Human Anatomy & Physiology: Respiration Respiration Pulmonary ...
Recommend Documents
Kelompok serangga ... PROSES RESPIRASI EKSTERNAL. 1. ... Karbondioksida
hasil dari proses respirasi sel, diangkut dalam darah menuju paru-paru.
Les organes de l'appareil respiratoire régissent les échanges gazeux ayant lieu
.... expulsé au cours de la première seconde d'une expiration forcée (après une ...
suggest that the origin of the blood had any effect on either P50 or 'n' (P > ... Note that in generating oxygen equilibria other than those chosen for illustration, one ...
Les personnes anxieuses ont plutôt tendance à avoir une respiration ... La
respiration diaphragmatique ... Répétez l'exercice tous les jours, de 5 à 10
minutes.
Jun 2, 2010 - Cannabinoids Inhibit Cellular Respiration of Human Oral Cancer Cells. Donna A. Whyte a Suleiman Al-Hammadi d Ghazala Balhaj d Oliver M.
15. Unit Four. Human Anatomy & Physiology. Karen Webb Smith. Cardiovascular
System URLs http://www.accessexcellence.org/AE/AEC/CC/.
Human Anatomy and Physiology. The Respiratory System. Basic functions of the
respiratory system: Gas exchange – supply oxygen to aerobic tissues in the.
she taught anatomy and physiology to physical education ma- jors. She then ......
Volume 1. Student Video Series for Human Anatomy & Physiology,. Volume 2.
Transitioned from the AP Biology Lab Manual (2001) ..... Released AP Exams
have several multiple-choice and free-response (essay) ... 5, 284–85, 1995.
The passage of respiratory air through the lamellae contributes to the cooling of the blood. This system works well in medium and large rabbit breeds, but not in ...
Oct 12, 2007 - including high-resolution figures, can be found in the online. Updated ... Computer sim- ..... the relation between PARP action during repair.
The process of photosynthesis involves the use of light energy to convert carbon
dioxide and ... To do this, choose Store Latest Run from the Experiment menu.
Jun 5, 2018 - Respiration-Entrained Brain Rhythms Are Global but Often .... above the brain stem: volitional control and attentional modulation in humans.
20 Feb 2018 - hydroxide and carbonate ligands are UO2CO3, UO2(CO3)2. 2−,. UO2(CO3)3 ... complexes, the Log β values at T = 25 C, and zero ionic strength, are defined in ... equation (Tutem et al., 1991, VanBriesen & Rittmann, 1999) and ...... bacteri
Jul 1, 2009 - the course of this ârespirationâ can be used for performing ... the chemical specificity of living things, and in ... ogy distinguishes living and non-living states .... Many authors believe that the theory of dissipa- ... peared th
May 6, 2015 - of the FC transfer efficiency (Buesseler et al., 2007; Bues- ... free energy (G) released during the oxidation of different .... PVC bottles to six light depths (1, 5, 15, 30, 50, and 100 %). ..... we use Eq. (2) and its integrated vers
Publication No. 141.00 Respiration versus Photosynthesis Introduction Put critical thinking to the test with this apparent “reversal” of photosynthesis.
1913), changes in motility (Lillie,1913; Hathaway, 1963), alterations in respiration ... 1952; Hathaway, 1960, 1963), development of the acrosome reaction (Dan,.
to the tissues; the plastron is a modification of this system wherein a mat of hairs .... gills; rapid, efficient irrigation and circulatory systems would have helped; the ...
La respiration est un phénomène universel d'expansion et de contraction .... Voici
quelques exercices pratiques de respiration complète que vous devez.
1 Breathing. 2 Transport of gases by the circulatory system. 3 Servicing of cells
within the body tissues ... Sistem Pernapasan Manusia. Alat respirasi. • Hidung.
tion of respiratory systems has involved changes in all of ...... Note that inspiration
can be forced by contracting accessory respiratory muscles (such as the ...
Chapter 7 – Cellular Respiration. Phases of aerobic cellular respiration. 1.
