human papillomavirus genome status in cervical ...

3 downloads 199 Views 21MB Size Report
Feb 14, 2014 - Inc.) and Illustrator (Adobe Inc.). ...... A d F e R 1 1 T t q 5 E X P Б W X 5 3 ' & r V R U d h W T Ж T U T S 0 T H T G ( U 1 e T S 1 s Б d F Q R 0 c T ...
HUMAN PAPILLOMAVIRUS GENOME STATUS IN CERVICAL SAMPLES

LUIGI MARONGIU Submitted to the University College London for the degree of Doctor of Philosophy

14 February 2014

Delux version University College London Department of Infection and Immunity Cruciform Building – Gower street WC1E 6BT London (UK)

Abstract

Infection with oncogenic Papillomavirus genotypes is considered a major risk factor for the development of cervical cancer; nonetheless only a small proportion of the infected patients actually develop malignancies. The specific identification of high grade lesions is pivotal to increase the effectiveness of the cervical cancer screening. In the present study promising candidate molecular biomarkers based on the Human Papillomavirus (HPV) genomes were assessed in a cross-sectional cohort formed by samples singly infected with the most prevalent oncogenic genotypes 16, 18, 31 and 45. The candidate markers under investigation were the DNA viral load (VL), viral CpG methylation and viral integration. For the HPV16 samples, sequence variation within the regulatory region was also assessed. The viral integration was evaluated in a smaller longitudinal set. The results obtained showed that the DNA VL was lowest in subclinical lesions. The viral methylation was highest in severe dysplastic samples and differences in methylation profiles were observed between HPV species. The viral integration displayed a significant depletion of HPV16 episomal forms in cancerous lesions and the presence of viral integrants in all cytology grades. The analysis of the HPV16 variants identified eight novel polymorphisms and mutation profiles specifically recovered in high cervical disease grades. It was concluded that the viral genome modifications allowed the prediction of the cervical lesions. The combination of the molecular markers might allow a higher clinical specificity in the identification of cervical cancer precursor lesions.

Declaration I, Luigi Marongiu, confirm that the work presented in this dissertation is my own. Where information has been derived from other sources, I confirm that this has been indicated.

Oral presentations based on data derived from the study 2011 Eurogin congress: ‘HPV genome methylation: relationship with cervical disease progression’. 2010 Eurogin congress: ‘HPV DNA viral load and methylation status in liquid-based cytology samples stratified by disease stage’.

Acknowledgements I am indebted to Prof. Vincent Emery, formerly at the University College London, for the suggestions given to the present work and for leading me to the final step of this endevour. I would also like to thank Lauren Collins and Ben Chain, Division of Infection of Immunity of the University College of London, for their administrative support. I would like to acknowledge Prof. Kitchener and Dr. Kate Soldan for kindly providing the cancerous specimens. A special greeting goes to Prof. Clementina Cocuzza for her kindness and for providing the longitudinal samples and the related data. I also would like to thank Ms Paola Margarito, Biblioteca Nazionale Marciana of the University of Venice (Italy) for providing the paper of Rigoni-stern (1842). A great thank goes to Rupesh Vyas for his help during the methylation analysis. I am particularly grateful to Dr. Saranya Sridhar, Imperial College London, for the attention he dedicated to the drafting of the present manuscript. The present project would not have been realized without financial assistance from my parents and the emotional support of my beloved wife.

