HERZ-TYPE HARDY SPACES FOR THE DUNKL

0 downloads 0 Views 237KB Size Report
transform on these spaces and establish a version of Hardy inequality for ... form, Dunkl translation operators, Herz-type Hardy spaces, atomic decom- positions.
HERZ-TYPE HARDY SPACES FOR THE DUNKL OPERATOR ON THE REAL LINE



A. Gasmi 1 , M. Sifi

3

2

and F. Soltani

Dedicated to Professor Khalifa Trim`eche, for his 60th birthday Abstract We introduce some new weighted Herz spaces associated with the Dunkl operator on R. Also we characterize by atomic decompositions the corresponding Herz-type Hardy spaces. As applications we investigate the Dunkl transform on these spaces and establish a version of Hardy inequality for this transform. 2000 Mathematics Subject Classification: Primary 46F12, Secondary 44A15, 44A35 Key Words and Phrases: Dunkl operator, Dunkl kernel, Dunkl transform, Dunkl translation operators, Herz-type Hardy spaces, atomic decompositions 1. Introduction In the last years Herz and Herz-type Hardy spaces in the Euclidean case have been intensively considered in [11,12,13]. These spaces turn out to be very useful in the study of the sharpness of multiplier theorems on H p spaces (see [14]). In this work, we consider certain weighted Herz spaces, next we define the corresponding Hardy spaces in terms of the Dunkl analysis. ∗

The authors are supported by the DGRST research project 04/UR/15-02

288

A. Gasmi, M. Sifi, F. Soltani

The Dunkl analysis with respect to α ≥ −1/2 concerns the Dunkl operator Λα , the Dunkl transform Fα , the multiplication ∗α , and a certain measure µα on R. In the limit case α = −1/2, then Λα , Fα , ∗α and µα agree with the operator d/dx, the Fourier transform, the standard convolution and the weighted Lebesque measure √12π dx, respectively. The Dunkl operators on Rn in [7] are differential-difference operators associated with some finite reflection groups. They are important in pure mathematics and in certain parts of quantum mechanics and one expects that the results in this paper will be useful when discussing continuity properties in Dunkl analysis. Furthermore, these operators provide a useful tool in the study of special functions associated with root systems (cf. [8,9,20,24]). They are closely related to certain representations of degenerated affine Hecke algebras (see [4,16]). Moreover the commutative algebra generated by these operators has been used in the study of certain exactly solvable models of quantum mechanics, namely the Calogero-SutherlandMoser models, which deal with systems of identical particles in one dimensional space (cf. [1,10]). The paper is organized as follows. In Section 2 we recall some results about harmonic analysis associated with the Dunkl operator on R. Then, we define the α-grand maximal function of N -order Gα,N . In Section 3, using the α-grand maximal function Gα,N , we define for 0 < p ≤ 1 < q ≤ ∞, β ≥ 1 − 1/q and large N ∈ N: β,p - The homogeneous weighted Herz space K˙ α,q , by the space of functions P∞ p q 2(α+1)βkp kf χk kq,α < ∞, where Lqloc (µα ) is f in Lloc (µα ) such that k=−∞ 2 the space of functions f such that |f |q is locally integrable with respect to the −1 measure dµα (x) := (2α+1 Γ(α + 1)) |x|2α+1 dx and χk is the characteristic function of the set {x ∈ R / 2k−1 ≤ |x| ≤ 2k }. β,p,N - The Herz-type Hardy spaces H K˙ α,q are as follows:o n β,p,N 0 β,p ˙ H Kα,q := f ∈ S (R) / Gα,N (f ) ∈ K˙ α,q . We study the continuity property of the operator Gα,N on these spaces. Next we establish their characterizations in terms of decompositions into central atoms. In Section 4, the atomic decomposition allows us to study the Dunkl β,p,N transform Fα on the Herz-type Hardy spaces H K˙ α,q . In particular, we establish the following version of Hardy inequality for F α: Z dy ≤ C kf kH K˙ 1/2,1 . |Fα (f )(y)| |y| α,2 R In the classical case this property is studied in [5,6].

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . .

289

Throughout the paper we use the classic notation. Thus S(R) and S 0 (R) are the Schwartz space on R and the space of tempered distributions on R respectively. Finally, C denotes a positive constant whose value may vary from line to line. 2. Preliminaries We recall first some basic definitions and facts. We consider the Dunkl operator Λα , α ≥ −1/2, associated with the reflection group Z2 on R: d 2α + 1 h f (x) − f (−x) i Λα f (x) := f (x) + . dx x 2 Note that Λ−1/2 = d/dx. For α ≥ −1/2 and λ ∈ C, the initial problem: Λα f (x) = λf (x), f (0) = 1, has a unique solution Eα (λx) called Dunkl kernel given by λx Eα (λx) = =α (λx) + =α+1 (λx), x ∈ R, 2(α + 1) where =α is the modified Bessel function of order α given by ∞ X (λx/2)2n . =α (λx) := Γ(α + 1) n! Γ(n + α + 1)

(1)

n=0

eλx .

Note that E−1/2 (λx) = See [8,9,18] and [25]. Furthermore, the Dunkl kernel Eα (λx) can be expanded in a power series in the form: ∞ X (λx)n 2n ({n/2})! n+1 Eα (λx) = , bn (α) = Γ({ } + α + 1), (2) bn (α) Γ(α + 1) 2 n=0

where {a} is the integer part of a ∈ [0, ∞[ (see [18]). Let dµα (x) := (2α+1 Γ(α + 1))

−1

|x|2α+1 dx.

