  showing  a  con*nuous   increase  or  con*nuous  decrease.  

Shewhart  Rules  –  Rule  #6  

A   B   C   C   B   A  

Rule  6:  Fourteen  or  more  successive  numbers  that  oscillate  in  size   (i.e.  smaller,  larger,  smaller,  larger)  

Shewhart  Rules  –  Rule  #7   A   B   C   C   B   A  

Rule  7:  Eight  or  more  successive  numbers  that  avoid  zone  C.  

Shewhart  Rules  –  Rule  #8  

A   B   C   C   B   A  

Rule  8:  Fiteen  successive  points  fall  into  zone  C  only,  to  either   side  of  the  centerline.  

Type  I  and  Type  II  Response  Errors   •  2  Types  of  Errors:  Type  I  and  Type  II   •  Type  I  –  False  Alarm   –  Decision  rules  lead  you  to  decide  that  special  cause   varia*on  is  present  when  in  fact  it  is  not  present.    

•  Type  II  –  Miss   –  Decision  rules  lead  you  not  to  decide  that  special   cause  varia*on  is  present  when  in  fact  it  is  present.   SPC  Rules  help  you  avoid  these  errors!      

Ques*on:  Let’s  test  the  rules   Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  Two  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  3:  Four  out  of  five  successive  points  outside  μ±1σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.  

Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

Rule  6:  14  or  more  successive  numbers  that  oscillate  in  size  (i.e.  smaller,  larger,  smaller,  larger)   Rule  7:  8  or  more  successive  numbers  that  avoid  μ±1σ  zone.   Rule  8:  15  successive  points  fall  into  μ±1σ  zone  only,  to  either  side  of  the  centerline  or  target.  

Ques*on:  Let’s  test  the  rules   Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  Two  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  3:  Four  out  of  five  successive  points  outside  μ±1σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  6:  14  or  more  successive  numbers  that  oscillate  in  size  (i.e.  smaller,  larger,  smaller,  larger)   Rule  7:  8  or  more  successive  numbers  that  avoid  μ±1σ  zone.   Rule  8:  15  successive  points  fall  into  μ±1σ  zone  only,  to  either  side  of  the  centerline  or  target.  

Process  Changes  -­‐  Shit   Shit  –  When  the  data  starts  to  center  around  a  different  mean  or  center  line.   3σ -­‐  UCL  

Centerline  or  Target  

New  mean  of  shited  data  

3σ -­‐  LCL  

Process  Changes  -­‐  Trend   Trend  –  When  the  process  mean  begins  to   gradually  move  in  one  direc*on.  

or  Target  

Process  Changes  -­‐  Cycle   Cycle  –  When  the  data  begins  to  increase  or  decrease     in  a  cyclical  or  repe**ve  manner.  

or  Target  

We  are  OOC,  Now  what?  

Out  of  Control  Ac*on  Plan  -­‐  OCAP   You  are  a  technician  in  the   photolithography  aisle  of  a  local  MEMS   fabrica*on  facility.    Ater  randomly   tes*ng  several  wafers  from  the  last   processing  batch  and  ploung  the  data   on  a  control  chart,  you  iden*fy  an  out-­‐ of-­‐control  situa*on  with  resist   thickness.  

Photoresist   Too  Thick?  

Run  a  boat  of   test  wafers,   re-­‐measure,   plot.  

3σ   2σ   1σ  

UCL   Photoresist   Thickness  

Target   1σ   2σ   3σ  

Too   thick?  

LCL  

Yes   Put  DOWN  the  Machine   and  TS  the  problem   Release  the  machine  for   produc*on  and   determine  the  cause  of   No   the  out-­‐of-­‐control   situa*on  

Out  of  Control  Ac*on  Plan  -­‐  OCAP   Photoresist   Too  Thick?  

Run  a  boat  of   test  wafers  

Too   thick?  

Yes   Put  DOWN  the  Machine   and  TS  the  problem   Release  the  machine  for   produc*on  and   determine  the  cause  of   No   the  out-­‐of-­‐control   situa*on  

Recognize  the  a  Problem  Exists  

Evaluate  Possible  Causes  

Analyze  the  Problem  

Develop  an  Ac6on  Plan  

Iden6fy  Possible  Causes  

Verify  and  Record  

Data  Collec*on/Analysis  Plan   Start   A   Take  5  temperature   measurements  during     the  process  

Average  the  5  run   temperatures  to  get   an  X-­‐bar  value   Plot  the  X-­‐bar  value   on  the  chart  

Is  your   NO   process  in     control?     YES   Process  is     In  control!  