Et Sisyphum vidi, a terribili dolore oppressum

Acronyms °C

Degrees Celsius

AA

Asian-American HPV16 variant

ADC

Adenocarcinoma

Af

African HPV16 variant

ALTS

ASCUS-LSIL Triage Study

ARTISTIC

A randomised trial in screening to improve cytology

ASC

Atypical squamous cells

ASC-H

Atypical squamous cells not excluding HSIL

ASC-US

Atypical squamous cells of undetermined significance

ATM

Ataxia-telangiectasia mutated

AUC

Area under the curve

B

Borderline cytology

BLAST

Basic local alignment search tool

bp

Basepair

BSA

Bovine serum albumin

c/µl

viral copies per microlitre

c/c

viral copies per cell

c/µl

Copies per microlitre

CDC-ACIP

Centre for Disease Control Advisory Committee for Immunization Practices

CFS

Common fragile sites

CI

Confidence interval

CIN

Cervical intraepithelial neoplasia

CISOE

Composition, inflamation, squamous epithelium, other, epithelium

CpG

CG dinucleotide

Cq

Quantitative cycle

CV

Coefficient of variation

DEPC

Diethylpyrocarbonate

DIPS

Detection of integrated papillomavirus sequences

DNA

Deoxyribonucleic acid

DNMT

DNA methyl-transferases

dNTP

Deoxyribonucleic tri-phosphate nucleotide

dpi

Dots per inch

E

European HPV16 variant

E2BS

E2 binding site

E6AP

E6 associated protein

EA

East-Asian HPV16 variant

EBV

Epstein-Barr virus

ECM

Extra-cellular matrix

EDTA

Ethylenediaminetetraacetic acid

fg/µl

Femtogram per microlitre

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

HDAC

Histone deacetylases

HIV

Human immunodeficiency virus

HPA

Health Protection Agency

HPV

Human Papillomavirus

HSIL

High grade squamous intraepithelial lesions

HSPG

Heparan sulphate proteo-glycan

HSV

Herpes Simplex virus

IARC

International Agency for Research on Cancer

ICBP90

Inverted CCAAT box binding protein

ICTV

International Committee on Taxonomy of Viruses

IFN

Interferon

IL-10

Interleukin 10

IQR

Interquartile range

ISH

In situ hybridization

Kb

Kilobases

LB

Luria-Bertani medium

LBC

Liquid-based cytology

LCR

Long control region

LN5

Laminin 5

LOD

Limit of detection

LSIL

Low grade squamous intraepithelial lesions

m

Mild dyskaryosis cytology

mA

milliampere

MALDI-TOF Matrix-assisted laser desorption ionization time of flight MAR

Matrix attachment region

MeCP2

Methyl-CpG-binding protein 2

MGMT

O6-methylguanidine-DNA methyltransferase

min

Minutes

MIQE

Minimum information for publication of quantitative digital PCR experiments

MISCAN

Microsimulation screening analysis

ml

Millilitre

MND

Methyl binding domain

Mo

Moderate dyskaryosis cytology

MSP

Methylation specific PCR

MSRA

Methylation sensitive restriction analysis

MW

Molecular weight

n

Number of samples

N

Normal cytology

NASBA

Nucleic acid sequence based amplification

NCBI

National Center for Biotechnology Information

ND10

Nuclear domain 10

NHSCSP

National Health Service Cervical Screening Programme

NJ

Neighbour joining algorithm

nmol

Nanomolar

NPV

Negative predictive value

NTC

Non template control

OR

Odds ratio

ORF

Open reading frame

ori

Origin of replication

PBS

Phosphate-buffered saline

PCR

Polymerase chain reaction

PCR-RFLP

PCR restriction lenght polymorphism

PE

Early promoter

PL

Late promoter

PPV

Positive predictive value

qPCR

Quantitative PCR

RNA

Ribonucleic acid

ROC

Receiver operating characteristics

RPA

Replication protein A

rpm

Rotations per minute

RT-qPCR

Reverse-transcription quantitave PCR

S

Severe dyskaryosis cytology

s

seconds

SCC

Squamous cell carcinoma

SD

Standard deviation

SDS

Sodium dodecyl sulfate

SMRT

Single molecule real time sequencing

SNP

Single nucleotide polymorphisms

SNR

Non-coding region

SNR

Short non coding region

Sp1

Specificity protein 1

SV40

Simian vacuolating virus 40

TAE

Tris acetate EDTA

TBP

TATA binding protein

TE

Tris EDTA

TEF-1

Transcriptional enhancer factor 1

TERT

Telomerase catalytic subunit

TMB

Tetramethylbenzidine

TNF

Tumor necrosis factor

tPA

Tissue plasminogen activator

U

Units

UK

United Kingdom

URR

Upstream regulatory region

V

Volts

ver.

