Hochschild and cyclic homology of Q-difference

0 downloads 0 Views 815KB Size Report
a n d 5r,T1(xndx. ) —. ( q r - l _ q - 1 ) x n + 1. When q is not a root of unity the complexes -0,k*(D ,) (r> 0) are exact. Hence, in this case the Hochschild and cyclic ...
413

J. Math. Kyoto U n iv . (JMKYAZ)

35-3 (1995) 413-422

Hochschild and cyclic homology of Q-difference operators By Jorge A. GUCCIONE and Juan J. GUCCIONE

Introduction Let k be a n a rb itra ry field and A =k Ex, x ]. T he ring D o f formal difand the fe re n tia l o p e ra to rs o n A i s th e k -a lg e b ra g e n e ra te d b y x , x , Heisenberg relation ax—xa= 1. T h i s algebra w as studied in [K ], w here the a u th o r b u ilt u p a n explicit 2-cocycle o n th e L ie algebra underlying D, which re s tric ts to th e 2 -c o cy c le defining th e V ira so ro a lg e b r a . T o c a r r y o u t his plan K assel computed the Hochschild homology of D b y u sin g a complex simpler than the canonical o n e . I n this sam e w ork, the q-analogue of D, which is th e algebra D, (q E k\ ICA) of q-difference operators on A , has been studied. By definition D, is the algebra generated by x, x , a and the relation ax—q xa = 1 (w hich is the q-analogue of the Heisenberg r e la t io n ) . One of the main results proved in [K ] is that the Hochschild homology of D , is th e homology of a complex R*,* (A ) sim p le r th a n th e canonical o n e o f H o c h sc h ild . B y using this complex Kassel obtained some partial results about the Hochschild homology HH 1 (DO. In this paper follow ing th e results o f [K ] w e m ake a fu rth e r ste p in the sense that we can compute the Hochschild and cyclic homologies of D ( f o r definitions, basic notions and notations about these theories w e rem it to [L , C hi, 2 a n d 3 ] ) . W hen q = 1 o r qn 1 fo r all n E N th ese hom ologies are known ( s e e [W ], [K ] a n d [G - G ] ) . S o , w e c a n assum e th a t q i s a prim itive m -th root of u n ity w ith m > 1 . T he results that w e obtain resem ble the case when qn* 1 for a ll n E N . In th is sense, the case q = 1 is a special one. T h e p a p e r is d iv id e d in tw o s e c tio n s . I n th e f ir s t one w e com pute the Hochschild homology o f D , b y m e an s o f th e stu d y o f a n a tu ra l filtration of R*,* (De ). T h e graded com plex associated to this filtration gives th e Hoch-

1

I

-

-

1

a

1

g

a

schild homology of the k-algebra generated by x, x , and the relation ax= q x a . T he first tim e that this hom ology (that plays a b a sic role in our work) has been studied w as in [T ], a n d has been fully com puted in [ G - G ] . I n th e second section w e give a n explicit form ula for the m orphism s B*: HE) (De) HH (D ) (s e e [L , 2 .1 .7 .4 ]). T h is fact together HHi (D ) and B*: HHi (D ) -

g

q

2

g

Communicated by Prof. M. Jimbo, November 14,1994

1

Jorge A . Guccione and Juan J. Guccione

414

w ith th e study of the G ysin-C onnes exact sequence allows u s to com pute the cyclic homology of D . g

1. Hochschild homology of D

g

Let k be an a rb itra ry field and q E k\101 . In th is section we compute the Hochschild homology of the k-algebra D g generated by x, 0 an d th e relation ax qxa= 1. W e use the following sta n d a rd n o ta tio n s. Given q E k \ 0} —

w e p u t

(n )g



qn —1 for all n E Z (of course, (n) q- 1

n7=11 (n j) q f o r all n E N a n d ( n. ] fined by

n) , (0)

!q

=

1,

(n) !g=

for the G aussian binomial coefficients de-



q

if



jE N ,n E Z

if j = 0 ,n E Z

(n i +1) —

q

if j EIST, ;T

(i)q From the equality

Z

ax qx5=1 it follows that —

a

n=E

(n (

r+ s= i

s

) ! q q nr- srx n- sar

s

r

In particular, if q * 1 is a root of unity of order m , then axm=xma and amx= In [K ] it w as proved that the Hochschild homology of Da is the homology of the bicomplex

xam .