Glycolysis. 2. Transition or Acetyl-CoA reaction. 3. Krebs cycle. 4. Electron
transport ...
Locke, M. 1998. Journal of Insect Physiology 44:1-20. Hemocytes (granulocyte)
aggregate at tracheal tufts under O2 starvation. 13 families of leps studied have.
Human Anatomy & Physiology: Respiration Respiration Pulmonary ...
15 Oct 2010 ... 2. External Intercostal muscles contract. External Intercostal muscles contract -
lifts ribs lifts ribs. 3. Volume increases in thoracic cavity by 500 ...
10/15/2010
Human Anatomy & Physiology: Respiration
Respiration Exchange of gases between the air and the cells of the body.
Objectives To define the different types of pressure involved with ventilation. To outline the steps of inhalation and exhalation. To define lung compliance and explain its significance. Overview of the Gas laws. Introduction to External Respiration.
Pulmonary
Pulmonary Ventilation
Types of Pressure
Breathing Two phases: Inspiration – air flows into the lungs Expiration – air gases exit the lungs
Movement of air occurs due to pressure gradient. Depends upon volume changes in the thoracic cavity.
I. Patm – respiratory pressures described relative to atmospheric pressure (air pressure exerted by gases around the body). Patm = 760 mm Hg or 1 atm II. Ppul – intrapulmonary pressure = pressure in the alveoli. Always eventually equalizes with the atmospheric pressure. III. Pip – intrapleural pressure = pressure in the pleural cavity Always about 4 mm Hg less than Ppul. Pip is negative to both Pip and Patm
Air Flow Occurs due to changes of pressure in the lungs that alternate between higher and lower pressure – compared to Patm. Inspiration – Lower pressure in lungs Exhalation – Higher pressure in lungs
1
10/15/2010
What keeps the lungs from collapsing? Answer: The difference between Pip and Ppul (which keeps the air spaces of the lungs open). Remember: The pleural membranes create a pressure gradient because the intra pleural cavity has a lower pressure than Patm.
Inspiration
Expiration
Thoracic cavity expands, pressure decreases, Gases flow into the chamber. Actions of normal inspiration: 1. Diaphragm contracts 2. External Intercostal muscles contract - lifts ribs 3. Volume increases in thoracic cavity by 500 ml. (normal intake volume). 4. Lungs stretch 5. Intrapulmonary volume increases. 6. Ppul drops. 7. Air rushes in to fill the vacuum
Lung Compliance The distensibility of healthy, stretchy lungs. CL =
change in lung volume change in transpulmonary* transpulmonary* pressure Transpulmonary:: ((Ppul Transpulmonary Ppul – Pip)
Significance: The higher the compliance (CL) the easier it is to expand the lungs at any given transpulmonary pressure. Two factors of lung compliance. > Distensibility of the lung tissue and the surrounding thoracic cage. > Alveolar surface tension Healthy people have high lung compliance which favors efficient ventilation.
Passive process Inspiratory muscles relax and resume their resting position. 2. Thoracic volume decrease 3. When Ppul > Patm then gases flow out of the lungs. 4. Also aided by recoil of alveoli. 1.
Factors that reduce compliance Fibrosis (scar tissue) Blockage of smaller respiratory passages. Reduce the production of surfactant Decrease the flexibility of the thoracic cage.
The lower the compliance the more energy it takes to breath and the harder it is to breath.
2
10/15/2010
Surfactant
Gas Laws
A fluid secreted by Type II cells (surfactant--secreting cells) that (surfactant contains phospholipids and lipoproteins. Fcn: Fcn: Reduce surface tension in alveoli to prevent them from collapsing after exhalation. (maintains inflation of alveoli)
Boyle’s Law -Volume changes are correlated to pressure changes i.e. the Flow of gases. Dalton’s Law – gas pressures in a mixture. Fick’s Law – Diffusion of gas across a membrane. Henry’s Law - Gases will dissolve in a liquid in proportion to their partial pressure.
