Historique Critical power.cdr

2 downloads 0 Views 10MB Size Report
Distances used in the computation of the parametres. 1.5-3 km. Fractions of S ..... 4000 5000 6000 7000 8000 9000. 0. 10000. 20000. 30000. 40000. Zatopek.
Modelling of running performances in elite endurance runners

Part two Nurmi

Zatopek

Väätäinen

Virén

Eastbourne 10/07/2017

Aouita

Gebrselassie

Are the results of the models independent of the range of distances ?

Scherrer and Monod, 1960, J Physiol (Paris) 52:419-501

“ La relation T = f(t) n’est pas strictement linéaire comme le montre d’ailleurs la figure 2A où les courbes tendent à s’infléchir vers l’abscisse au delà d’une trentaine de minutes.” “The relationship W = f(t) is not perfectly linear as shown on figure 2A, where the curves tend towards abscissa beyond 30 minutes” Scherrer and Monod, 1960, J Physiol (Paris) 52:419-501

D lim (m)

Zatopek

20000

15000

10000 SCrit 1.5-5 km SCrit 1.5-10 km SCrit 1.5-20 km

5000

0 0

500 1000 1500 2000 2500 3000 3500 4000

t lim (s)

D lim (m)

Gebrselassie

20000

15000

10000 SCrit 1.5-5 km SCrit 1.5-10 km SCrit 1.5-21.09 km

5000

0 0

500 1000 1500 2000 2500 3000 3500 4000

t lim (s)

Critical speed (SCrit) computed from different distances 1.5 &3 km

3 &5 km

5 &10 km

Nurmi Zatopek Väätäinen Virén Aouita Gebrsellasie

5.62 5.88 6.02 6.22 6.25 6.49

5.43 5.73 5.97 6.01 6.08 6.37

5.33 5.57 5.79 5.80 5.76 6.07

Means

6.08

5.93

5.72

Anaerobic Distance Capacity (ADC) computed from different distances 1.5 & 3 km

3 &5 km

5 &10 km

Nurmi Zatopek Vääitäinen Virén Aouita Gebrsellasie

191 129 151 118 194 110

283 203 176 219 270 166

373 334 324 383 518 394

Means

149

220

388

Fractions of SCrit and ADC computed from 1.5-3-5-10 km 1.6

ADC

1.4 1.2 1.0

SCrit

0.8 0.6 0.4

1.5-3 km

3-5 km

5-10 km

Distances used in the computation of the parametres

-1

S (m.s ) 7.4

1.5 km

7.2 7.0 3 km

6.8

5 km

6.6 10 km

6.4 6.2

Gebrselassie Aouita Virén Väätäinen Zatopek Nurmi

20 km

6.0 5.8 5.6 5.4 0.000

0.001

0.002

0.003

1/t lim

0.004

0.005

SCrit (model with 1/tlim) computed from different distances 1.5&3 k 5.62

3&5 k 5.43

5&10 km 5.33

Zatopek

5.88

5.73

5.57

Väätäinen

6.02

5.97

5.79

Virén

6.22

6.01

5.80

Aouita

6.25

6.08

5.76

Gebrselassie

6.49

6.34

6.07

Means

6.08

5.93

5.72

Nurmi

Parametre ADC (model with 1/tlim) computed from different distances 1.5&3 k

5&10 km

Nurmi Zatopek Väätäinen Virén Aouita Gebrselassie

191 129 151 118 194 110

3&5 k

Means

149

220

388

283 203 176 219 271 166

373 334 324 383 518 394

The relationship between tlim and Dlim is not perfectly linear. Therefore: - the slope of the tlim-Dlim relationship depends of tlim; - the value of SCrit depends on the range of tlim;

“… he (A. V. Hill) showed that the relationship was hyperbolic... This relationship remains evident when today's world record performances are plotted in the same way. This is of interest because it indicates that the human power–duration relationship is hyperbolic in its nature...” Poole, Burnley, Vanhatalo, Rossiter, Jones Med. Sci. Sports Exerc., Vol. 48, No. 11, 2016

