HITB LAB: Identifying Threats in Raw Data Events: A Practical ...

0 downloads 370 Views 9MB Size Report
Jan 25, 2010 - for every 10,000 server hosts 500 hosts trigger redirects to malicious ..... Targeted web infections _ No
Introduction

Criminilogy: case studies

Detection

Creating own IOCs

HITB LAB: Identifying Threats in Raw Data Events: A Practical Approach for Enterprises Vladimir Kropotov, Vitaly Chetvertakov, Fyodor Yarochkin HITB 2014 Affilations: Academia Sinica, o0o.nu, chroot.org

October 16, 2014, Kuala-Lumpur

EOF

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Outline Introduction Criminilogy: case studies Detection Creating own IOCs EOF

2/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Overview Introduction Criminilogy: case studies Detection Creating own IOCs EOF

3/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

LAB

our demo IP 100.123.7.111

4/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Everyone is p0wn3d :)

5/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Challenges

Main Assumption: All networks are compromised The difference between a good security team and a bad security team is that with a bad security team you will never know that you’ve been compromised.

6/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Statistic speaks

I

about 40,000,000 internet users in Russia

I

for every 10,000 server hosts 500 hosts trigger redirects to malicious content per week

I

about 20-50 user machines (full AV installed, NAT, FW) get ..affected

7/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Overview Introduction Criminilogy: case studies Detection Creating own IOCs EOF

8/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology

Forumology - what we can learn by following the trading forums.

9/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology - recent compromise signs

date: - 01-09-2014

10/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology: targetted attack queries

11/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology: obfuscation patterns crypto, free service

12/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology: sensitive data monetization

13/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology: social groups buying request with leaked attribution in social network

14/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology: google play apps rating manipulation

15/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Forumology: shells and traffic wo direct victims attribution

I I I

priority sales to individuals with high forum reputation one hands only sale reachable trough following contact:

16/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Campaigns

Domain ria.ru rg.ru newsru.com gazeta.ru aif.ru mk.ru inosmi.ru 3dnews.ru vz.ru topnews.ru

category news news news news news news news news news news

Campaign dates Summer 2013 – Summer 2014 Autumn 2013 Winter 2013 – Spring 2014 Spring 2013 - Autumn 2013 Spring 2013 - Winter 2013 Summer 2013 - Autumn 2013 Summer 2014 Winter 2013 – Summer 2014 Winter 2013 – Summer 2014 Spring 2013 - Autumn 2013

unique hosts/day ~ 1 600 000 ~ 790 000 ~ 590 000 ~ 490 000 ~ 330 000 ~ 315 000 ~ 290 000 ~ 185 000 ~ 170 000 ~ 140 000

17/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Campaigns(2)

Domain Youtube.com mail.ru auto.ru soccer.ru irr.ru job.ru glavbukh.ru hr-portal.ru tks.ru Bankir.ru

category email Autos Sport Ad Boards HR Accountants Finance / HR Finance Finance

When seen Summer 2013 - Winter 2014 Winter 2013 - Spring 2014 Summer 2014 - Autumn 2014 Winter 2014 Spring 2014 - Autumn 2014 Autumn 2014 Spring 2013 - Summer 2014 Winter 2013 - Spring 2014 Summer 2013 - Spring 2014 Spring 2013 - Autumn 2014

unique hosts/da Alexa N 3 Alexa N 40 ~320 000 ~220 000 ~175 000 ~140 000 ~70 000 ~55 000 ~38 000 ~33 000

18/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, EDU and forums

19/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, forums

20/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, companies (1)

21/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, companies (2)

22/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, companies (3)

23/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, companies (4)

24/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, companies (5)

25/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, companies (6)

26/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, regional gvt related(1)

27/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, regional gvt related(2)

28/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, regional gvt related(3)

29/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, regional gvt related(4)

30/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims, regional gvt related(5)

31/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Participants, other (mail delivery service)

32/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Participants, other (anti debugging)

33/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Seen on forum:

Google redirect:

34/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Participants, other, (known referrers. . . .)

35/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

EK/malware serving hosts by country

36/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Target victim traffic costs

37/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Case studies:

I

commercial crime

I

not-monetary-profit oriented crime

lets take a look at first type:

38/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Intermediate victims

Intermediate victims are target too, such as free DNS hostings: fbps . 1 4 0 3 8 8 3 . mar2 . j u 7 a . 1 4 0 3 8 8 3 . mar2 . wzet . 1 4 0 3 8 8 3 . mar2 . gatw . 1 4 0 3 8 8 3 . mar2 . kfzv . 1 4 0 3 8 8 3 . mar2 . oxdo . 1 4 0 3 8 8 3 . mar2 .

afraid afraid afraid afraid afraid afraid

. org . org . org . org . org . org

39/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Legit domain abuse

domain : SCHOOLOPROS.RU nserver : ns1 . a f r a i d . org . nserver : ns2 . a f r a i d . org . state : REGISTERED , DELEGATED, VERIFIED org : LLC "GKShP" registrar : RU−CENTER−REG−RIPN admin−c o n t a c t : h t t p s ://www. n i c . ru/whois created : 2010.01.25