Version

VL

Viral load

VLP

Virus like particle

VRD

Virus reference departement

w/v

Weight/volume solution

WHO

World health organization

X-gal

5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside

XRCC1

X-ray cross complementing protein 1

YY1

Yin-yang protein 1

µg/ml

Micrograms per millilitre

µl

Microlitre

µM

Micromolar

Table of contents

Abstract..................................................................................................................... i Declaration................................................................................................................ ii Oral presentations based on data derived from the study............................................. iii Acknowledgements.................................................................................................... iv Acronyms.................................................................................................................. v Table of Contents...................................................................................................... ix List of figures............................................................................................................ xvi List of tables.............................................................................................................. xxi

Introduction.............................................................................................................. 1 Cervical cancer................................................................................................ 1 Epidemiology....................................................................................... 1 Aetiology............................................................................................. 3 Grading of the cervical lesions............................................................... 7 Progression of the cervical lesions.......................................................... 10 Human Papillomavirus..................................................................................... 11 Virion structure..................................................................................... 11 Classification and phylogeny................................................................. 13 Life cycle.............................................................................................. 18 Transmission, attachment and entry........................................... 18 Replication................................................................................ 19 Transcription............................................................................. 21 Extension of the S phase............................................................ 22 Viral latency............................................................................... 25 Encapsidation and release.......................................................... 26 





























Viral transformation.............................................................................. 26 HPV and cervical cancer............................................................. 26 Viral integrants and cervical cancer............................................. 28 Viral episomes and cervical cancer.............................................. 31 Immunity and vaccination..................................................................... 32 Immunity.................................................................................. 32 Vaccination................................................................................ 33 Screening of cervical cancer............................................................................. 36 Overview of the cervical cancer screening protocol................................ 36 Colposcopy.......................................................................................... 37 Cytological analysis.............................................................................. 37 Molecular testing.................................................................................. 38 HPV DNA testing....................................................................... 41 Genotyping............................................................................... 44 DNA viral load........................................................................... 46 RNA viral load............................................................................ 49 Viral variants.............................................................................. 50 Methylation profiles.................................................................. 51 Viral integration........................................................................ 54 Immunological testing......................................................................... 57 Serology................................................................................... 57 Immuno-histochemistry............................................................. 58 Performances of the screening assays.................................................... 59 Improving the effectiveness of the cervical cancer screening.............................. 61 Aim of the present work.................................................................................. 63

Materials and methods............................................................................................... 65 Study design................................................................................................... 65 Cross-sectional study............................................................................ 65





























Longitudinal study.............................................................................. 69 Plasmids and cells.......................................................................................... 72 Plasmids............................................................................................. 72 Reference sequences and cell lines....................................................... 73 DNA extraction.............................................................................................. 73 Total extraction with commercial kits................................................... 73 Selective extraction............................................................................. 74 General laboratory techniques........................................................................ 74 Prevention of contamination................................................................ 74 Gel electrophoresis.............................................................................. 75 Cloning.............................................................................................. 75 Sequencing........................................................................................ 76 DNA viral load............................................................................................... 76 Experimental protocol......................................................................... 76 Reproducibility and specificity.............................................................. 79 CpG methylation........................................................................................... 79 Pyrosequencing approach................................................................... 79 HPV16..................................................................................... 79 HPV18..................................................................................... 82 Accuracy.................................................................................. 84 Cloning approach............................................................................... 85 Identification of a suitable enzyme............................................ 85 HPV18, HPV31 and HPV45....................................................... 86 Assessment of the chemical stability of the CpG moiety.................................................................. 87 Specificity analysis.................................................................... 88 Late promoter methylation profile............................................. 88 CpG mapping..................................................................................... 88 Analysis of the data............................................................................. 88 

















!

"



!