Analyze  the  process   for  the  out  of  control   data  point.   (Look  at  methods,   equipment,  people,   materials,  environment)   Determine  the   cause  of  the  out   of  control  data  point.   Correct  the  cause  

A  

Control  Limits  are  NOT  Specifica*on  Limits   •  Control  Chart  Centerline   –  Derived  from  real-­‐*me  process  data  

•  Control  Limits   –  Derived  from  real-­‐*me  process  data  

•  Specifica*on  Limits  (Spec  Limits)   –  Boundaries  that  a  product  is  acceptable  or  not  acceptable  –  based  on  customer   requirements.  

•  Just  because  a  process  is  in  sta*s*cal  control  does  not  mean  it  is   always  within  spec  and  vise  versa   •  SPC  has  to  do  with  process  predictability   •  Process  Specifica*on  Limits  have  to  do  with  the  process  capability   •  General  Rule:    Do  not  put  Specifica*on  Limits  in  a  control  chart!  

EXAMPLE  –  SiO2  Growth   •  Silicon  Dioxide  Growth  for  a  Sacrificial  Layer  on  a   MEMS  device   •  Specifica*on  states  that  the  Average  Run   Temperature  (X)  should  be  1000°C  ±  10°C   Image  courtesy  of  UNM  MTTC  

[Image   courtesy  of  Sandia  Na5onal  Laboratories]   !

[Image courtesy of Sandia National Laboratories]

X  -­‐Chart   for  SiO2  Growth  

σ  =  3.77  °C

µ  + 3σ = 1004 + (3*3.77) = 1015°C µ  - 3σ = 1004 - (3*3.77) = 993°C

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

X  -­‐Chart   for  SiO2  Growth   Management  has  determined  that  this  process  should  be  monitored   for  only  the  following  4  Shewhart  Rules:     Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  Two  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly   below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase   or  con*nuous  decrease.          

Run$#9 992 989 987 994 990

X  -­‐Chart   for  SiO2  Growth   Run$#10 992 993 995 994 994

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

X  -­‐Chart   for  SiO2  Growth  

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  Two  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

990°C  

X  -­‐Chart   for  SiO2  Growth  

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  Two  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

990°C  

X  -­‐Chart   for  SiO2  Growth  

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  2  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

X  -­‐Chart   for  SiO2  Growth  

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  2  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

X  -­‐Chart   for  SiO2  Growth  

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  2  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

X  -­‐Chart   for  SiO2  Growth  

Rule  1:  A  single  point  outside  the  μ±3σ  zone.   Rule  2:  2  out  of  three  successive  points  outside  μ±2σ  zone.   Rule  4:  8  or  more  successive  numbers  either  strictly  above  or  strictly  below  the  mean.   Rule  5:  6  or  more  successive  numbers  showing  a  con*nuous  increase  or  con*nuous  decrease.  

UCL

µ + 3σ = 1015°C

Target  =  1004°C    

LCL

µ - 3σ = 993°C

Other  types  of  Charts   •  •  •  •  •  • 

X  and  R  chart   X  and  s  chart   p-­‐Chart  and  np-­‐chart  (defec*ves)   U  and  c  charts  (defects)   Individuals  Chart   Exponen*ally  Weighted  Moving  Average   (EWMA)  Chart  

X-­‐bar  R  charts  for  Film  Thickness   UCL   Target   LCL  

UCL   Mean  

Process  Performance  -­‐  Pp,  Ppk   •  Is  the  process  capable  of  delivering  a  consistent   product  –  one  that  is  in  specifica*on  99.9%  of   the  *me?   •  Process  Performance:  Pp  =  (USL-­‐LSL)/6σ   •  Process  Performance  Index:  Ppk  =  (USL-­‐μ)/3σ,   (LSL-­‐μ)/3σ  è  the  lesser  of  the  two.   •  What’s  the  difference?    

Difference  between  the  two?   •  Process  Performance:  Pp  =  (USL-­‐LSL)/6σ   •  Process  Performance  Index:  Ppk  =  (USL-­‐ μ)/3σ,  (LSL-­‐μ)/3σ  è  the  lesser  of  the   two.  

The  second  one  takes  into  account  how   well  your  are  running  to  target…    Think   about  it.    