40/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Domain rotation http://www.residensea.jp/xuaioxc.php http://firenzeviaroma.ru/dqryony.php http://sphynxtoutnu.com/dnqaibb.php http://www.icmjapan.co.jp/dgttcnm.php http://www.controlseal.nl/yolelkx.php http://ural.zz.mu/ledstsn.php http://www.fotobit.pl/cpjjpei.php http://bgcarshop.com/tgghhvy.php http://www.borkowski.org/fudbqrf.php http://shop.babeta.ru/puthnkn.php http://e-lustrate.us/mycbbni.php http://notarypublicconcept.com/shfvtpx.php http://www.stempelxpress.nl/vechoix.php http://64.68.190.53/dqohago.php http://likos.orweb.ru/oydochh.php http://wap.warelex.com/parpkeu.php 41/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Domain rotation I I

over 500 compromised domains rotation once every 3 minutes

42/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting, on legit domains (stolen creds, vulns, etc.)

43/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting on legit domains

44/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting on legit domains

45/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting on legit domains

46/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting on legit domains

47/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting on legit domains

48/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

malware hosting on legit domains

49/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Lurk Campaign Historical overview

(http://malware.dontneedcoffee.com/2014/08/ angler-ek-now-capable-of-fileless.html?m=1) I

but actually lurk campaign is at least 3 years old. (and mainly targetting .ru IP ranges).

50/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Lurk in the news and News distribute Lurk. . .

"For purposes of analysis, we selected two information resources which we knew had been used to distribute the malware— http://www.ria.ru/ (a major Russian news agency) and http://www.gazeta.ru/ (a popular online newspaper). " (http://securelist.com/blog/virus-watch/ 32383/a-unique-bodiless-bot-attacks-news-site-visitors-3/) Intermediate victims: I

ria.ru

I

gazeta.ru 51/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Lurk in 2011 Intermediate victims: I

glavbukh.ru

I

inosmi.ru

I

ria.ru

I

riarealty.ru

I

ura.ru date 03/Nov/2011:14:36:57 03/Nov/2011:14:47:44 03/Nov/2011:14:52:03

referrer http://ria.ru/incidents/ http://inosmi.ru/ http://www.ura.ru/

ip 50.97.204.116 50.97.204.116 50.97.204.116

url http://as5t3hjlsddk.com/BVRQ http://as5t3hjlsddk.com/BVRQ http://as5t3hjlsddk.com/BVRQ

52/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Other patricipants of Winter-Spring 2012 Campaign Intermediate victims: I

banki.ru

I

fas.gov.ru

I

glavbukh.ru

I

infox.ru

I

infox.ru

I

inosmi.ru

I

klerk.ru

I

newsru.com

I

pravda.ru

I

riarealty.ru

I

slon.ru

I

ura.ru 53/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Lurk in the news and News distribute Lurk. . . (2)

Targeted web infections _ Nov 08 2012 (http://securelist.ru/blog/ intsidenty/3546/targetirovanny-e-veb-zarazheniya-2/) Intermediate victims: I

interfax.ru

I

Vesti.ru

I

gazeta.ru

I

vz.ru

I

ura.ru

54/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Timeline of Summer- Autumn 2012 Intermediate victims: date 8/17/2012 12:29 8/17/2012 12:29 8/17/2012 13:38 9/4/2012 14:16 9/13/2012 13:18 9/17/2012 12:50 9/17/2012 13:38 9/18/2012 11:54 10/10/2012 11:35 10/12/2012 13:34 11/2/2012 14:12

ref. dom 3dnews.ru rian.ru tks.ru 3dnews.ru newsru.com tks.ru slon.ru rian.ru vesti.ru gazeta.ru vesti.ru

ip 207.182.136.150 207.182.136.150 207.182.136.150 91.216.163.76 184.22.165.170 184.22.165.170 184.22.165.170 184.22.165.170 91.121.152.84 91.121.152.84 91.121.152.84

port 80 80 80 80 80 80 80 80 80 80 80

method GET GET GET GET GET GET GET GET GET GET GET

url http://jiujitrolam.info/2T4T http://jiujitrolam.info/2T4T http://jiujitrolam.info/2T4T http://kalmadrezant.info/7GIC http://cdmalinkrating.net/7GIC http://responsesforemost.org/7GIC http://responsesforemost.org/7GIC http://oggmoreripples.com/7GIC http://deployspostsale.net/7GIC http://personallymainframes.net/7GIC http://accuracyuploadonly.net/7GIC

apptype text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html

bytes out/in 290/58067 535/4511 370/5972 339/56870 607/58066 668/58075 728/194 1160/194 722/58037 618/58084 290/58078

(*) rian.ru + vesti.ru + gazeta.ru + newsru.com + 3dnews.ru + slon.ru > 4 0000 000 uniq visitors per day. . .