51,1

Dg

R*,*(D ):

liq L d .i/ k

00

q

01 5

A4

0,1



,

1

-4

3

dA/k

r

where 0 0 (x na,) = ( 1 _ q n) x na)+1 ( a j ) xn

n

)

x

n-i a

dx + (n) q X n - l a j dX 50,1(X n a i d i) = [X n a j x ] = (q1 - 1)xn + 1 5 '± (f ) yri n a 1 - 1

01(x naidx ) =

51,1(X n a j dX ) = ( x nal x —

+ l

(q.1 ( r 1 ) x n + 1 + ( i) xn ai

[a,

a , 5 ] , w h e re A = I t is e a s y t o s e e t h a t D g i s t h e O re 's extension A -1 k [x , x ] a n d a: A A i s th e isom orphism that sends x to q x a n d 5 the a-derivative that sends x to 1. So, the complex R*,*(D ) is a particular case of the one obtained in P roposition 3.2 of [G - G ] fo r a n O re 's extension of a s m o o th a lg e b ra . U s in g th is proposition to g e th e r w ith T h e o re m 1 .4 of the —

q

415

Hochschild and cyclic homology sam e paper, w e o b ta in th e quasi isom orphism r*: Tot (R*,* (D ) ) where C*(D q ) is the normalized Hochschild complex, defined by -

g

4

—C * (D ), g

(x n a id x ) = x n a i e x (x n ai) = x n ai o a , To=id gx . Y2 (x n a jd x ) = x n a j ox o a — q i x n a i

a

-

(DO

•••gR*,*(D ) of R*,*(D g ) defined by rflo(pg)= 14) ; A .ai and I I I (D q ) = (ED;Z 4A.0-9S2,1 (i= 0 , 1) . The r- th component U*,* (D q ) = Tri, (D ) ffr* 7 ( D ) of the graded complex (D ) g P*,*

Let us consider the filtration

q

(Dq)

q

-

q

1/k

q

o

associated to this filtration is A

Win, when r=0, and

4 —

1 Ar —

1,1,1

A



ni .A /k

I 01 56',1

A

when r>0, where

OP(X ) = (1 '

n



q n )X n , 0 1 ' (X n d X ) =

( ti n

q -1)

54-,1 (x n dx) = (q n — 1) xn+ 1 a n d 5r,T1(xndx

x

nd x

) —

(q r - l_ q - 1 )x n + 1

W hen q i s n o t a r o o t o f u n ity th e co m p lex e s 0- ,k * (D ,) (r > 0 ) are exact. Hence, in th is case the Hochschild and cyclic homologies of Dg a n d A coincide ( s e e [G-G, Exam ple 3 . 5 ] ) . O n th e o th e r h a n d t h e Hochschild a n d cyclic homologies of D I w ere calculated i n [W ] when k is a characteristic zero field a n d in [K ] in the general c a se (in spite of th a t Kassel w orks w ith the field C o f th e com plex num bers his m ethod w orks fo r a rb itra ry c h a ra c te ris tic ). So, w e assume that q is a prim itive m-th root of unity w ith m > 1 . T o carry out th e computation o f th e Hochschild homology of D g w e w ill n e e d th e following result )s-1 E Tj.,0

(D ) , f 0

m -l

We have that x 1 man- 1

Z.

1 . 1 . L em m a . Let r be a multiple of m and u E

urn-s ar sd x

ar dx E .F■91 (D 0 ) and E'sn=i( 1

-

Iti(pg)

are

cycles of Tot (R*, * (D 0 ) ) .

Proof. It is im m ediate that 0 (x " a r - 1 ) = 0 a n d 50.1(e n i - l ar dx) = O . In o r d e r t o p r o v e t h a t (51,1 ± 01) ( ET-i. (T%rx u n i - s a n - s d x ) = 0 it su ffic e s to observe that 0

(51,1+ 0 1 ) (f m

-s

-S

a r - s d x )= (q '— 1) x

UM- S a r

-

S

which follows by direct computation.

q

-i) x um-s+1 ar-s ( _ x

s

q x UM

-

S -1

s

) q x um-s or

a r - Sd x

416

Jorge A . Guccione and Juan J. Guccione

1 .2 . T heorem . L et m > 1 an d q be a prim itiv e m - t h root of unity. W e have: H1-10 (13,) = IED k .x i e

(130 k . x " a ' „ez,>o

EZ

HT1 (1) ) = 1

k. (x i O x ) E D e l k.Y i.,u,ve

4

k.Y2,u,v

, z

HH2 (1) ) =

k.173,u,v

HH (D ) =0 V

n> 2

4

q

n

where Yi,u,v

= x i' a '

