Health-related quality of life in patients with cancer ...

2 downloads 0 Views 4MB Size Report
Cure 3. Cure 5. Daily self-perceived fatigue during chemotherapy (Ninot et al., 2013). Absente. Maximal .... 2014 in Bacro, 2014). A universal questionnaire?
Health-related quality of life in patients with cancer: From mean group measures to predictive individual indicator

Pr. Grégory Ninot EA 4556 Epsylon Research Unit Montpellier, France www.lab-epsylon.fr

A research unit bridging health and human sciences Researchers Sport sciences STAPS n = 7 (16%) 7; 16%

Medicine Médecine n = 4 (9%) 4; 9%

Philosophy Philosophie n1;=2% 1 (2%)

Psychologie Psychology 33; 73% n = 33 (73%)

www.lab-epsylon.fr

170 members 46 lecturers and full professors 5 clinicians 64 PhD students 6 post-docs 1 engineer 44 associates 3 admins

Inter-individual variability

Discriminative function 9

p < .05

Niveau de qualité HRQL scorede vie

8 7 6 5 4 3 2 1 0 Groupe Group A A

Groupe Group BB

Inter-individual variability

Evaluative function 8

Niveau de qualité HRQL scorede vie

7 6 5 Groupe Group A A

4

Groupe Group B B

3 2 1 0 Début Admission

Fin Discharge

Intra-individual variability

Explaining and forecasting? 10 9 8 7

Fast decliners (Kaplan et Ries, 2007)

6 5

p < .05

4 3 2 1

p < .30 Time

0 1

2

3

4

5

6

Clinically

Fatigue during breast cancer treatment: the worst symptom altering HRQL (Stone et al., 2003) Maximal 10

Cure 1

9 8

Cure 2

7

Cure 3

6

Cure 5

Cure 4

5 4 3 2 1

Absente 0 1

7

13

19

25

31

37

43

49

55

61

67

73

79

85

91

97 103

Daily self-perceived fatigue during chemotherapy (Ninot et al., 2013)

Paradigms

Inter-individual approach Theoretical aspects -  Classical

law neglects time (Prigogine, 1994) -  HRQL level (attitudes + social stereotypes) Methodological aspects -  Few

repeated measures (< 6) -  Many subjects required (n > 100) -  Gaussian statistics Psychometric aspects -  Long

instruments (e.g., QLQC30 = 30 items) -  Weak sensitivity (e.g., likert scales < 6)

Paradigms

Inter-individual approach

Intra-individual approach

Theoretical aspects -  Neglecting

time

ð  Historicity (Nowak & Vallacher, 1998)

-  Level

ð  Level

+ instability + dynamics ð  Rate = product of a complex system Methodological aspects

-  Few

repeated measures -  Many subjects -  Gaussian statistics

ð  Best

witness of self = self ð  Time series analyses ð  Cellular automata (Nowak et al., 2000)

Psychometric aspects -  Long

instruments -  Weak sensitivity

ð  Brief

instrument (Robins et al., 2001) ð  High sensitivity (VAS)

Intra-individual variability

Individual daily change

0

100

200

300

400

500

Random fluctuations around a reference value ð as a personality trait Auto-correlation ð NS

(0,0,0) : y t = µ + ε t

White noise

Intra-individual variability

Individual daily change

0

100

200

300

400

500

Accumulation of random impacts ð as a psychological state Auto-correlation ð p < .05

(0,1,0) : y t = y t-1 + ε t

Brownian motion

Intra-individual variability

Individual daily change

0

100

200

300

400

500

Relaxation oscillations around a fixed point attractor ð steady state Auto-correlation ð p < .05

(1,0,0) + cste : y t = µ + φy t-1 + ε t

Homeostasis

Intra-individual variability

Individual daily change

0

100

200

300

400

500

Random change around a local reference slowly evolving ð dynamic balance

Auto-correlation ð p < .05

(0,1,1) y t = y t-1 - θε (t-1) + ε t

Pink noise

Example of protocol design

Instrument - Physical Self Inventory 6b (Ninot et al., 2006; Fox and Corbin, 1989) Globally, I have a good opinion of myself Not at all

Absolutely 6,5 cm

- Random presentation of items - Measure error item - Personal zone of comment

Experimental design - Self-assessment twice a day (7:00 – 9:00 AM and PM)

Time series analysis - Auto-correlation, Autoregressive Integrated Moving Average, fractal analyses

Example of times series A : Man, 31 years old 9

8

7

6

5

4 avr

mai

juin

juil

août

sept

Time series of global self-esteem and measurement error item over a 6-month period (self-assessment twice a day, between 7:00 and 9:00, AM and PM)

Time series analysis : Auto-correlation function A : Man, 32 years old

Time series analysis : Auto-correlation function F : Woman, 26 years old

Time series F : Woman, 29 years old 9

8

7

6

5

4 avr

mai

juin

juil

août

sept

Time series of global self-esteem and measurement error item over a 6-month period (self-assessment twice a day, between 7:00 and 9:00, AM and PM)