55/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Campaign Autumn 2012 knocking to the Master

Proof logs: date 11/2/2012 14:13 11/2/2012 14:13 11/2/2012 14:14

ip 184.173.226.246 184.173.226.245 184.173.226.246

port 80 80 80

method POST GET POST

url http://rime41claim.com/search?hl=us&source=hp&q=22282240&aq=f&aqi=&aql=&oq= http://landlady48s.com/search?hl=us&source=hp&q=58959&aq=f&aqi=&aql=&oq=58959 http://rime41claim.com/search?hl=us&source=hp&q=1000000000503347&aq=f&aqi=&aql=

56/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Winter 2012-2013 Campaign

I

new sigs ISOQ (old sigs 2T4T, 7GIC BVRQ)

I

sploit 0ISOQjq

I

payload 1ISOQjq

57/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Stats

date 22.01.2013 16:33 28.01.2013 15:15 28.01.2013 15:15 28.01.2013 15:15 2013-02-05 15:27 08.02.2013 15:26 2/11/2013 16:22 19.02.2013 15:13 2/20/2013 12:52 2/20/2013 12:52 2/20/2013 12:52 20.02.2013 12:52 20.02.2013 13:22 20.02.2013 13:24 3/5/2013 13:51 3/6/2013 14:32

ref. dom vesti.ru vz.ru vz.ru 3dnews.ru vz.ru klerk.ru newsru.com newsru.com vz.ru vesti.ru glavbukh.ru klerk.ru

ip 64.79.67.220 64.79.67.220 64.79.67.220 64.79.67.220 208.110.73.74 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 208.110.73.75 74.82.203.10

port 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

method GET GET GET GET GET GET GET GET GET GET GET GET GET GET GET GET

url http://cetapetrar.info/ISOQ http://mgsinterviews.biz/ISOQ http://mgsinterviews.biz/0ISOQjq http://mgsinterviews.biz/1ISOQjq http://ferpolokas.info/ISOQ http://footmanage.info/XZAH http://croppingvietnam.biz/XZAH http://interfacesfeaturelimited.org/XZAH http://solvesautoplay.info/XZAH http://solvesautoplay.info/0XZAHwj http://solvesautoplay.info/1XZAHwj http://solvesautoplay.info/XZAH http://solvesautoplay.info/XZAH http://solvesautoplay.info/XZAH http://birdsricher.info/XZAH http://comprisefuse.info/XZAH

apptype text/html text/html application/java-archive application/octet-stream text/html text/html text/html text/html text/html application/java-archive application/octet-stream text/html text/html text/html text/html text/html

58/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Summer 2013: Landing pattern change to "indexm.html"

date 21/Aug/2013:11:53 21/Aug/2013:11:53 8/23/2013 12:58 03.09.2013 14:12 09.09.2013 14:49 9/20/2013 12:50 9/20/2013 13:52 9/23/2013 12:41

ref. dom tks.ru tks.ru slon.ru rg.ru tks.ru gazeta.ru rg.ru aif.ru

ip 70.32.39.108 70.32.39.108 173.234.60.86 173.234.60.83 209.123.8.35 216.55.166.53 216.55.166.53 209.123.8.183

port 80 80 80 80 80 80 80 80

method GET GET GET GET GET GET GET GET

url http://frilpertesemota.info/indexm.html http://frilpertesemota.info/054RIwj http://sabretensar.info/indexm.html http://miopades.info/indexm.html http://kilkadukas.info/indexm.html http://lpakuwiera.info/indexm.html http://lpakuwiera.info/indexm.html http://liapolasens.info/indexm.html

apptype

bytes out/i 585/203 4999/0 4137/460

text/html

157/1025 4134/613 4137/334

59/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Debugging of fingerprinting mechanism? Sep 2013

http://ljiartwbvsa.info/indexm.html http://ljiartwbvsa.info/054RIdl http://ljiartwbvsa.info/counter.php?t=f&v=win%2011, 7, 700, 169&a=true http://ljiartwbvsa.info/354RIcx http://ljiartwbvsa.info/s.php?qt=null&fl=11, 7, 700, 169&sw=null&ar=null&jv=null&sl=5, 1, 20513, 0 http://ljiartwbvsa.info/054RIcx

text/html application/x-shockwave-flash text/html text/html text/html

60/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Fresh news from the field

date 8/20/2014 16:57 9/1/2014 12:02 01/Sep/2014:16:54 9/4/2014 14:16 04/Sep/2014:12:03 04/Sep/2014:15:26 04/Sep/2014:15:26 04/Sep/2014:15:26 04/Sep/2014:15:56 05/Sep/2014:15:24

ref. dom auto.ru irr.ru bankir.ru smotri.com auto.ru irr.ru job.ru bankir.ru

ip 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195 188.165.229.195

port 80 80 80 80 80 80 80 80 80 80

method GET GET GET GET GET GET GET GET GET GET

url http://kopwa.linogeraxa.info/indexm.html http://apobda.kiqpoltar2.in/indexm.html http://snkua.kiqpoltar2.in/indexm.html http://xbxa72.bsoyetrad.in/indexm.html http://snkua.kiqpoltar2.in/indexm.html http://boreas.gohasellor.info/indexm.html http://boreas.gohasellor.info/3MSKMcx http://boreas.gohasellor.info/sxvutirwbfexedbjmqqn.html http://boreas.gohasellor.info/indexm.html http://snkua.kiqpoltar2.in/indexm.html

61/150

app

app text text text app

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Mitigation experience and aftereffects