1

1

a

Y 2 ,u ,v = x urn- i a v m x and

,

rn .m_s a vm _ s . x Y3,u,v--- E ( 1 1 q ) (x

a _ q _i x . . _ s a v . „

a ox )

s= 1

It is clear that HH (D ) = 0 for all n > 2 . If r>0 is not a multiple of m, then H ( D q ) ) = 0 for all 1t 0. Hence Hn(ñjc,*(D )) = Hn (A:1(D )) for all n Now let r>0 be a m u ltip le o f m . In this case Proof.

n

q

,

n

q

q

Ho (Ur:lc,*(D ) ) =

k .x '

4

EZ

k .x u 'i d x

H i ( , * ( 1 ) 4 ) ) = 0ED k .x "ED eZ

H2 (j!k*

(Dq)

EZ

.

)= EZ

Moreover, the canonical maps (- ,* (DO )

(P ,* (DO ) -

a n d re: H 2 (P,*

(Dq)

) —> H2 (6-1 4,* (Dq) )

a r e epimorphisms (this follows easily from Lem m a 1 .1 ). Hence, from the

(D ) )

long exact sequence o f homology associated to 0—>

4

(134) —>

->

(D4 ) — ) 0, we obtain

Ho (F- -' ',9 (D ) ) =Ho (T'1174!(DO ) e E D k.xum a r EZ 6

Hi

-

q

-,

( 0 (Da) ) =

(D q )

D

r1EDE k .x um _i a rd x k..zuma —

)e

uez

„Ez rn

H2 (ft,*

(Dq)

)

=

H2 (AcT)It (Dq) ) I E D l

k.E (, 5= 1 -

So,

k.x1 e IEBO k.xurnavni

Ho (R*,* (1) ) ) 4

, z

q

e m -s a r-d x

.

417

Hochschild and cyclic homology — IE D k .x " - l avniclx k .x id x e IED kxumavm-i. to

(R *,* (D. ) ) = 2

iEz

H 2 (R * ,* (D ,))=

/rEZ,v>0

EZ,I,>0

1

E D

k .E ( vez,v>o s=1

xum-savm-sdx

19

Now, the proof can be finished applying r* to this homologies.

2.

Cyclic homology of D g

In th is section we compute the cyclic homology of D , . A s in section 1 we assume th a t q is a prim itive m-th root o f u n ity w ith m > 1 . In th is case we w ill c a r r y o u t th e prom ised com putation giving a n explicit form ula for the morphisms B*: HH 0 (D 4 ) H H 1 (D ,) a n d B * : H H 2 ( D 4) and studying th e Gysin-Connes exact sequence associated to D , . W e first establish som e results that w ill be needed later.

Preliminaries

2 . 1 . N otation. L e t (Ci, d * ) b e a chain c o m p le x . Follow ing [M ] we w ill say that tw o cycles z and o f Cn a r e homologous if they define th e same element in Hn (C * ) . T hat is to say if z z ' is a boundary. —

2 . 2 . Proposition. Let q

be a primitive m - th root of unity with m> 1, u E

Z and v E N . We havh: 1) B (x

2)

The cycles u (x um

a

v m -1

( u - l) m

a y m

- 1

0 e

0

a_

x (u - l)m

a v m -1

0 a

0 x m

) and

0 a ) of C * (D ,) are homolrgous. o am ox_xum-ia(v-um Ox ® u ) and

The cycles v(xuni-la(v-1)m

B (x "

- l

a v m O x ) of ( J ( D 4 ) are homologous.

Proof. 1 ) Let D = k [x , x

-

1

, y ] be the k-algebra generated by x, x - 1 , y and

the relation x y = y x . It is easy to see that th e morphism 02:

D 0/7'

S2i)ik ,

ad,

ad1 02(d 00 d 1 0 4 )— d 0 ax a y

induces a n isomorphism from H H 2 (D ) onto Snik, w h ic h is the inverse of the v m -1 o x canonical isomorphism 6 2 : S21)/k HH2 (D ) . Let T be the cycle u (xu-ly y y x\) B y ) o f U* (D ) . A s 0 2 ( T ) = 0, T is a b o u n d a ry . L e t f: D —> D, be th e morphism of algebras that sends x to xm and y to a . T h e p r o o f c a n b e f in is h e d b y o b s e r v in g t h a t 1 1 2 (f) (T ) = u (x (u- Dmavm- 1 x m a _ x (u_i),n a v.-1 0 a x m ) _ B (x umavm- i 0 a ) 2) is similar.