We denote by Lp (µα ), p ∈ [1, ∞], the Lebesque space on R with respect to the measure µα . In the following we use the shorter notation kf kp,α instead of kf kLp (µα ) . The Dunkl kernel gives rise to an integral transform, called Dunkl transform on R, which was introduced and studied in [9]. The Dunkl transform ofZ a function f ∈ L1 (µα ), is given by Fα (f )(y) :=

R

Eα (−ixy)f (x)dµα (x),

y ∈ R.

290

A. Gasmi, M. Sifi, F. Soltani

Here the integral makes sense since |Eα (ix)| ≤ 1 for every x ∈ R ([17, p.295]). Note that F−1/2 agrees with Z the Fourier transform F, given by: F(f )(y) := (2π)−1/2 e−ixy f (x) dx, y ∈ R. R

Proposition 1. (See [24, p.25,26]) i) For all f ∈ L1 (µα ), we have kFα (f )k∞,α ≤ kf k1,α . ii) For all f ∈ S(R), we have Fα (Λα f )(y) = iy Fα (f )(y), y ∈ R. iii) Fα is a topological isomorphism on S(R) which extends to a topological isomorphism on S 0 (R). Theorem 1. (See[9,24]) i) Plancherel theorem: The Dunkl transform Fα is an isometric isomorphism of L2 (µα ). In particular, kf k2,α = kFα (f )k2,α . ii) Inversion formula: Let f be a function in L1 (µα ), such that Fα (f ) ∈ L1 (µα ), then Fα−1 (f )(x) = Fα (f )(−x), a.e. x ∈ R. Notation. For all x, y, z ∈ R, we put: h i Wα (x, y, z) := 1 − σx,y,z + σz,x,y + σz,y,x ∆α (|x|, |y|, |z|), where

( σx,y,z :=

and

    

∆α (|x|, |y|, |z|) :=

1−α

dα = 2

x2 +y 2 −z 2 , 2xy

´³ (|x|+|y|)2 −z 2

dα     0,

if x, y ∈ R\{0} otherwise

0,



(3)

´iα−1/2

z 2 −(|x|−|y|)2 |xyz|2α

,

if |z| ∈ Ax,y otherwise ,

¯ i h¯ √ ¯ ¯ (Γ(α + 1)) / π Γ(α + 1/2), Ax,y = ¯|x| − |y|¯, |x| + |y| . 2

Remark. (See [17]). The signed kernel Wα is even and satisfies: Wα (x, y, z) = Wα (y, x, z) = Wα (−x, z, y), Wα (x, y, z) = Wα (−z, y, −x) = Wα (−x, −y, −z),

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . . and

291

Z R

|Wα (x, y, z)| dµα (z) ≤ 4.

Theorem 2. (See [17]) i) Let α > −1/2, λ ∈ C. The Dunkl kernel Eα satisfies the following product formula: Z Eα (λz)dνx,y (z); x, y ∈ R, Eα (λx)Eα (λy) = R

where νx,y is a signed measures given by   Wα (x, y, z)dµα (z), dδx (z), dνx,y (z) =  dδy (z),

if x, y ∈ R\{0} if y = 0 if x = 0.

ii) The measures νx,y have the following properties: Z supp (νx,y ) = Ax,y ∪ (−Ax,y ), kνx,y k := d|νx,y |(z) ≤ 4. R

The Dunkl translation operators τx , x ∈ R are defined for a continuous function f on R, by Z τx f (y) := f (z)dνx,y (z), y ∈ R. R

Let f and g be two continuous functions on R with compact support. We define the Dunkl multiplication ∗α of f and g by Z f ∗α g(x) :=

R

τx f (−y)g(y)dµα (y),

x ∈ R.

The multiplication ∗α is associative and commutative ([17]). Note that ∗−1/2 agrees with the standard convolution ∗. The following two propositions are shown in [19]. Proposition 2. i) For all x ∈ R and f ∈ Lq (µα ), q ∈ [1, ∞]: kτx f kq,α ≤ 4 kf kq,α . ii) For all x ∈ R and f ∈ L1 (µα ): Fα (τx f )(λ) = Eα (ixλ) Fα (f )(λ),

λ ∈ R.

292

A. Gasmi, M. Sifi, F. Soltani

Proposition 3. i) Assume that q, q 0 , r ∈ [1, ∞] satisfy the Young condition 1/q + 1/q 0 = 1 + 1/r. Then the map (f, g) → f ∗α g extends to a continuous map from 0 Lq (µα ) × Lq (µα ) to Lr (µα ), and we have kf ∗α gkr,α ≤ 4 kf kq,α kgkq0 ,α . ii) For all f ∈ L1 (µα ) and g ∈ L2 (µα ), we have Fα (f ∗α g) = Fα (f ) Fα (g).

Proposition 4. i) The operators τx , x ∈ R, are continuous from S(R) into itself. ii) For all f ∈ S(R) and x ∈ R, we have Λα (τx f Z) = τx (Λα f ). iii) For all f ∈ S 0 (R) and φ ∈ S(R) such that R

have lim f ∗α φt = f,

t→0

φ(x)dµα (x) = 1, we

in S 0 (R),

where φt is the dilation of φ given by ³ ´ x φt (x) := t−2(α+1) φ , t

x ∈ R.

(4)

We will make use the Hardy-Littlewood maximal function. For a locally integrable function f on R, we define its maximal function Mα (f ), by Z t o n 1 |τx (f )(y)| dµα (y) , x ∈ R . Mα (f )(x) := sup t>0 µα (] − t, t[) −t This operator satisfies the following properties. Proposition 5. For all q ∈ ]1, ∞[, the operator Mα is continuous from Lq (µα ) into itself. P r o o f. Since the operator Mα is sub-linear it suffices to show the result for non-negative functions only. From (3), we have |W (x, y, z)| ≤ 4 ∆α (|x|, |y|, |z|), |z| ∈ Ax,y , where ∆α is the Bessel kernel introduced in (3). We write f = fe + fo with fe even and fo odd, then Z |x|+|y| |τx f (y)| ≤ 8 ¯ ¯ fe (z)∆α (|x|, |y|, |z|)dµα (z). ¯|x|−|y|¯

(5)

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . .

293

Thus M(f )(x) ≤ 4 fe∗ (|x|), where fe∗ is the maximal function of fe on the Bessel-Kingman hypergroups [3,23]. Therefore by using [3, p.58] (see also [23]), there exists a constant Cq > 0, so that kMα (f )kq,α ≤ Cq kfe kq,α ≤ Cq kf kq,α , which proves the result. For all N ∈ N, we denote by FN the subset of S(R) constituted by all those φ ∈ S(R) such that supp(φ) ⊂ [−1, 1] and for all m, n ∈ N such that m, n ≤ N , we have ρm,n (φ) := sup(1 + |x|)m |Λnα φ(x)| ≤ 1. (6) x∈R

Moreover the system of semi-norms {ρm,n }m,n∈N generates the topology of S(R) (see [2]). Let f ∈ S 0 (R) and N ∈ N. We define the α-grand maximal function of N -order Gα,N (f ) of f , by Gα,N (f )(x) :=

sup t>0, φ∈FN

|φt ∗α f (x)|,

x ∈ R,

where φt is the dilation of φ given by (4). According to Proposition 4 and by proceeding in a standard way as in [21,22], we obtain the following. Corollary 1. The α-grand maximal function Gα,N is a bounded continuous operator from Lq (µα ) into itself, for every q ∈ ]1, ∞], provided that N > 2(α + 1). 3. Herz-type Hardy spaces In this section we describe certain weighted Herz-type Hardy spaces in terms of the Dunkl analysis. Definition 1. Let β ∈ R, p ∈ ]0, ∞[ and q ∈ [1, ∞]. β,p i) The homogeneous weighted Herz space K˙ α,q is the space constituted q by all the functions f ∈ Lloc (µα ), such that ∞ h X i1/p kf kK˙ β,p := 22(α+1)βkp kf χk kpq,α < ∞, α,q

k=−∞

where χk is the characteristic function of Ak := {x ∈ R / 2k−1 ≤ |x| ≤ 2k }.

294

A. Gasmi, M. Sifi, F. Soltani

β,p ii) The non-homogeneous weighted Herz space Kα,q is defined, as usual, β,p β,p q ˙ by Kα,q := L (µα ) ∩ Kα,q . Moreover, kf kK β,p := kf kq,α + kf kK˙ β,p . q,α

α,q

0,q 0,q Note that K˙ α,q = Kα,q = Lq (µα ).

Remark. By proceeding as in [13], we can obtain blocks decompositions β,p β,p and Kα,q . by the elements of the Herz spaces K˙ α,q β,p ˙ We now study some properties for Kα,q . It is remarkable that we can β,p establish similar results for Kα,q . For simplicity, we prove our results in the homogeneous version.

Proposition 6. Let p ∈ ]0, ∞[ , q ∈ ]1, ∞] and −1/q < β < 1 − 1/q. β,p Then the operator Gα,N , N > 2(α + 1) is continuous from K˙ α,q into itself. P r o o f. Assume that f is a compactly supported and integrable function on R. For x ∈ R and t > 0, Zwe have φt ∗α f (x) =

R

τx φt (y)f (−y)dµα (y),

where φt is the dilation of φ given by (4). ³ ´ Z τx/t φ ³yt ,´we obtain Using the fact τx φt (y) = t−2(α+1) y φt ∗α f (x) = t−2(α+1) τx/t φ f (−y)dµα (y). t R Let φ ∈ FN . Then from (5) we have Z (|x|+|y|)/t ¯ h i ³ y ´¯ |x| |y| ¯ ¯ ¯τx/t φ ¯≤4 ¯ ¯ ∆α ( , , |z|) |φ(z)| + |φ(−z)| dµα (z). (7) ¯|x|−|y|¯/t t t t Thus we deduce that ¯ ¯ ´−2(α+1) ³ y ´¯ ³¯ ¯ ¯ ¯ ¯ ; x, y ∈ R and t > 0. ¯τx/t φ ¯ ≤ C ¯|x| − |y|¯/t t Hence, we conclude for x ∈ / suppfZthat |f (y)| |Gα,N (f )(x)| ≤ C ¯ ¯2(α+1) dµα (y). ¯ R ¯ ¯|x| − |y|¯

(8)

To prove our result we will use a procedure similar to the one developed in the proof of [14,Theorem 1]. Assume that p, q ∈ ]1, ∞[. β,p Let f ∈ K˙ α,q . We can write ∞ h X i1/p 22(α+1)kβp kGα,N (f )χk kpq,α kGα,N (f )kK˙ β,p = ≤ E1 + E2 + E3 , α,q

k=−∞

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . . where E1 =

∞ h X

22(α+1)kβp

k−3 ³ X

k=−∞

22(α+1)kβp

k+2 ³ X

k=−∞

and E3 =

∞ h X

´p i1/p

l=−∞

∞ h X

E2 =

kGα,N (f χl )χk kq,α

kGα,N (f χl )χk kq,α

295

,

´p i1/p

l=k−2

22(α+1)kβp

∞ ³ X

k=−∞

kGα,N (f χl )χk kq,α

´p i1/p

.

l=k+3

We now analyze Ej , j = 1, 2, 3. If k ∈ Z, x ∈ Ak and l ≤ k − 3, then according to (8) and H¨older’s inequality, we obtain Z |Gα,N (f χl )(x)| ≤ C