I

Abusing hosting (you can loose the chain, criminals just pay $50 for other hosting)

I

Abusing registar

I

Abusing DNS

I

Forensic evidence collection and actor attribution

I

Interaction with CERTs and Authorities

I

Informing victims directly

62/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

MacOS botnet: a Kaiten variant in action I

Kaiten/Tsunami is an open-source irc-controlled DDoS bot

I

Observed large infection of MacOS machines in Sept-2014 (starting on 02-09-2014)

I

initial infection vector: yet unknown

I

Observation: 2014-09-02 - now

I

target - mainly .CN (mostly), TW

I

small number in KR, NP, JP, MY

I

iocs:

Executables : cbf5a6d2fba422caa5913e48ef68a6ab http : / / 5 . 1 0 4 . 1 0 6 . 1 9 0 / . . . / cores 98 bb67d91476d8ac4e71d39c92564b3b h t t p :// l i n u x . microsoftwindowsupdate . org/poke . sh 63/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

IOCs

64/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

IOCs

IOCs 5.104.106.190 − eventuallydown . dyndns . b i z − f a s t f o o d z . dlinkddns . com − updates . dyndn−web . com 54.68.53.18 − f l i p p i n f l o p s . dyndns . t v

65/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Indicators

I

Hosted on german IP and Amazon ec2. Hosts an IRC server, DNS server, Web server (used to wget new binaries/updates).

I

controlled from an .il IP address

irc servers 192.31.186.4 85.214.45.208 − eichwalde . de − h o r t b u n t s t i f t e . de − channel # c o r e

66/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Kaiten ops: I

controlled by iseee [email protected].

I

PRIVMSGs commands, manipulates DNS resolver settings

67/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Kaiten conclusions I

18247 Unique IP addresses within 3 days

I

3k bots are simultaneously

I

Botnet growth limited by IRC server stability

68/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Targetted campaigns

APT != STATE SPONSORED I

Q: Why so many APT-like activities out of .cn?

I

A: A different market structure. (Data worth money)

69/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

APT ..?

Interesting correlations:

70/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Bad guys in your net ;-)

coming from a KR IP address (bounce), redirecting a shell to CHINANET 71/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Overview Introduction Criminilogy: case studies Detection Creating own IOCs EOF

72/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Hands ON

I

moloch

https://100.123.7.111:8005 user admin password hitb2014

73/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Detection

Detection: tools and techniques

74/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Good thing to assume

If you are under attack, your AV,Firewalls, IDS, are in THE ATTACKER THREATS MODEL. The option you have - read between the lines. When you are compromised, what is the action plan?

75/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Some Useful tools Developed by us: I

http://github.com/fygrave/ndf

I

http://github.com/fygrave/hntp

3rd party: I

fiddler

I

elasticsearch && http://github.com/aol/moloch (vm)

and our 0mq plugin I I

yara hpfeeds https://github.com/rep/hpfeeds

I

CIF https://github.com/collectiveintel/cif-v1

I

https://github.com/STIXProject/ - openioc-to-stix converter

I

https://github.com/MISP/MISP - malware information sharing platform 76/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Introduction:terminology

Indicators of Compromise Indicator of compromise (IOC) in computer forensics is an artifact observed on network or in operating system that with high confidence indicates a computer intrusion. http://en.wikipedia.org/wiki/Indicator_of_compromise

77/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

AV model broken

Why AV model is broken? I AV detection/monitoring http://viruscheckmate.com/id/OByt539VwEcQ

78/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Why Indicators of compromise

Indicators of Compromise help us to answer questions like: I

is this document/file/hash malicious?

I

is there any past history for this IP/domain?

I

what are the other similar/related domains/hashes/..?

I

who is the actor?

I

am I an APT target?!!;-)

79/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

An Example

A Network compromise case study: I

Attackers broke via a web vuln. Attackers gained local admin access

I

Attackers created a local user

I

Attackers started probing other machines for default user ids

I

Attackers launched tunneling tools – connecting back to C2

I

Attackers installed RATs to maintain access

I

80/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Indicators

So what are the compromise indicators here? I

Where did attackers come from? (IP)

I

What vulnerability was exploited? (pattern)

I

What web backdoor was used? (pattern, hash)

I

What tools were uploaded? (hashes)

I

What users were created locally? (username)

I

What usernames were probed on other machines

81/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Good or Bad? F i l e Name File Size F i l e M o d i f i c a t i o n Date/Time F i l e Type MIME Type Machine Type Time Stamp PE Type Linker Version Code S i z e I n i t i a l i z e d Data S i z e U n i n i t i a l i z e d Data S i z e Entry P o i n t OS Version Image Version Subsystem Version Subsystem F i l e Version Number Product Version Number F i l e OS O b j e c t F i l e Type Language Code Character Set Company Name F i l e Description F i l e Version I n t e r n a l Name

: : : : : : : : : : : : : : : : : : : : : : : : : : :