2 . 3 . Proposition. Let

m > 1 and q be a primitive m - t h root o f unity.

418

Jorge A. Guccione and Juan J. Guccione

The cycles am-i

®

m qE 'st i W ( q x gous.

m -s

a

a — am-i a ® ., x m -i ® . am a - ® and ex 0 — a ' s 0 a e x ) of C *(D ) are homolo_

®

m -s

m

- i

q

To prove this proposition we will need the following lemmas

2 . 4 . L em m a . The cycles

)s_,

E(1— ,

a m _s± , a ,n_s x m _s d x

q

_q

and

)

s_,

x m _s a m _s d x

s=1

of R*,*(D q ) are equal. (2

P ro o f U sing that a x = q x a + 1 w e can see that there exist csEk s m ) such that q

)

s-i m-s+iam-s q x m -sdx = q x m -lan i-ldx + sE=2 c s xm am dx -s

-s

s=1

On the other hand, in the proof of Theorem 1.2 we showed that

) s-i x u m -s a 's d x

q

k. E (

Z2 (14,4: ( D q ) = H2 (R*, * (Dq) ) =

1—

q

w here Z2 (14 , * ( D 4 ) ) is th e submodule of the cycles of degree 2 of R *,* (D q ) C onsequently there exist 2„,, (u E Z, y E N ) , w ith I (u, y): 2 u ,v * C q finite, such that

q x m -lam -ldx -I-E csx m -sam -sdx s=2 /7/

s-1

i

' s=1 ( 1 q — q

21.4 v

a EN ,

u m -s

a v m - s dX

From this fact w e can easily deduce that 2 , q = 0 i f (u, y) ± (1.1), 21,1 = q and cs =q( i I,) fo r all r

2 . 5 . L em m a. Let B q be the algebra generated by x ,

a and the relation ax

— qx a = 1 . The cycles mqE's --1(Tj ) ( x e x o a — q -ix m -s a m -s a m m and am ® X 0 a—am-lea 0 X of C* (134 ) are homologous. n

g

s

m -s

m -s

ae x )

-1

P ro o f It is straightforw ard from th e definition o f b , th e fa ct th at q is a primitive m-th root of unity and the equality

n

Erd-s=j( ir) q( nS

(5 )

q nr—srx n— sar

419

Hochschild and cyclic homology that m -1

.; _ q i i . - i -1 ( m_ ,, a m-1 • 05 oz o x x

b (E

--lo x , a c o x

1-1

i o x o a))

®

equals to a m, 0 a o x m _ a m, a r m® a 1( 1 1(

± qI

)

m 1

(

i

s(s+ 1 -i)

(s) !qq

m — s — i. q s

s=. i=0

( q _i x ._ s _ l a m_s_i

o a

q

o x

_x m - 3 - l a m - s - 1

o x

a )

So, to finish the proof it suffices to see that m -1 (

m- 1 \

(s ) , a s(s+i-)_ m (

/ q( s

m — s— i

i= 0

i q

q

1



\S

3

Now the result follows easily from Theorems 1 .2 and 2.7.

B*

Hili (D q )

422

Jo rge A . Guccione and Juan J . Guccione DEPARTAMENTO DE MATEMATICA FACULTAD DE CIENCIAS EX ACTAS Y NATURALES PABELLON 1 UNIVERSIDAD DE BUENOS AIRES -

( 1 4 2 8 ) BUENOS AIRES, ARGENTINA

e mail: vander @ mate. dm . uba. ar -

References [G G ] Jorge A. Guccione and Juan J. Guccione, Hochschild and cyclic homology of O re's extensions and some quantum examples, Preprint. [K] C. K assel, C yclic hom ology o f differential operators, th e V iraso ro a lg e b ra a n a q analogue, Comm. Math. Phys., 146 (1992) , 343-356. [L] J. L. Loday, Cyclic Homology, Springer-Verlag, Berlin GOtingen Heidelberg, 1992. [M] S. Mac Lane, Homology, Springer-Verlag, Berlin GOtingen- Heidelberg, 1963. [T] L. A. Takhtadjian, Noncommutative homology of quantum tori, Punkts. Anal. Pril., 23 (1989), 7576; English translation: Funct. Anal. Appl., 23 (1989) , 147-149. [W ] W. Wodzicki, Cyclic homology of differentiial operators, Duke M ath. J., 54 (1987), 641-647. -

-

-

-

-

-