Al

|f (y)| ¯ ¯2(α+1) dµα (y) ¯ ¯ ¯|x| − |y|¯ C 22(α+1)(l−k−l/q) kf χl kq,α . + 1))1−1/q



(2α+1 Γ(α

Hence, if 0 < γ < 1 and β < γ(1 − 1/q), then E1 ≤ C

∞ ³ X k−3 h X k=−∞

≤ C

∞ h X

22(α+1)[kβ+(l−k)(1−1/q)] kf χl kq,α

´p i1/p

l=−∞ k−3 ´i1/p ³ X 22(α+1)p[kβ+γ(l−k)(1−1/q)] kf χl kpq,α , Sk (γ, p) l=−∞

k=−∞

where Sk (γ, p) =

k−3 ³ X

´ 0 2(α+1)p0 (l−k)(1− 1q )(1−γ) p/p

2

,

1/p + 1/p0 = 1.

l=−∞

Since Sk (γ, p) ≤ C, then E1 ≤ C

∞ h X

22(α+1)plβ kf χl kpq,α

l=−∞

≤ C

∞ h X l=−∞

∞ X

22(α+1)p(k−l)[β−γ(1−1/q)]

k=l+3

22(α+1)plβ kf χl kpq,α

i1/p

= C kf kK˙ β,p . q,α

i1/p

296

A. Gasmi, M. Sifi, F. Soltani To estimate E2 , from Corollary 1, we get E2 ≤ C

∞ h X

2(α+1)kβp

2

k=−∞

h

∞ X

≤ C

k+2 ³ X

kf χl kq,α

´p i1/p

l=k−2

22(α+1)kβp

k=−∞

k+2 X

kf χl kpq,α

i1/p

≤ C kf kK˙ β,p . q,α

l=k−2

Finally, if k, l ∈ Z, x ∈ Ak and l ≥ k + 3, from (8), we deduce that C |Gα,N (f χl )(x)| ≤ α+1 2−2(α+1)l/q kf χl kq,α . (2 Γ(α + 1))1−1/q Then, by proceeding as in the analysis of E1 , it follows that E3 ≤ C kf kK˙ β,p . α,q

β,p into itself. Thus we conclude that Gα,N is bounded from K˙ α,q

Definition 2. Let N ∈ N, β ∈ R, p ∈ ]0, ∞] and q ∈ ]1, ∞]. The Herzβ,p,N type Hardy space H K˙ α,q is the space of distributions f ∈ S 0 (R) such that β,p Gα,N (f ) ∈ K˙ α,q . Moreover, we define kf kH K˙ β,p,N := kGα,N (f )kK˙ β,p . α,q

α,q

β,p,N space HKα,q

Note that as in the same we define the case. In particular, we have the following Lemma 1. 1 − 1/q. Then

for the non-homogeneous

Let N > 2(α + 1), p ∈ ]0, ∞], q ∈ ]1, ∞] and −1/q < β < β,p,N β,p H K˙ α,q = K˙ α,q .

β,p P r o o f. Let f ∈ K˙ α,q , from Proposition 6 we deduce that Gα,N (f ) ∈ β,p β,p,N ˙ ˙ Kα,q . Hence f ∈ H Kα,q . Z β,p,N ˙ Conversely, let f ∈ H Kα,q and φ ∈ FN such that φ(x)dµα (x) = 1. R

Since

h kf kH K˙ β,p,N := α,q

∞ X k=−∞

22(α+1)βkp kGα,N (f )χk kpq,α

i1/p

,

we deduce that for every k ∈ N, Gα,N (f )χk is bounded in Lq (µα ). On the other hand, let 0 < a < b < ∞. Since supp(φ) ⊂ [−1, 1], we can write

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . .

297

Z

Z |x|+|y| f ∗α φt (x) = f (−y) ¯ ¯ φt (z)dνx,y (z)dµα (y) ¯|x|−|y|¯ Jx,t ¯ ¯ Z Z −¯|x|−|y|¯ + f (−y) φt (z)dνx,y (z)dµα (y), Jx,t

−|x|−|y|

where Jx,t = [−|x| − t, −|x| + t] ∪ [|x| − t, |x| + t]. Then for |x| ∈ [a, b] and t ∈ (0, a/2), we obtain Z f (−y)τx φt (y)dµα (y), f ∗α φt (x) = Ja,b

where Ja,b = [−a/2 − b, −a/2] ∪ [a/2, a/2 + b]. Hence f ∗α φt (x) = g ∗α φt (x), |x| ∈ [a, b], for a certain g ∈ Lq (µα ), being g(x) = f (x), |x| ∈ [a, b], when t is small enough. By a standard argument, we have lim g ∗α φt = g, a.e. x ∈ R. Then, t→0

lim f ∗α φt = f,

t→0

a.e. |x| ∈ [a, b].

Thus we show that |f (x)| ≤ Gα,N (f )(x),

a.e. |x| ∈ [a, b].

From this inequality and since Gα,N (f )χk is bounded in Lq (µα ), we deduce that f ∈ Lqloc (µα ) and kf kK˙ β,p ≤ kGα,N (f )kK˙ β,p < ∞. It concludes that α,q α,q β,p f ∈ K˙ α,q . β,p,N In the sequel, we are interested in the spaces H K˙ α,q , when β ≥ 1−1/q. β,p,N Now, we turn to the atomic characterization of the space H K˙ α,q .