RasTls . exe 105 kB 2009:02:09 19:42:05+08:00 Win32 EXE a p p l i c a t i o n / o c t e t−stream I n t e l 386 or l a t e r , and c o m p a t i b l e s 2009:02:02 13:38:37+08:00 PE32 8.0 49152 57344 0 0 x3d76 4.0 0.0 4.0 Windows GUI 11.0.4010.7 11.0.4010.7 Windows NT 32− b i t Executable application E n g l i s h (U. S . ) Windows , L a t i n 1 Symantec Corporation Symantec 8 0 2 . 1 x S u p p l i c a n t 11.0.4010.7 dot1xtray

82/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

It really depends on context RasTls . DLL RasTls . DLL . msc RasTls . exe http://msdn.microsoft.com/en-us/library/ms682586(v=VS.85).aspx Dynamic-Link Library Search Order

83/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

IOC representations

Multiple standards have been created to facilitate IOC exchanges. I

Madiant: OpenIOC

I

Mitre: STIX (Structured Threat Information Expression), CyBOX (CyberObservable Expression)

I

Mitre: CAPEC, TAXII

I

IODEF (Incident Object Description Format)

84/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Standards: OpenIOC

OpenIOC - Mandiant-backed effort for unform representation of IOC (now FireEye) http://www.openioc.org/

85/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

OpenIOCs D i g i t a l Appendices/Appendix G ( D i g i t a l ) − 0 c7c902c −67f8 −479c−9f44 −4d985106365a . i o c ad521068 −6f18 −4ab1 −899c −11007 a18ec73 . i o c 12 a40bf7 −4834−49b0−a419 −6abb5fe2b291 . i o c a f 5 f 6 5 f c −e1ca −45db−88b1−6c c b 7 1 9 1 e e 6 a . i o c 2106 f0d2−a260 −4277−90ab−edd3455e31fa . i o c Appendix G IOCs README. pdf 26213 db6−9d3b−4a39−abeb −73656 acb913e . i o c c32b8af3 −28d0−47d3−801 f−a2c2b0129650 . i o c 2 b f f 2 2 3 f −9e46 −47a7−ac35−d 3 5 f 8 1 3 8 a 4 c 7 . i o c c71b3305 −85e5−4d51−b07c−f f 2 2 7 1 8 1 f b 5 a . i o c 2 f c 5 5 7 4 7 −6822−41d2−bcc1 −387 f c 1 b 2 e 6 7 b . i o c c 7 f a 2 e a 5 −36d5−4a52−a 6 c f −ddc2257cb6f9 . i o c 32 b168e6−dbd6−4d56−ba2f −734553239 e f e . i o c d14d5f09 −9050−4769−b00d−30 f c e 9 e 6 e b 8 5 . i o c 3433 dad8−879e−40d9−98b3−92ddc75f0dcd . i o c d1c65316−cddd−4d9c−8e f e −c 5 3 9 a a 5 9 6 5 c 0 . i o c 3 e01b786−fe3a −4228−95 fa−c3986e2353d6 . i o c d 4 f 1 0 3 f 8 −c372 −49d1−b9f4−e127d61d0639 . i o c

IOCs$ l s 6 bd24113 −2922−4d25

70 b5be0c −8a94 −44b4

7 c739d52−c669 −4d51

7 d2eaadf−a 5 f f −4199

7 f9a6986 −f00a −4071

806 b e f f 3 −7395−492e 84 f 0 4 d f 2 −25cd−4f59

8695 bb5e −29cd−41b9

86 e9b8ec −7413−453b 86/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Standards: Mitre

Mitre CybOX: http://cybox.mitre.org/ https://github.com/CybOXProject/Tools https://github.com/CybOXProject/openioc-to-cybox Mitre CAPEC: http://capec.mitre.org/ Mitre STIX: http://stix.mitre.org/ Mitre TAXII http://taxii.mitre.org/

87/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Mature: stix

88/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Indicators of Compromise

I

Complex IOCs covering all steps of attack

I

Dynamic creation of IOCs on the fly

I

Auto-reload of IOCs, TTLs

I

Dealing with different standards/import export

89/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Exploit pack trace

url http://cuba.eanuncios.net/1/zf3z9lr6ac8di6r4kw2r0hu3ee8ad.html

ip 93.189.46.222

mime type text/html

ref http://www.smeysyatut.ru/

http://cuba.eanuncios.net/2909620968/1/1399422480.htm

93.189.46.222

text/html

http://cuba.eanuncios.net/

http://cuba.eanuncios.net/2909620968/1/1399422480.jar http://cuba.eanuncios.net/2909620968/1/1399422480.jar http://cuba.eanuncios.net/f/1/1399422480/2909620968/2 http://cuba.eanuncios.net/f/1/1399422480/2909620968/2/2