Exponent g (Kennelly) computed from different distances 1.5 & 3 km

 3 & 5 km

5 & 10 km

Nurmi Väätäinen Virén Aouita Gebrselassie

0.908 0.926 0.942 0.908 0.947

0.926 0.955 0.943 0.930 0.957

0.946 0.953 0.945 0.926 0.943

Means

0.926

0.942

0.943

Fractions of g, Scrit and E computed from 1.5-3-5-10 km 1.25 1.20 1.15 1.10 1.05

g

1.00

SCrit

0.95 0.90



0.85

1.5-3 km

3-5 km

5-10 km

Distances used in the computation of the parametres

Endurance Index E (Péronnet-Thibault) computed from different distances

1.5 &3 km

5 &10 km

Nurmi Vaatainen Virén Aouita Gebrselassie

0.573 0.473 0.377 0.649 0.366

3 &5 km

Means

0.488

0.368

0.354

0.434 0.289 0.366 0.464 0.288

0.305 0.285 0.341 0.469 0.368

Fractions of g, Scrit and E computed from 1.5-3-5-10 km 1.25 1.20 1.15 1.10 1.05

g

1.00

SCrit

0.95 0.90

E

0.85

1.5-3 km

3-5 km

5-10 km

Distances used in the computation of the parametres

Parametre S∞ (exponential decay. Hopkins)

computed from different distances

Nurmi Väätäinen Virén Aouita Gebrselassie

Means

ALL

1.5-3-5 km

3-5-10 km

5.52 5.97 5.96 6.03 6.23

5.64 6.13 6.11 6.31 6.50

5.48 5.86 5.91 5.87 5.99

5.94

6.14

5.82

-1

S (m.s )

Zatopek

6,8

1.5- 3-5-10-20 km 3-5-10-20 km 5-10-20 km

6,4 6,0 5,6

11%

5,2

42.19 km road

4,8 0

1500

3000

4500

t lim (s)

6000

7500

9000

Is it possible to predict Marathon performances from track performances ?

-1

S (m.s )

Gebrselassie Virén Zatopek Nurmi

7.0 6.6 6.2 5.8 5.4 5.0 4.6 500

1000

5000

10000

tlim (s) the prediction of the Marathon performances from performances on track is not accurate

-1

S (m.s )

Péronnet-Thibault model

7,2 7,0 6,8 6,6 6,4 6,2 6,0 5,8 5,6 5,4 5,2 5,0 4,8 4,6

Gebrselassie Virén Zatopek Radcliffe

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

tlim (s) the prediction of the Marathon performances from performances on track is not accurate

Péronnet-Thibault model -1

S (m.s )

Paula Radcliffe

7.0 6.6 6.2

3000 m

5.8

10000 m 5000 m

5.4

Marathon

5.0 4.6 500

1000

tlim (s)

5000

10000

Péronnet-Thibault model -1

S (m.s )

Paula Radcliffe

7.0 6.6 6.2

3000 m

5.8

10000 m 5000 m

5.4

Marathon

5.0 4.6 500

1000

tlim (s)

5000

10000

Péronnet-Thibault model -1

S (m.s )

Paula Radcliffe

7.0 6.6 6.2

3000 m

5.8

10000 m 5000 m

5.4

Marathon

5.0 4.6 500

1000

tlim (s)

5000

10000

-1

Average Running Speed during the race (m.s ) 7.0

1.5 km

Mathematical models computed from 1.5-3-5-10 km (empty circles)

3 km 5 km 6.5 10 km

Hill-Scherrer Hopkins 6.0

Kennelly Péronnet-Thibault

21.09 km

5.5

42.19 km

Running performances of H. Gebrselassie 5.0

1000 2000 3000 4000 5000 6000 7000

Duration of the race(s)

In elite endurance runners accustomed to track and marathon

races

Radcliffe),

both

Péronnet-Thibault

(for the

example, models

accurately

of

Gebrselassie Kennelly describe

or and the

performances over distances ranging from 1500 m to 42.195 km.