Definition 3. Let q ∈ ]1, ∞] and β ≥ 1 − 1/q. A measurable function a on R is called a (central) (β, q)-atom if it satisfies: (i) supp(a) ⊂ [−r, r], for a certain r > 0, −2(α+1)β , (ii) kak Z q,α ≤ r (iii) R

a(x)xk dµα (x) = 0, k = 0, 1, ..., 2s + 1,

where s = {(α + 1)(β − 1 + 1/q)} (the integer part of (α + 1)(β − 1 + 1/q)). Theorem 3. Let 0 < p ≤ 1 < q ≤ ∞, β ≥ 1 − 1/q and N ∈ N, β,p,N N > 2(2s + 3 + α). Then f ∈ H K˙ α,q if and only P if there exist, for all ∞ p j ∈ N\{0}, an (β, q)-atom a and λ ∈ C, such that j j j=1 |λj | < ∞ and P∞ f = j=1 λj aj . Moreover,

298

A. Gasmi, M. Sifi, F. Soltani

kf kH K˙ β,p,N ∼ inf

∞ ³X

α,q

|λj |p

´1/p

,

j=1

where the infimum is taken over all atomic decompositions of f . P r o o f. We first verify the necessity: Suppose a is an (β, q)-atom and assume that q < ∞ (when q = ∞ we can proceed analogously). It is enough to verify that kGα,N (a)kK˙ β,p ≤ C, where C is a constant independent of a. α,q

Let supp(a) ⊂ [−r, r] and 2k0 < r < 2k0 +1 for some k0 ∈ Z. We write kGα,N (a)kp˙ β,p Kα,q

∞ X

=

22(α+1)βkp kGα,N (a)χk kpq,α := I1 (k0 ) + I2 (k0 ),

k=−∞

where

kX 0 +3

I1 (k0 ) = and I2 (k0 ) =

22(α+1)βkp kGα,N (a)χk kpq,α ,

k=−∞ ∞ X

22(α+1)βkp kGα,N (a)χk kpq,α .

k=k0 +4

For I1 (k0 ) we have

I1 (k0 ) ≤

kGα,N (a)kpq,α

kX 0 +3

22(α+1)βkp .

k=−∞

Applying Proposition 5 and (ii) of Definition 3, we obtain I1 (k0 ) ≤ C kakpq,α 22(α+1)βk0 p ≤ C, where C is a constant that does not depend on the (β, q)-atom a. In order to estimate I2 (k0 ), we need a pointwise estimate of Gα,N (a)(x) on Ak for k ≥ k0 +4. Suppose now that φ ∈ FN . According to [15, Theorem 2], φ admits a generalized Taylor formula with integral remainder Z |x| n X Λkα φ(0) k φ(x) = x + wn (x, y)Λn+1 (9) α φ(y)dµα (y), bk (α) −|x| k=0

where bn (α) given by (2) and wn (x, y) a kernel satisfying: Z |x| wn (x, y)dµα (y) ≤ cn (α)|x|n+1 ,

(10)

−|x|

where cn (α) =

h 1 1 1 i + . 22α+1 Γ(α + 1) bn+1 (α) bn (α)

Then, if x ∈ R and n ∈ N with n ≤ 2s + 1, (iii) of Definition 3 allows to write

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . .

Z Z a ∗α φt (x) =

R

|x|

−|x|

299

a(−y)wn (y, z)τx (Λn+1 α φt )(z)dµα (z)dµα (y),

where φt is the dilation of φ given by (4).

³ ´ −2α−n−3 φ z , we obtain Using the fact Λn+1 α (φt )(z) = t t Z Z |x| ³z ´ a ∗α φt (x) = t−2α−n−3 dµα (z)dµα (y). a(−y)wn (y, z)τx/t (Λn+1 φ) α t R −|x|

n+1 Let (Λn+1 α φ)e be the even part of Λα φ, then from (7), we have

Z (|x|+|z|)/t ¯ ³ z ´¯ |x| |z| ¯ ¯ n+1 ¯τx/t (Λα φ) ¯ ≤ 8 ¯ ¯ ∆α ( , , u)|(Λn+1 α φ)e (u)|dµα (u) ¯ ¯ t t t |x|−|z| /t Z (|x|+|z|)/t |x| |z| ≤ 8ρm,n+1 (φ) ¯ ¯ (1+|u|)−m ∆α ( , , u)dµα (u) ¯|x|−|z|¯/t t t ¯ ¯ ´−m ³ ¯ ¯ ≤ 4ρm,n+1 (φ) 1 + ¯|x| − |z|¯/t . Here ρm,n (φ) are the semi-norms given by (6). Hence, Z Z |y| 4ρm,n+1 (φ) |a(−y)||wn (y, z)| ¯ ¯ ´m dµα (z)dµα (y). ³ |a ∗α φt (x)| ≤ 2α+n+3 ¯ ¯ t R −|y| 1 + ¯|x| − |z|¯/t From (i) of¯ Definition ¯ ¯ ¯3, there exists a constant θy ∈ [−|y|, |y|], such ¯ ¯ ¯ ¯ that ¯|x| − |θy |¯ ≤ ¯|x| − |z|¯, for all z ∈ [−|y|, |y|]. Thus, Z ¯ ¯´−m ³ 4cn (α)ρm,n+1 (φ) ¯ ¯ n+1 |a ∗α φt (x)| ≤ |y| |a(−y)| t + |x| − |θ | dµα (y). ¯ y ¯ tn−m+2α+3 R 1 , putting n = 2s + 1 and m = 2(s + α + 2), then Since cn (α) ≤ 2α 2 Γ(α + 1) for N ≥ 2(2s + α + 3), we get Z ¯ ¯´−2(s+α+2) ³ ¯ ¯ 2(s+1) |a ∗α φt (x)| ≤ C r |a(−y)| t + ¯|x| − |θy |¯ dµα (y). R

By proceeding as in [11, p.108], we obtain Z r r2(s+1) |a ∗α φt (x)| ≤ C 2(s+α+2) |a(y)|dµα (y). |x| −r Applying H¨older’s inequality and (ii) of Definition 3, we obtain