93.189.46.222 93.189.46.222 93.189.46.222 93.189.46.222

application/java-archive application/java-archive -

-

90/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Nuclearsploit pack

{ ’ Nuclearsploitpack ’ : { ’ step1 ’ : { ’ f i l e s ’ : [ ’ wz3u6si8e5lh7k2tk5ox4ne6d8g . html ’ , ’ t 3 f 5 y 9 a 2 b b 3 d l 7 z 8 g c 4 o 6 f . html ’ , ’ z f 3 z 9 l r 6 a c 8 d i 6 r 4 k w 2 r 0 h u 3 e e 8 a d . html ’ , ’ r x 3 v ’ domains ’ : [ ’ f a t h e r . f e r r e m o v i l . com ’ , ’ t h a i . a l o h a t r a n s l l c . com ’ , ’ cuba . eanuncios . net ’ , ’ duncan . d i s e n o c o r p o r a t i v o . com . ar ’ , ’ arguments ’ : [ ] , ’ directories ’ : [ ’1 ’] , ’ ip ’ : [ ’ 9 3 . 1 8 9 . 4 6 . 2 0 1 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 0 3 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 2 2 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 2 4 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 3 3 ’ ] } , ’ step2 ’ : { ’ f i l e s ’ : [ ’ 1 3 9 9 4 2 2 4 8 0 . htm ’ , ’ 1 3 9 9 7 0 4 7 2 0 . htm ’ , ’ 1 3 9 9 5 1 3 4 4 0 . htm ’ , ’ 1 3 9 9 5 1 4 0 4 0 . htm ’ , ’ 1 3 9 9 7 7 3 3 0 0 . htm ’ ] , ’ domains ’ : [ ’ cuba . eanuncios . net ’ , ’ duncan . d i s e n o c o r p o r a t i v o . com . ar ’ , ’ homany . c o l l e c t i v e i t . com . au ’ , ’ p r i v a c y . t e r a p i a . org . ’ arguments ’ : [ ] , ’ directories ’ : [ ’2909620968 ’ , ’1 ’ , ’507640988 ’ , ’940276731 ’ , ’3957283574 ’ , ’952211704 ’] , ’ ip ’ : [ ’ 9 3 . 1 8 9 . 4 6 . 2 2 2 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 2 4 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 3 3 ’ ] } , ’ step3 ’ : { ’ f i l e s ’ : [ ’1399422480. jar ’ , ’1399513440. jar ’ ] , ’ domains ’ : [ ’ cuba . eanuncios . net ’ , ’ homany . c o l l e c t i v e i t . com . au ’ ] , ’ arguments ’ : [ ] , ’ directories ’ : [ ’2909620968 ’ , ’1 ’ , ’940276731 ’] , ’ ip ’ : [ ’ 9 3 . 1 8 9 . 4 6 . 2 2 2 ’ , ’ 9 3 . 1 8 9 . 4 6 . 2 2 4 ’ ] } , ’ step4 ’ : { ’ files ’ : [ ’2 ’] , ’ domains ’ : [ ’ cuba . eanuncios . net ’ ] , ’ arguments ’ : [ ] , ’ directories ’ : [ ’ f ’ , ’1 ’ , ’1399422480 ’ , ’2909620968 ’ , ’2 ’] , ’ ip ’ : [ ’ 9 3 . 1 8 9 . 4 6 . 2 2 2 ’ ] } } }

91/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Redirect (example)

http://mysimuran.ru/forum/kZsjOiDMFb/ http://mysimuran.ru/forum/kZsjOiDMFb/js.js?4231 http://c.hit.ua/hit?i=59278&g=0&x=2 http://f- wake.browser- checks.info:28001/d1x/3/87475b26a521024ce78d7ea73164140a/http%3A%2F%2Fagency.accordinga.pw%2Fremain%2Funknown.h

92/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Redirect Example

{ ’28001 ’: { ’ step1 ’ : { ’ d i r e c t o r i e s ’ : [ ’ forum ’ , ’ kZsjOiDMFb ’ , ’ epygFrFsoU ’ ] , ’ arguments ’ : [ ] , ’ files ’ : [ ’ ’] , ’ ip ’ : [ ’ 8 9 . 1 1 1 . 1 7 8 . 3 3 ’ ] , ’ domains ’ : [ ’ mysimuran . ru ’ ] } , ’ step2 ’ : { ’ d i r e c t o r i e s ’ : [ ’ forum ’ , ’ kZsjOiDMFb ’ , ’ epygFrFsoU ’ , ’kJXshWOMNC’ ] , ’ arguments ’ : [ ’ 4 2 3 1 ’ , ’ 7 6 9 7 ’ , ’ 9 7 4 1 ’ ] , ’ f i l e s ’ : [ ’ j s . j s ’ , ’ c n t . html ’ ] , ’ ip ’ : [ ’ 8 9 . 1 1 1 . 1 7 8 . 3 3 ’ ] , ’ domains ’ : [ ’ mysimuran . ru ’ ] } , ’ step3 ’ : { ’ directories ’ : [] , ’ arguments ’ : [ ’ i ’ , ’ g ’ , ’ x ’ ] , ’ f i l e s ’ : [ ’ hit ’ ] , ’ ip ’ : [ ’ 8 9 . 1 8 4 . 8 1 . 3 5 ’ ] , ’ domains ’ : [ ’ c . h i t . ua ’ ] } , ’ step4 ’ : { ’ d i r e c t o r i e s ’ : [ ’ d1x ’ , ’ 3 ’ , ’ 8 7 4 7 5 b26a521024ce78d7ea73164140a ’ , ’ d36eb1fc80ebe9df515d043be1557f57 ’ ] , ’ arguments ’ : [ ] , ’ f i l e s ’ : [ ’ h t t p%3A%2F%2Fagency . a c c o r d i n g a .pw%2Fremain%2Funknown . html%3Fmods%3D8%26id%3D26 ’ , ’ h t t p%3A%2F%2F s t r u c k . looked ’ ip ’ : [ ’ 4 6 . 2 5 4 . 1 6 . 2 0 9 ’ ] , ’ domains ’ : [ ’ f−wake . browser−checks . i n f o ’ , ’ a−oprzay . browser−checks . pw’ ] } } }