-1

S (m.s ) 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6

Péronnet-Thibault Kennelly

1.5 km 3 km 5 km 10 km 1.5 km 3 km 5 km 10 km

Gebrselassie half-marathon Marathon

Marathon

Radcliffe

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

tlim (s)

0.94

D = 9.719 tlim

Application of Kennely’s model to the performances of Gebrselassie including half-marathon and marathon.

In riders considerably more accustomed to runs on track than in the marathon (for example, Virén or Zatopek), the modelling of the performances over the distances ranging from 1500 m to 42,195 km is less accurate.

-1

S (m.s ) 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6

Péronnet-Thibault Kennelly

1.5 km 3 km 1.5

5 km 10 km

3 5 km

Virén

10 km

Marathon 20 km

Zatopek Marathon

0

1000

3000

5000

tlim (s)

7000

9000

-1

S (m.s ) 7.2 7.0 6.8 6.6 6.4 6.2 6..0 5.8 5.6 5.4 5.2 5.0 4.8 4.6

Péronnet Thibault Hopkins

* *

performance not included in computation

Gebrselassie

Radcliffe

0

1000

3000

5000

tlim (s)

7000

9000

-1

S (m.s ) 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6

Péronnet Thibault Hopkins

*

performance not included in computation

Virén

* Zatopek

0

1000

3000

5000

tlim (s)

7000

9000

The modelling is even worse with the model of the critical speed for distances rangeing from 1500 m to 42,195 km.

-1

S (m.s ) 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6

Péronnet-Thibault

SCrit

* *

performance not included in computation

Gebrselassie

Radcliffe

0

1000

3000

5000

tlim (s)

7000

9000

S (m.s ) 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6

Péronnet-Thibault

SCrit

*

performance not included in computation

Virén

* Zatopek

0

1000

3000

5000

tlim (s)

7000

9000

However… The Dlim-tlim relationships seem linear even after the inclusion of marathon performances.

Dlim (m) 40000 Gebrselassie

30000

20000

Radcliffe

10000

0 0

1000 2000 3000 4000 5000 6000 7000 8000 9000

tlim (s)

Dlim (m) 40000

30000

Virén Zatopek

20000

10000

0 0

1000 2000 3000 4000 5000 6000 7000 8000 9000

tlim (s)

The differences between the actual performances in the Marathon and extrapolated estimates from track events could be explained by the effects of ground (track vs road, slopes...). The limiting factors in Marathon could be different than those limiting the performances in shorter track races. The modelling of running performances assumed that the performances correspond to the same training and the same fitness level.

-1

S (m.s )

Exponential decay Hopkins et al. 1989

1999

7.0

Gebrselassie

1998 1998

6.6

3-5-10-20 km 1998

6.2 2006 half marathon

5.8

2007

2008 Marathon

5.4 0

1000 2000 3000 4000 5000 6000 7000 8000

t lim (s)

100 %

100 Aerobic

80

80

About 2 minutes

60 40

60

Adapted from Astrand and Rodhal

20

40 20

Anaerobic

0

0 0

20

40

time (min)

Aerobic and anaerobic contributions to exhausting exercises

1.5

3

5

10 km

100 %

100 Aerobic

80

80

60

60

40

40

20

20

Anaerobic

0

0 0

20

40

time (min)

Aerobic and anaerobic contributions to exhausting exercises

mmol / L 12

mg / 100 ml 100 Adapted from Costill 1970

10

80 8 60 6 40

4

20

2

Rest 00

0

4

8

12

16

20

24

28

32

36

Competitive running distance (km)

40

44

0

Endurance capability probably depends on a combination of the following factors: - a high percentage of type I muscle fibers, - the capacity to store large amounts of muscle and/or liver glycogen, - the capacity to spare carbohydrate reserves by using more free fatty acids as energy substrate, - the capacity to efficiently dissipate heat. Péronnet and Thibault 1989

It is likely than endurance capability also depends on psychological and neurological factors, which explains the effects of several doping substances (amphetamine…).