300

A. Gasmi, M. Sifi, F. Soltani

Z i1/q h Z r i1−1/q r2(s+1) h r q |a ∗α φt (x)| ≤ C 2(s+α+2) |a(y)| dµα (y) dµα (y) |x| −r −r C ru ≤ , (2α+1 Γ(α + 1))1−1/q |x|2(s+α+2) where u = 2[s + 1 + (α + 1)(β + 1 − 1/q)]. Using the fact that 2k0 ≤ r ≤ 2k0 +1 , we obtain |a ∗α φt (x)| ≤

C 2uk0 . (2α+1 Γ(α + 1))1−1/q |x|2(s+α+2)

Then for x ∈ Ak , k ≥ k0 + 4, we get |Gα,N (a)(x)| ≤

C 2uk0 . (2α+1 Γ(α + 1))1−1/q |x|2(s+α+2)

Hence, it follows that puk0

I2 (k0 ) ≤ C 2

≤ C 2puk0

∞ X k=k0 +4 ∞ X

2

2(α+1)βkp

h Z 2

2k+1

ip/q x−2(s+α+2)q+2α+1 dx

2k

22pk(α+1)β−(α+2+s)+(α+1)/q .

k=k0 +4

Because (α + 1)(β − 1 + 1/q) < s + 1, then I2 (k0 ) ≤ C, where C a constant not depending on the (β, q)-atom a. Hence this finishes the proof of the necessity. β,p,N Now, we turn to the proof of the sufficiency: Suppose that f ∈ H K˙ α,q . ∞ X To see that f = λj aj , where the series converges in S 0 (R), for certain j=1

(β, q)-atom aj and λj ∈ C, for every j ∈ N\{0}, such that

∞ X

|λj |p < ∞,

j=1

we can proceed as in the proof of [11, Theorem 2.1]. We choose a positive function φ ∈ S(R), such that supp(φ) ⊂ [−1, 1] and kφk1,α = 1. We define the functions: φk (x) = 22k(α+1) φ(2k x) and fk (x) = f ∗α φk , k ∈ N. It is well known that lim fk = f , in the distribution sense. Also, we take k→∞

a smooth function ψ such that supp(ψ) ⊂ {x :

1 2

− ε ≤ |x| ≤ 1 + ε},

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . .

301

for a certain 0 < ε < 1/2 and ψ(x) = 1 if 1/2 ≤ |x| ≤ 1. We define ψk (x) = ψ(2−k x), k ∈ Z. It is easy to see that supp(ψk ) ⊂ Ak,ε := {x / 2k−1 − 2k ε ≤ |x| ≤ 2k + 2k ε} and ψk (x) = 1 if x ∈ Ak,0 . For each k ∈ Z, we consider ψk (x) Ψk (x) := P∞ , j=−∞ ψj (x)

for x ∈ R\{0} and Ψk (0) = 0.

By Ps we denote the space of polynomials of degree less or equal than 2s + 1. For each k ∈ Z and l ∈ N, Pk,l represents the unique polynomial in PsZsuch that Ak,ε

xm [fl (x)Ψk (x) − Pk,l (x)]χAek (x)dµα (x) = 0 , m = 0, 1, ..., 2s + 1.

We now write fl = S1,l + S2,l , where ∞ ∞ X X Pk,l (x). {fl (x)Ψk (x) − Pk,l (x)} and S2,l (x) = S1,l (x) = k=−∞

k=−∞

Moreover, for every i = 1, 2 and j ∈ N\{0}, there exist (β, q)−atom aj,i and ∞ ∞ X X p λj,i ∈ C, being |λj,i | < ∞, such that Si,l = λj,i aj,i . Also, ∞ X j=1 j=1 |λj,i |p ≤ C kGα,N (f )kK˙ β,p , i = 1, 2. α,q

j=1

Finally, by invoking the Banach-Alaoglu theorem and (9), we can con∞ X λj aj , where the series converges in S 0 (R), for some clude that f = j=1

(β, q)-atom aj and λj ∈ ∞ C, j ∈ N\{0}, such that X |λj |p ≤ C kGα,N (f )kK˙ β,p , j=1

α,q

where C > 0 is not depending on f . Thus the proof is finished. β,p,N Remark. According to Theorem 3, the space H K˙ α,q is not depending on N provide that N ≥ 2(2s + 3 + α). In the sequel we assume that β,p β,p,N N ≥ 2(2s + 3 + α) and we write H K˙ α,q instead of H K˙ α,q . β,p 4. The Dunkl transform on H K˙ α,q β,p In this section we study the Dunkl transformation on the space H K˙ α,q . In particular, we prove a Hardy inequality for the Dunkl transform Fα . First, we establish useful estimates for the Dunkl transform of (β, q)-atoms.

302

A. Gasmi, M. Sifi, F. Soltani

Lemma 2. Let a be an (β, q)-atom where β > 0 and q ∈ [1, ∞]. Then for all y ∈ R: 1 1 s+1 i) |Fα (a)(y)| ≤ C|y|2(s+1) kakA + ). q,α , A = 1 − (1 − β q α+1 1 1 ii) |Fα (a)(y)| ≤ CkakB q,α , B = 1 − (1 − ) . β q P r o o f. Let a be an (β, q)-atom. Assume that r > 0 is such that supp(a) ⊂ [−r, r], and that kakq,α ≤ r−2(α+1)β . i) From (iii) of Definition 3, we have Z rh 2s+1 X (−ixy)k i Fα (a)(y) = Eα (−ixy) − a(x)dµα (x), y ∈ R. bk (α) −r k=0

But from (9) and (1), we have Z |xy| 2s+1 X (−ixy)k s+1 + (−1) w2s+1 (xy, t)Eα (−it)dµα (t). Eα (−ixy) = bk (α) −|xy| k=0

Thus, by (10) we obtain 2s+1 ¯ X (−ixy)k ¯¯ 1 ¯ |xy|2s+2 . ¯Eα (−ixy) − ¯ ≤ 2α bk (α) 2 Γ(α + 1) k=0 Then, Z r |Fα (a)(y)| ≤ C|y|2s+2

|x|2s+2 |a(x)|dµα (x) hZ r i1/q0 0 ≤ C|y|2s+2 kakq,α |x|(2s+2)q dµα (x) 2s+2

≤ C|y|

−r

kakq,α r

−r 2[s+1+(α+1)/q 0 ]

, 1/q + 1/q 0 = 1.