Process  Capability  

•  Cp,  Cpk  is  what  is  typically  used  in  industry.   •  Same  as  Pp  and  Ppk  EXCEPT  the  way  you  calculate  sigma.     In  industry,  we  don’t  measure  everything,  but  samples.     So…  if  we  measure  5  sites/wafer  and  2  wafers  per  run   (lot)….  We  have  to  use  a  different  way.   –  We  use  the  within  sub-­‐group  standard  devia*on  to  es*mate  the    

Cp  Cpk  –  Some  Details   Individual(Vs(Average((n=3)( Same(Measurement(System(&(Sample( 104.15' 104.10'

Resistnce((Ohms)(

104.05' 104.00' 103.95' 103.90' 103.85' 103.80' 103.75' 103.70' 103.65' 1' 2'

3'

4'

5' 6'

7'

8'

9' 10' 11' 12' 13' 14' 15' 16' 17' 18' 19' Measurement( Ave'3'Meas'

Meter'A'(11040568)'

Cpk  >  1.33  is  capable     Cpk  >  1.66  is  very  capable,     Oten   for  27'cri*cal   20' 21' 22'required   23' 24' 25' 26' 28' 29' 30' Parameters.  

Why  d2   Individual(Vs(Average((n=3)( Same(Measurement(System(&(Sample( 104.15' 104.10'

Resistnce((Ohms)(

104.05' 104.00' 103.95' 103.90' 103.85' 103.80' 103.75' 103.70' 103.65' 1' 2'

3'

4'

5' 6'

7'

8'

9' 10' 11' 12' 13' 14' 15' 16' 17' 18' 19' 20' 21' 22' 23' 24' 25' 26' 27' 28' 29' 30' Measurement( Ave'3'Meas'

Meter'A'(11040568)'

SPC  Tools   •  Manufacturing  SPC  Tools  –     –  allows  one  to  apply  rules  to  easily  determine   if  your  process  is  capable  to  produce  quality   products  for  your  customer  in  the  future.   –  Determine  when  you  have  a  problem  as   soon  as  it  is  sta*s*cally  significant.   –  Keeps  you  from  driving  varia*on  by  “turning   the  knob”  too  oten  

Sources  of  Varia*on   •  •  •  • 

Machine  parameters   Materials   People  (procedures)   Measurement  Systems!  

So…  Tell  me  what  you  found?   •  Average?   •  Sigma?   •  Range?   •  Is  this  a  good  method  for  measuring   pencil  leads  or  not?   •  Is  the  measurement  gauge  adequate?  

My  Class  Data   Total'Popula9on'of'Measurements' Frequency' Number''of'Measurements'

30" 25" 20" 15" 10" 5" 0" 103.50"

103.60"

103.70"

103.80"

103.90"

Bin'1'Value'Range'

104.00"

104.10"

104.20"

Different  Meters  

25"

Individual)Meter)Frequency)

20" 15" meter"A" 10"

meter"B" meter"C"

5" 0" 103.50"

103.60"

103.70"

103.80"

103.90"

104.00"

104.10"

104.20"

Summary   •  SPC  is  a  sta*s*cal  scien*fic  method  that   provides  valuable  informa*on  about  a   process   •  They  type  of  varia*on  (common  and  special   cause)  should  be  understood  and  controlled.   •  Sta*s*cal  Concepts  used  in  SPC   –  Sample  median   –  Sample  mean  –  µ,  X,  X   –  Sample  range  -­‐  R   –  Sample  variance  –  σ2   –  Sample  standard  devia*on  – σ

Summary  cont.   •  Most  process  data  follows  a  Normal  Distribu*on   •  Process  Performance  and  Process  Capability  are   key  quality  tools   •  Shewhart  or  Western  Electric  Rules  can  be  used   to  determine  if  a  process  goes  out  of  control   •  Don’t  forget  about  the  measurement  system  –  it   contributes  to  the  varia*on  of  the  measurement   process.        

Resources   •  www.scme-­‐nm.org  -­‐  Download  the  SPC  Learning   Module:   –  –  –  –  –  – 

Sta*s*cal  Process  Control  Knowledge  Probe  (KP)  Pre-­‐test   SPC  PK#1:  Introduc*on  to  Sta*s*cal  Process  Control  (PK)   SPC  PK#2:  Control  Chart  Basics  (PK)   Ac*vity:  Hands-­‐on  SPC  Resistance  Measurement  Ac*vity   Ac*vity:  SPC  MEMS  Applica*on  Ac*vity  –  SiO2  Thickness   Sta*s*cal  Process  Control  Assessment  

•  Book:  “EZ  SPC”  by  Ralph  Celone  &  Ronald  Buckley    

Suggest Documents