Comparisons between the models

Excepted the dimensionless exponent g of Kennelly's model, the parameters of the other models (E, SCrit and S ) depend : - not only on endurance capability - but also on maximal aerobic speed. Therefore the correlations between these parameters are generally not significant.

-1

S Crit (m.s ) 6.4 6.2 6.0 5.8 5.6 3-5-10 km

5.4

1.5-3-5-10 km

5.2 0.25

0.30

0.35

0.40

E

0.45

0.50

0.55

However the correlations between g, E, SCrit and S become highly significant when these parameters are normalized to an estimate of maximal aerobic speed (S 420).

S Crit /S420 0.94 0.92

G

Vä Z

0.90

Y = 0.995 - 1.599 X 2 r = 0.991

V

0.88 N A

0.86

1.5-3-5-10 km

0.84 0.050

0.055

0.060

0.065

E/S420

0.070

0.075

0.080

-1

SCrit (m.s ) 6.4 6.2 6.0 5.8 5.6 5.4

3-5-10 km

5.2

1.5-3-5-10 km

5.0 0.92

0.93

0.94

g (Kennelly)

0.95

0.96

S Crit /S 420 0.92 Vä

G

0.91 V Z

0.90 0.89 0.88

N

0.87

Y = - 0.588 + 1.585 X 2 r = 0.990

A

1.5-3-5-10 km

0.86 0.92

0.93

0.94

g

0.95

0.96

6.4 6.2 6.0 5.8 5.6 3-5-10 km

5.4

1.5-3-5-10 km

5.2 0.25

0.30

0.35

0.40

0.45

0.50

0.55

S

Hopkins / S 420

0.93

Y = 0.982 - 1.144 X 2 r = 0.879

Vä Z

1.5-3-5-10 km

0.92 G V 0.91

N

0.90

A 0.89 0.050

0.055

0.060

0.065

E / S 420

0.070

0.075

0.080

S

Hopkins (m.s

-1

)

6.4 6.2 6.0 5.8 5.6 3-5-10 km

5.4

1.5-3-5-10 km

5.2 5.2

5.4

5.6

5.8

6.0 -1

S Crit (m.s )

6.2

6.4

S

Hopkins / S 420

0.93

Vä Z

0.92

G

V

0.91 N

0.90

Y = 0.256 + 0.731 X 2 r = 0.925 1.5-3-5-10 km

A

0.89 0.86

0.87

0.88

0.89

SCrit / S 420

0.90

0.91

0.92

E 0.6

3-5-10 km

0.5

1.5-3-5-10 km

0.4

0.3

0.2 0.92

0.93

0.94

g (Kennelly)

0.95

0.96

E/ S420 0.080

A

Y = 0.989 - 0.990 X 2 r = 0.997

0.075 N 0.070

1.5-3-5-10 km

0.065 0.060 V

0.055

Vä Z

0.050 0.92

0.93

0.94

g

G 0.95

0.96

Are the relationships between the parameters of the different models the same for high-level athletes and normal athletes? A simulation study

S/MAS

g

1.0 0.9

0.95

0.8 0.90

0.7 0.6

0.80

0.5

0.70

0.4 0.3

Kennelly

0.2

0.60

S / MAS = k(tlim / tMAS)

g -1

0.1 0.0 0

2

4

6

8

10

12

tlim / tMAS

14

16

18

20

S/MAS 1.0

E/MAS

0.9

0.046

0.8 0.086

0.7 0.6

0.15

0.5

0.20

0.4 0.3

Péronnet-Thibault

0.2

0.23

S / MAS = 1 - E ln(tlim / tMAS)