93/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Sourcing External IOCs I

CIF - https: //code.google.com/p/collective-intelligence-framework/

I

feeds (with scrappers):

94/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Sourcing External IOCs feed your scrappers: https://zeustracker.abuse.ch/blocklist.php?download=badips http://malc0de.com/database/ https://reputation.alienvault.com/reputation.data . . . I VT intelligence I

95/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Sourcing IOCs Internally

I

honeypot feeds

I

log analysis

I

traffic analysis

96/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Where to look for IOCs internally I

Outbound Network Traffic

I

User Activities/Failed Logins

I

User profile folders

I

Administrative Access

I

Access from unsual IP addresses

I

Database IO: excessive READs

I

Size of responses of web pages

I

Unusual access to particular files within Web Application (backdoor)

I

Unusual port/protocol connections

I

DNS and HTTP traffic requests

I

Suspicious Scripts, Executables and Data Files

97/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Challenges Why we need IOCs? because it makes it easier to systematically describe knowledge about breaches. I I

Identifying intrusions is hard Unfair game: I I

defender should protect all the assets attacker only needs to ’poop’ one system.

I

Identifying targeted, organized intrusions is even harder

I

Minor anomalous events are important when put together

I

Seeing global picture is a mast

I

Details matter

I

Attribution is hard

98/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Use honeypots

I

Running honeypots gives enormous advantage in detecting emerging

threats I

Stategically placing honeypots is extemely important

99/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

HPfeeds, Hpfriends and more

100/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

HPFeeds Architecture

101/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

HPFeeds API in nutshell: import pygeoip import hpfeeds import j s o n HOST= ’ broker ’ PORT = 20000 CHANNELS= [ ’ g e o l o c . e v e n t s ’ ] IDENT= ’ i d e n t ’ SECRET= ’ s e c r e t ’ g i = pygeoip . GeoIP ( ’ G e o L i t e C i t y . dat ’ ) hpc = hpfeeds . new (HOST, PORT, IDENT , SECRET ) msg = { ’ l a t i t u d e ’ : g i . record_by_addr ( i p ) [ ’ l a t i t u d e ’ ] , ’ l o n g i t u d e ’ : g i . record_by_addr ( i p ) [ ’ l o n g i t u d e ’ ] , ’ type ’ : ’ honeypot ␣ h i t ’ } hpc . p u b l i s h (CHANNELS, j s o n . dumps ( msg ) )

102/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

hpfeeds integration

103/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

NTP probe collector

104/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

HPFeeds and honeymap

105/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Applying IOCs to your detection process

moloch moloch moloch :)

106/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Tools for Dynamic Detection of IOC

I

Snort

I

Yara + yara-enabled tools

I

Moloch

I

Splunk/Log search

I

roll-your-own:p

107/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Moloch Moloch is awesome:

108/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Open-source tools

OpenIOC manipulation https://github.com/STIXProject/openioc-to-stix https://github.com/tklane/openiocscripts Mantis Threat Intelligence Framework https://github.com/siemens/django-mantis.git Mantis supports STIX/CybOX/IODEF/OpenIOC etc via importers: https://github.com/siemens/django-mantis-openioc-importer Search splunk data for IOC indicators: https://github.com/technoskald/splunk-search Our framework: http://github.com/fygrave/iocmap/

109/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

iocmap

110/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

MISP

I

http://www.secure.edu.pl/pdf/2013/D2_1530_A_Socha.pdf

I

https://github.com/MISP

111/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Tools for Dynamic Detection

I

Moloch I I

Moloch supports Yara (IOCs can be directly applied) Moloch has awesome tagger plugin:

# tagger . so # p r o v i d e s a b i l i t y t o i m p o r t t e x t f i l e s w i t h IP and / o r h o s t n # i n t o a s e n s o r t h a t would c a u s e a u t o t a g g i n g o f a l l m a t c h i n g p l u g i n s = t a g g e r . so t a g g e r I p F i l e s = b l a c k l i s t , tag , tag , t a g . . . taggerDomainFiles= d o m a i n b a s e d b l a c k l i s t s , tag , tag , t a g

112/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Moloch plugins

Moloch is easily extendable with your own plugins I https://github.com/fygrave/moloch_zmq - makes it easy to integrate other things with moloch via zmq queue pub/sub or push/pull

model

113/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Moloch ZMQ example

CEP-based analysis of network-traffic (using ESPER): https://github.com/fygrave/clj-esptool/