"

#

Viral integration.............................................................................................. 90 Variants analysis............................................................................................. 93 Southern blot................................................................................................. 94 Statistical analysis........................................................................................... 95

HPV DNA viral load as a discriminator of cervical disease............................................. 97 Introduction................................................................................................... 97 Analysis of the HPV DNA VL in the cross-sectional samples............................... 98 Validation of the experimental protocol................................................ 98 Distribution of HPV DNA VL in clinical samples...................................... 100 Analysis of the stratification of the viral load by cytology cluster......................................................................... 102 Receiver operating curve analysis to discriminate cytology grades......................................................................... 104 Genotype specific cut-off of the HPV DNA VL.............................. 104 Comparison between HPV DNA VL and genotyping in the dscrimination of cytology grades........................... 107 Conclusions.................................................................................................... 109

HPV methylation as a predictor of cervical lesions........................................................ 113 Introduction.................................................................................................... 113 Analysis of viral methylation in clinical samples and cell lines............................. 114 Validation of the HPV16 pyrosequencing protocol.................................. 114 Characterization of the viral methylome in HPV16-containing cell lines........................................................ 115 Methylation analysis in HPV16 samples................................................. 118 Validation of the HPV18 pyrosequencing protocol.................................. 121 Methylation profiles of the HeLa cell line................................................ 123

$

%

&

'

(

)

*

+

,

-

+

.

/

)

.

/

HPV18 methylation in clinical samples obtained by pyrosequencing.................................................................... 124 HPV18 methylation in clinical samples obtained by cloning................... 127 HPV31 methylation in clinical samples................................................... 131 HPV45 methylation in clinical samples................................................... 131 Optimal methylation cut-off to discriminate cytology grades.................. 134 Genotype specific 3’-L1 and LCR overall methylation................... 134 Comparison between viral methylation, viral load and genotyping to discriminate cytology grades.............. 140 Association between HPV DNA viral load and methylation...................... 142 Conclusions.................................................................................................... 144

Association between viral genomic physical status and cervical lesions.......................... 151 Introduction.................................................................................................... 151 Analysis of the HPV genomic physical status in the clinical samples.................... 153 Validation of the experimental protocol................................................. 153 Establishment of the episomal thresholds.............................................. 155 Decrease of the E2-5’/E6 ratio in cancerous samples corresponded to depletion of episomal forms in these lesions............................... 157 Viral integration analysis of the longitudinal samples.............................. 161 Identification of optimal methylation cut-off to dicriminate cytology grades................................................... 161 Association between HPV DNA viral load and physical status.................. 163 Association between HPV methylation and physical status...................... 165 Conclusions.................................................................................................... 166

Discussion..................................................................................................................171 Discrimination of the subclinical lesions from higher grades.............................. 172

0

1

2

3

4

5

6

7

8

6

9

:

4

9

:

;

Discrimination of the severe dysplastic lesions based on the viral methylation............................................................................. 175 Discrimination of cancerous lesions based on the depletion of viral episomes................................................................................... 179 Strengths of the study..................................................................................... 181 Limitations of the study................................................................................... 182 Conclusions.................................................................................................... 184

Appendix 1 – Additional work carried out in the present study..................................... 187 Foreword....................................................................................................

187

Methylation around the late promoter..............................................................188 Introduction......................................................................................... 188 Results................................................................................................. 189 Discussion............................................................................................ 190 Southern blot as confirmatory assay of integration............................................ 191 Introduction........................................................................................ 191 Results................................................................................................. 192 Discussion............................................................................................ 193 Hirt extraction to separate viral episomes from the bulk of the chromosomal DNA......................................................................... 194 Introduction......................................................................................... 194 Results................................................................................................. 196 Discussion............................................................................................ 196 LCR and E6 polymorphisms in the cervical disease............................................ 197 Introduction......................................................................................... 197 Results................................................................................................. 198 Nucleic acid substitutions........................................................... 198 Amino acid substitutions............................................................ 203 Discussion........................................................................................... 204


?