From (ii) of Definition 3, we obtain |Fα (a)(y)| ≤ C|y|2(s+1) kakA q,α , ii) We have |Fα (a)(y)| ≤

Z

r

−r

A=1−

1 1 s+1 (1 − + ). β q α+1

|a(x)|dµα (x) ≤ C kakq,α r2(α+1)(1−1/q) ≤ C kakB q,α ,

where B = 1 − β1 (1 − 1q ). We complete the proof. As a consequence of Lemma 2, we prove the following essential property. Proposition 7. Let a be an (β, q)-atom, where q ∈ ]1, ∞] and 1 − 1q ≤ s+1 β ≤ 1 − 1q + α+1 . Then 2(α+1)(β−1+ 1q ) |Fα (a)(y)| ≤ C |y| , y ∈ R.

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . .

303

P r o o f. Let a be an (β, q)-atom. Assume firstly that |y|2(s+1) kakA q,α ≤ B kakq,α , where y ∈ R, A and B given in Lemma 2. Then from Lemma 2 i), it infers that 2(α+1)(β−1+ 1q ) |Fα (a)(y)| ≤ C |y|2(s+1) kakA , y ∈ R. q,α ≤ C |y| B On the other hand, if |y|2(s+1) kakA q,α ≥ kakq,α , then Lemma 2 ii) leads to 2(α+1)(β−1+ 1q )

|Fα (a)(y)| ≤ C kakB q,α ≤ C|y| Thus, we conclude that

2(α+1)(β−1+ 1q )

|Fα (a)(y)| ≤ C |y|

,

,

y ∈ R.

y ∈ R.

Let f ∈ S 0 (R). The Dunkl transform Fα (f ) of f is defined by hFα (f ), φi = hf, Fα (φ)i,

φ ∈ S(R).

In the following we infer weak-type inequality for the Dunkl transform. Proposition 8. Let 0 < p ≤ 1 < q ≤ ∞, 1 − β,p f ∈ H K˙ α,q . Then,

1 q

s+1 ≤ β ≤ 1 − 1q + α+1 and

−2(α+1)(β−1+ 1q )

i) |y|

|Fα (f )(y)| ≤ Ckf kH K˙ β,p , y ∈ R. α,q ³n o´ 1 1 kf kpp,α −2(α+1)(β−1+ q + p ) ii) µα y ∈ R / |y| |Fα (f )(y)| > λ ≤ C , λ > 0. λp P β,p P r o o f. i) Let f ∈ H K˙ α,q . Assume that f = ∞ j=1 λj aj , where the series P converges in S 0 (R), for certain (β, q)-atom aj and λj ∈ C, j ∈ N\{0}, 0 p being ∞ j=1 |λj | < ∞. Since Fα is a continuous linear mapping from S (R) into itself, we have ∞ X Fα (f ) = λj Fα (aj ). Moreover, since

∞ X

|λj | ≤

∞ ³X

j=1

|λj |p

´1/p

from Proposition 7, we obtain ∞ j=1 j=1 ´1/p ³X 2(α+1)(β−1+ 1q ) |λj |p . |Fα (f )(y)| ≤ C |y| j=1

Hence we deduce i). β,p ii) Let f ∈ H K˙ α,q and λ > 0. From i) it follows that Z Cp ³n o´ kf kpp,α −2(α+1)(β−1+ 1q + p1 ) µα y ∈ R / |y| , |Fα (f )(y)| > λ ≤ 2 dµα (y) ≤ C λp 0 where¡ ¢ p Cp = Ckf kp,α /λ 2α+2 . We finish the proof.

304

A. Gasmi, M. Sifi, F. Soltani

s+1 Lemma 3. Let p ∈ ]0, 1] and 12 ≤ β ≤ 12 + α+1 . For every (β, 2)-atom a, we have Z −2(α+1)p(β− 12 + p1 ) |Fα (a)(y)|p |y| dµα (y) ≤ C. R

P r o o f. Let a be an (β, 2)-atom. Assume that R > 0. By virtue of Lemma 2 i), we have Z R −2(α+1)p(β− 12 + p1 ) dµα (y) ≤ C R σ kakpA |Fα (a)(y)|p |y| 2,α , −R

1 s+1 1 ( + ) and σ = 2p[s + 1 − (α + 1)(β − 12 )]. β α+1 2 Since σ = τ A, where τ = −2(α + 1)βp, we can write Z R ³ ´ p/τ σ −2(α+1)p(β− 12 + p1 ) |Fα (a)(y)|p |y| dµα (y) ≤ C R kak2,α .

where A = 1 −

(11)

−R

Also according to Theorem 1, H¨older’s inequality leads to Z −2(α+1)p(β− 12 + p1 ) |Fα (a)(y)|p |y| dµα (y) |y|>R hZ i 2−p (α+1)p 2 4 (β− 12 + p1 ) p ≤ C kakp2,α R τ . ≤ kak2,α |y| p−2 dµα (y) |y|>R

Thus, Z |y|>R

−2(α+1)p(β− 21 + p1 )

|Fα (a)(y)|p |y|

³ ´ p/τ τ dµα (y) ≤ C R kak2,α .