( esp : add " c r e a t e ␣ c o n t e x t ␣ SegmentedBySrc ␣ p a r t i t i o n ␣by␣ s r c ␣fro WebDataEvent " ) ( esp : add " c o n t e x t ␣ SegmentedBySrc ␣ s e l e c t ␣ s r c , ␣ r a t e ( 3 0 ) ␣ as ␣ r a avg ( r a t e ( 3 0 ) ) ␣ as ␣ avgRate ␣from␣WebDataEvent . win : time ( 3 0 ) ␣ havi r a t e ( 3 0 ) ␣ 8 . 8 . 8 . 8 53 ( msg : "APT␣ p o s s i b l e ␣PlugX␣ Google ␣DNS␣TCP p o r t ␣ 53 ␣ c o n n e c t i o n ␣ attempt " ; c l a s s t y p e : misc−a c t i v i t y ; s i d : 5 0 0 0 0 0 1 1 2 ; rev : 1 ; )

129/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

GRR: Google Rapid Response: http://code.google.com/p/grr/ Hunting IOC artifacts with GRR

130/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

GRR: Creating rules

131/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

GRR: hunt in progress

132/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Honeypots

Learn about attacker as much as you can: I What language does the attacker understand? I What is the attacker keyboard layout? I What tools the attacker uses? I Where those are hosted? I Who are the targets? I Client software information (kippo -> ssh client)

133/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Honeypots plenty of hosting urls, DDoS targets in hp logs

134/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

DNS: Detection

Passive DNS traffic acquisition and analysis a couple of examples (last week) domain rtvwerjyuver.com tvrstrynyvwstrtve.com cu3007133.wfaxyqykxh.ru

ip 69.164.203.105 109.74.196.143 ...

owner linode linode

what does your DNS traffic look like..?

135/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

DNS viz01

136/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

DNS viz02

137/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

DNS anonymizer traffc

Anonimizer

8/13/2014 9:59:12 PM - ##.##.##.## - 0s.o53xo.pfxxk5dvmjss4y3pnu.dd34.ru 8/13/2014 9:59:12 PM - ##.##.##.## - o53xo.pfxxk5dvmjss4y3pnu.dd34.ru 8/13/2014 9:59:12 PM - ##.##.##.## - o53xo.pfxxk5dvmjss4y3pnu.dd34.ru 8/13/2014 9:59:12 PM - ##.##.##.## - 0s.om.pf2gs3lhfzrw63i.dd34.ru 8/13/2014 9:59:12 PM - ##.##.##.## - 0s.om.pf2gs3lhfzrw63i.dd34.ru 8/13/2014 9:59:12 PM - ##.##.##.## - nbxxe33tnbuxsllwnn2xg.mjuxultvme.dd34. 8/13/2014 9:59:12 PM - ##.##.##.## - nbxxe33tnbuxsllwnn2xg.mjuxultvme.dd34. 8/13/2014 9:59:12 PM - ##.##.##.## - 0s.ne.pf2gs3lhfzrw63i.dd34.ru 8/13/2014 9:59:12 PM - ##.##.##.## - 0s.ne.pf2gs3lhfzrw63i.dd34.ru 8/13/2014 9:59:15 PM - ##.##.##.## - obuwg4y.nruxmzlkn52xe3tbnqxgg33n.dd34 8/13/2014 9:59:15 PM - ##.##.##.## - obuwg4y.nruxmzlkn52xe3tbnqxgg33n.dd34 8/13/2014 9:59:15 PM - ##.##.##.## - 0s.o53xo.mzqwgzlcn5xwwltdn5wq.dd34.r 8/13/2014 9:59:15 PM - ##.##.##.## - 0s.o53xo.mzqwgzlcn5xwwltdn5wq.dd34.ru Time: Today 09:59:15pm Description: Phishing.bpwh Confidence Level: High

138/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Covert channel communication

8/13/2014 5 : 4 9 : 0 4 PM − x . x . x . x − 5 1 4 1 0 1 7 . mtdtzwdhc . mdgtmtmmd 8/13/2014 5 : 4 9 : 0 4 PM − x . x . x . x − 5 1 4 1 0 1 7 . mtdtzwdhc . mdgtmtmmd Time : Description : 13:19:25 I n t e r f a c e Name : Interface Direction :

Today 13:19:25 REP . b i l s c z Detected a t Today bond1 . 3 8 2 outbound

139/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Sinkhole in DNS Credit: domaintools.com

140/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Sinkhole in DNS Credit: domaintools.com

141/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

DNS

Suspicious activity: DNS lookups: kojxlvfkpl.biz:149.93.207.203 kojxlvfkpl.biz:216.66.15.109 kojxlvfkpl.biz:38.102.150.27

142/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Look for holes :)

143/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Hole traffic

144/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Categorizing Incidents It is extremely important to be able to categorize your incidents or threats. There are multiple data sources that could be used to do so.

145/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Catagorization based on public souces

[tbd]

146/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Catagorization based on historical data

[tbd]

147/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Catagorization based on cross source correlation

I

Visualizing the Threats

I

Filtering noisy extras

I

Making decisions

148/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Overview Introduction Criminilogy: case studies Detection Creating own IOCs EOF

149/150

Introduction

Criminilogy: case studies

Detection

Creating own IOCs

EOF

Questions

@fygrave @vbkropotov @vitalychetvertakov And answers :)

150/150