External Respiration Movement of respiratory gases from the lung into the blood. Involves diffusion across a respiratory membrane. Lung tissue/capillary membrane
Oxygenation of blood is very fast (less than 0.25 sec). However the solubility of CO2 is 20 times more soluble into plasma and alveolar fluids compared to oxygen.
Respiratory Volumes Tidal – normal resting breath. II. Inspiratory Reserve Reserve– – amt of air inspired forcibly. III. Expiratory reserve – amt of air that can be expelled from lungs. IV. Residual – amt of air that remains in lungs to keep alveoli open. I.
Net effect is equal amounts of the respective gases are exchanged.
3
10/15/2010
Spirometry Adult male average value
Measurement
Respiratory volumes
Adult female average value
Tidal volume (TV)
500 ml
500 ml
Inspiratory reserve volume (IRV)
3100 ml
1900 ml
Expiratory reserve volume (ERV)
1200 ml
700 ml
Residual volume (RV)
1200 ml
1100 ml
Description Amount of air inhaled or exhaled with each breath under resting conditions Amount of air that can be forcefully inhaled after a normal tidal volume inhalation Amount of air that can be forcefully exhaled after a normal tidal volume exhalation Amount of air remaining in the lungs after a forced exhalation
A testing method that measures lung volumes and capacities. Used to test for obstructive pulmonary disease (such as chronic bronchitis) & restrictive disorders (e.g. fibrosis due to exposure to hazardous environmental agents like asbestos).
Figure 22.16b
Summary of respiratory volumes and capacities for males and females
Respiratory Capacities I. Inspiratory capacity (IC) II. Functional residual capacity (FRC) III.Vital capacity (VC): (VC): Maximum amt of air that can be expired after a maximum inspiratory effort. IV. Total lung capacity (TLC): (TLC): Maximum amt of air after max inspiratory effort.
Total lung capacity (TLC)
6000 ml
4200 ml
Vital capacity (VC)
4800 ml
3100 ml
Inspiratory capacity (IC)
3600 ml
2400 ml
Functional residual capacity (FRC)
2400 ml
1800 ml
Maximum amount of air contained in lungs after a maximum inspiratory effort: TLC = TV + IRV + ERV + RV Maximum amount of air that can be expired after a maximum inspiratory effort: VC = TV + IRV + ERV Maximum amount of air that can be inspired after a normal expiration: IC = TV + IRV Volume of air remaining in the lungs after a normal tidal volume expiration: FRC = ERV + RV
(b)
Figure 22.16b
Dead Space Inspiratory reserve volume 3100 ml
Tidal volume 500 ml Expiratory reserve volume 1200 ml Residual volume 1200 ml
Inspiratory capacity 3600 ml
Vital capacity 4800 ml
Total lung capacity 6000 ml
Functional residual capacity 2400 ml
(a) Spirographic record for a male
> Some inspired air never contributes to gas exchange > Anatomical dead space: volume of the conducting zone conduits (~150 ml) > Alveolar dead space: alveoli that cease to act in gas exchange due to collapse or obstruction > Total dead space: sum of above nonuseful volumes
Figure 22.16a
4
10/15/2010
Alveolar Ventilation
Alveolar ventilation rate (AVR): flow of gases into and out of the alveoli during a particular time
AVR (ml/min)
=
frequency (breaths/min)
X
Basic Properties of Gases: Dalton’s Law of Partial Pressures
(TV – dead space)
(ml/breath)
Dead space is normally constant Rapid, shallow breathing decreases AVR
Total pressure exerted by a mixture of gases is the sum of the pressures exerted by each gas The partial pressure of each gas is directly proportional to its percentage in the mixture
Basic Properties of Gases: Henry’s Law
When a mixture of gases is in contact with a liquid, each gas will dissolve in the liquid in proportion to its partial pressure At equilibrium, the partial pressures in the two phases will be equal The amount of gas that will dissolve in a liquid also depends upon its solubility – CO2 is 20 times more soluble in water than O2 – Very little N2 dissolves in water