(12)

−p/τ

By taking now R = kak2,α , from (11) and (12) we obtain the result. s+1 . Then Theorem 4. Let p ∈ ]0, 1] and 12 ≤ β ≤ 12 + α+1 Z 1 1 −2(α+1)p(β− 2 + p ) |Fα (f )(y)|p |y| dµα (y) ≤ C kf kp

˙ β,p HK α,2

R

,

β,p for every f ∈ H K˙ α,2 .

P P r o o f. Assume that f = ∞ converges in j=1 λj aj , where the series P p 0 S (R), for certain (β,P 2)-atom aj and λj ∈ C, j ∈ N\{0}, being ∞ j=1 |λj | < ∞ ∞. Then, Fα (f ) = j=1 λj Fα (aj ). According to Lemma 3, we can write Z −2(α+1)p(β− 12 + p1 ) |Fα (f )(y)|p |y| dµα (y) R Z ∞ ∞ X X −2(α+1)p(β− 12 + p1 ) ≤C |λj |p |Fα (aj )(y)|p |y| dµα (y) ≤ C |λj |p . j=1

R

j=1

HERZ-TYPE HARDY SPACES FOR THE DUNKL . . . Hence

Z R

−2(α+1)p(β− 12 + p1 )

|Fα (f )(y)|p |y|

dµα (y) ≤ C kf kp

˙ β,p HK α,2

305

.

Thus the proof is completed. A version of the Hardy inequality for the Dunkl transform Fα appears when we take β = 1/2 and p = 1 in Theorem 4. 1/2,1 Corollary 2. (Hardy inequality) Let f ∈ H K˙ α,2 , then Z dy |Fα (f )(y)| ≤ C kf kH K˙ 1/2,1 . |y| α,2 R

References [1] T.H. Baker and P.J. Forrester, The Calogero-Sutherland model and generalized classical polynomials. Comm. Math. Phys. 188 (1997), 175-216. [2] H. Ben Mohamed and K. Trim`eche, Dunkl transform on R and convolution product on new spaces of distributions. Integral Transforms and Special Functions 14 (2003), 437-458. [3] W.R. Bloom and Z. Xu, The Hardy-Littlewood maximal function for Ch´ebli-Trim`eche hypergroups. Cont. Math. 183 (1995), 45-70. [4] L. Cherednik, A unification of the Knizhnik-Zamolodchikov equation and Dunkl operators via affine Hecke algebras. Iventiones Math. 106 (1991), 411-432. [5] R.R. Coifman, A real variable characterization of H p . Studia Mathematica 51(1974), 269-274. [6] R.R. Coifman and G. Weiss, Extension of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83, No 4 (1977), 569-645. [7] C.F. Dunkl, Differential-difference operators associated with reflections groups. Trans. Amer. Math. Soc. 311 (1989), 167-183. [8] C.F. Dunkl, Integral kernels with reflection group invariance. Can. J. Math. 43 (1991), 1213-1227. [9] M.F.E. de Jeu, The Dunkl transform. Inventiones Math. 113 (1993), 147-162. [10] L.Lapointe and L.Vinet, Exact operator solution of the CalogeroSutherland model. Comm. Math. Phys. 178 (1996), 425-452. [11] S.Z. Lu and D.C. Yang, The local versions of H p (Rn ) spaces at the origin. Studia Math. 116, No 2 (1995), 103-131. [12] S.Z. Lu and D.C. Yang, The weighted Herz-type Hardy spaces and applications. Sci. China Ser. A 38, No 6 (1995), 662-673.

306

A. Gasmi, M. Sifi, F. Soltani

[13] S.Z. Lu and D.C. Yang, The decomposition of the weighted Herz spaces and its applications. Sci. China Ser. A 38 (1995), 147-158. [14] S.Z. Lu, K. Yabuta and D.C. Yang, Boundedness of some sublinear operators in weighted Herz-type spaces. Kodai Math. J. 23 (2000), 391-410. [15] M.A. Mourou, Taylor series associated with a differental-difference operator on the real line. J. Comp. Appl. Math. 153 (2003), 343-354. [16] E.M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175 (1995), 75-121. [17] M. R¨osler, Bessel-type signed hypergroups on R . In: H. Heyer, A. Mukherjea (Eds.), Probability Measures on Groups and Related Structures, Proc XI, Oberwolfach, 1994, World Scientific, Singapore (1995), 292-304. [18] M. Sifi and F. Soltani, Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line. J. Math. Anal. Appl. 270 (2002), 92-106. [19] F. Soltani, Lp -Fourier multipliers for the Dunkl operator on the real line. J. Functional Analysis 209 (2004), 16-35. [20] F. Soltani, Generalized Fock spaces and Weyl commutation relations for the Dunkl kernel. Pacific J. of Mathematics 214 (2004), 379-397. [21] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970). [22] E.M. Stein, Harmonic Analysis Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton (1993). [23] K. Stempak, La th´eorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R.A.S. Paris, S´erie I, Math. 303 (1986), 15-18. [24] K. Trim`eche, Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms and Special Functions 13 (2002), 17-38. [25] G.N. Watson, A Treatise on Theory of Bessel Functions. Camb. Univ. Press, Cambridge (1966). 1

Dept. of Mathematics, Preparatory Institute of Engineer Studies of Tunis 1089 Monfleury Tunis, TUNISIA e-mail: [email protected]

Received: November 10, 2006

2,3

Dept. of Mathematics, Faculty of Sciences of Tunis University of Tunis - EL Manar 2092 Tunis, TUNISIA e-mails:

2

[email protected] ,

3

[email protected]