0.1 0.0 0

2

4

6

8

10

12

tlim / tMAS

14

16

18

20

S/MAS

almost equal

E/MAS g

1.0 0.9

0.95 0.046

0.8 0.90 0.086

0.7 0.6

0.80 0.15

0.5

0.70 0.20

0.4 0.3

Kennelly Péronnet-Thibault

0.2

0.60 0.23

0.1 0.0 0

2

4

6

8

10

12

tlim / tMAS

14

16

18

20

Let two runners whose characteristics are: -

VO2max = 60 ml O2.kg -1; -1 -1 running economy = 3.5 ml O2.min .(km/h) ; -1 MAS (maximal aerobic speed) = 60/3.5 = 17 km.h ; E/MAS (Péronnet-Thibault) = 0.05 -1

VO2max = 60 ml O2.kg ; -1 -1 running economy = 3.5 ml O2.min .(km/h) ; MAS (maximal aerobic speed) = 60/3.5 = 17 km.h-1; E/MAS (Péronnet-Thibault) = 0.10

Dlim (m) 40000

30000

E/MAS = 0.05 MAS = 17km.h

-1

E/MAS = 0.10

20000

MAS = 17km.h

-1

10000

0

0

2000

4000

6000

8000

tlim (s)

10000

12000

14000

-1

Speed (m.s )

Kennelly Péronnet-Thibault

5.0 1.5 km 3 km

4.5 3 km

5 km 10 km

E/MAS = 0.05 half-marathon

5 km

Marathon

4.0 10 km

3.5 half-marathon

Marathon

3.0 0

2000 4000 6000 8000 10000 12000 14000

tlim (s)

-1

Speed (m.s )

Hopkins Péronnet-Thibault

5.0 1.5 km 3 km

4.5 3 km

5 km 10 km

E/MAS = 0.05 half-marathon

5 km

Marathon

4.0 10 km

E/MAS = 0.1

3.5 half-marathon

Marathon

3.0 0

2000 4000 6000 8000 10000 12000 14000

tlim (s)

-1

Speed (m.s ) 5.0

4.5

Effects of distance range on Hopkins model E/MAS = 0.05 1.5 to 5 km 1.5 to 10 km 1.5 to 21.1 km

4.0

1.5 to 42.2 km

3.5

3.0 0

2000 4000 6000 8000 10000 12000 14000

tlim (s)

-1

Speed (m.s ) 5.0

Effects of distance range on Hopkins model

4.5 E/MAS = 0.1 1.5 to 5 km

4.0

1.5 to 10 km

3.5

1.5 to 21.1 km 1.5 to 42.2 km

3.0 0

2000 4000 6000 8000 10000 12000 14000

tlim (s)

Value of exponent g Range

for E/MAS = 0.05

for E/MAS = 0.10

1500-Marathon

0.946

0.879

1500-Half Marathon

0.947

0.885

1500 – 10000

0.948

0.891

1500 – 5000

0.949

0.896

1500 – 3000

0.950

0.899

Values of exponent g as a function of the range of running distances for two values of E/MAS in the case where the model of Péronnet-Thibault is assumed to be perfect and the best one.

Value of S∞ (Hopkins) Range

for E/MAS = 0.05

for E/MAS = 0.10

1500-Marathon

3.98

3.13

1500-Half Marathon

4.11

3.41

1500 – 10000

4.26

3.76

1500 – 5000

4.38

4.01

Values of exponent S∞ as a function of the range of running distances for two values of E/MAS in the case where the model of Péronnet-Thibault is assumed to be perfect and the best one.

Value of index E/MAS Range

for g = 0.95

for g = 0.85

1500-Marathon

0.047

0.118

1500-Half Marathon

0.047

0.126

1500 – 10000

0.048

0.134

1500 – 5000

0.049

0.142

1500 – 3000

0.050

0.148

Values of index E/MAS as a function of the range of running distances for two values of g in the case where the model of Kennelly is assumed to be perfect and the best one.