Time series analysis : Auto-correlation function F : Woman, 26 years old

Discussion: Auto-correlation function

Instability (SD, Range, ADM) - Self-esteem > measure error item (Ninot et al., 2004; 2005) - Inter-individual difference = indicator (Kernis et al., 1993; Nezlek, 2002)

Historicity (ACF)

- Short term historicity ð continuity of self (Tap, 1980; Tesser et al., 1996) ð resistance to change (Vallacher & Nowak, 2005; Vallacher et al., 2002; Knowles & Lin, 2004)

ð self-verification (Swann, 1990) ð personality (McCrae & John, 1992)

Time series analysis : Auto-Regressive Integrated Moving Average

ARIMA : ecological condition 6 months

1 year

512 days (17mths)

n

8

8

4

Observations

364

728

1024

ARIMA (0,1,1)

8/8

48 / 48

7 / /48 24 24

Publication

Ninot et al. (2005) JP

Ninot et al. (2004) IDR

Delignières et al. (2004) NDPLS

ARIMA models obtained in adults (p < .001)

Time series analysis : Auto-Regressive Integrated Moving Average

ARIMA : experimental condition 4.15 hours Experimental 51 41 / 48

(0,0,0) : y t = µ + ε t

Ninot Ninotet etal. al.(in (2004) pressIDR a)

ARIMA model obtained in 8 adults (p < .001)

Time series analysis : Auto-Regressive Integrated Moving Average

Moving average model ARIMA (0,1,1) without significant constant

yt = yt-1 -θεt-1 + εt

Value at time t

Perturbation at time t

Value at time t-1

Fraction of the perturbation at time t-1

Mathematically: random variations around local value changing slowly

Time series analysis : Auto-Regressive Integrated Moving Average

y t = y t-1 - θε (t-1) + ε t Adaptation to perturbation

Random event(s)

Preservation

Balance (0.0 ð 1.0) Without significant constant A local equilibrium around a slowly varying reference value Dynamical adjustment (Ninot et al., 2004, 2005; Delignières et al., 2004)

Time series analysis : Discussion

Dynamics ARIMA : - Same dynamics (0,1,1) - Self-esteem evolves slowly under influence of life events - θ determines the balance between preservation and adaptation Fractal analyses ð 1/ f noise - ubiquitous phenomenon in biological systems (West & Shlesinger, 1990)

- intrinsic properties of stability and resistance to perturbations (Schmidt et al., 1991)

- characteristic signature of adaptive, young and healthy systems (Haussdorf et al., 1997)

Clinically

1 - Detect very quickly HRQL alteration Possible interpretations: - Uninformed knowledge about cancer disease - Untrained disease management (routine or acute situation) - Presence of comorbidities and complications (depression, sleep trouble…) - Low social support Possible consequences: - Increase of risk of exacerbation or aggravation - Increase of unhealthy behaviors - Appearance of new disease - Deterioration of communications with clinicians, caregivers and close persons (Ninot, 2014)

Clinically

2 - Debate with the team to discuss and personalize support care strategies

Fonctional

Psychological

Relational

- Treatment adjustment

- Complementary tests

- Social support

- Complementary tests

- Psychological intervention

- Exercise

- Disease management

- Psychological intervention - Disease management - Heath network or association of patients

(Ninot, 2014)

Clinically

3 - Following treatment / care efficacy Change Δ1ë v 22 t "#$%&#' -)#),$+,)' ✪

MCID/0-



t "#$%&#' '#".*%'

-0

! ✪ ✪ ! !

t "#$%&#' "( )*$+,)'

✪ ! !



!

!

! ✪



Minimally Clinical Individual Change (MCID)

! !

MCID a / L5 a / L5

!

(Ninot, 2014)

Clinically

4 - Accompanying a person with a chronic disease

Not at all

Absolutely

(Ninot, 2014)

Clinically

5 - Therapeutic value of retrospective presentation? 150

J. Monthuy-Blanc et al.

Figure 1

Séries temporelles de l’estime de soi (i.e., estime globale de soi et apparence physique perc ¸ue) de Jacinthe.

Séries temporelles relatives à l’estime de soi Les niveaux d’estime globale de soi, de valeur physique et

(Monthuy-Blanc et al., 2008, JTCC)

contagion ou de surgénéralisation entraîne aussi un renforcement des conduites anorexiques (e.g., prises de laxatifs

Clinically

6 - With the help of electronic devices - delivering personalized disease management message - monitoring comprehensive cancer support care

(Ninot et al., 2010, RMR)

Conclusion

The 4 P’s of Medicine Predictive, Personalized, Preemptive, and Participatory (Zerhouni, 2008)

HRQL and uncertainty Uncertainty (Leplège, 1999)

Dynamics of HRQL scores and related health behaviors Case manager, serious game, E-Health…

A universal questionnaire? A specific instrument for each specific use (Ninot, 2014 in Bacro, 2014) Brief instrument repeatedly used to analyze, model and forecast

Conclusion

Intra-individual

Inter-individual

Ninot G. (2012, RMR)

Conclusion

Conclusion Acknowledgements: Jean Bilard, Marina Fortes, Didier Delignières, Grégory Moullec, Johana Monthuy-Blanc, Paquito Bernard, Christophe Gernigon, Robin Vallacher, Kenneth Fox

[email protected]