@

A

B

C

D

E

C

F

G

A

F

G

Appendix 2 – Scientific publication derived from the present study............................. 209 A. Human Papillomavirus 16, 18, 31 and 45 viral load, integration and methylation status stratified by cervical disease stage............................ 209 Abstract.............................................................................................. 211 Background........................................................................................ 213 Methods............................................................................................. 216 Results and discussion.......................................................................... 219 Conclusions......................................................................................... 228 B. Human Papillomavirus type 16 long control region and E6 variants stratified by dervical disease stage...................................................................... 233 Abstract.............................................................................................. 234 Background........................................................................................ 235 Methods............................................................................................. 237 Results and discussion.......................................................................... 239

Appendix 3 – Sequences derived from the present study............................................ 244 References................................................................................................................ 271

H

I

J

K

L

M

N

O

P

N

Q

R

L

Q

R

S

List of figures

Figure 1-1. Diagram of the human cervix.................................................................... 2 Figure 1-2. World prevalence of HPV genotypes.......................................................... 8 Figure 1-3. Classification of cytological and histological lesions.....................................10 Figure 1-4. Structure of the HPV16 genome................................................................ 11 Figure 1-5. HPV16 transcription map.......................................................................... 13 Figure 1-6. Structure of the LCR of the genital HPVs.................................................... 14 Figure 1-7. HPV virion structure.................................................................................. 15 Figure 1-8. Phylogenetic tree of the Papillomaviridae family......................................... 16 Figure 1-9. Geographical distribution of the HPV16 lineages........................................ 17 Figure 1-10. HPV life cycle.......................................................................................... 19 Figure 1-11. Replication in HPV................................................................................... 20 Figure 1-12. Functions of the HR HPV oncoproteins..................................................... 23 Figure 1-13. Progression of the HR HPV-associated lesions........................................... 27 Figure 1-14. Model of carcinogenesis in HR HPV.......................................................... 29 Figure 1-15. Model of replication-induced chromosomal instability.............................. 30 Figure 1-16. Diagnosis of cervical disease.................................................................... 37 Figure 1-17. Localization of genotypes and lesions within a cervical sample................. 41 Figure 1-18. Algorithm of the cervical cancer screening in UK...................................... 43 Figure 1-19. Proposed algorithm for the cervical cancer screening............................... 44 T

U

V

W

X

Y

Z

[

\

]

[

^

_

Y

^

_

Figure 1-20. Impact of sampling on the outcome of the assays.................................... 48 Figure 1-21. Methylome of HPV16 in established cell lines........................................... 53 Figure 1-22. Methylome of HPV18 in HeLa cell line...................................................... 54 Figure 1-23. Clinical sensitivity and specificity of molecular tests.................................. 61

Figure 2-1. Prevalence of single and multiple infections in the cross-sectional study...... 67 Figure 2-2. Age distribution for different populations................................................... 69 Figure 2-3. Dynamics of pooled DNA VL by sampling time.......................................... 71 Figure 2-4. Localization of the amplicons used for the HPV16 CpG pyrosequencing analysis............................................................... 82 Figure 2-5. Localization of the amplicons used for the HPV18 CpG pyrosequencing analysis............................................................... 84 Figure 2-6. Comparison between DNA polymerases.................................................... 86 Figure 2-7. Map illustrating the position of the late promoter....................................... 89 Figure 2-8. Localization of the CpG sites studied.......................................................... 90 Figure 2-9. Clustering method for the methylation analysis.......................................... 91

Figure 3-1. Comparison of the standard curves........................................................... 100 Figure 3-2. DNA VL of the positive controls................................................................. 102 Figure 3-3. Specificity of the qPCRs used in the present study...................................... 103 Figure 3-4. Limits of detection of the installed qPCRs................................................... 104 Figure 3-5. Distribution of HPV16 and HPV31 DNA VL................................................. 105 Figure 3-6. Distribution of HPV18 and HPV45 DNA VL................................................. 106

`

a

b

c

d

e

f

g

h

f

i

j

d

i

j

k

Figure 3-7. Identification of optimal cut-off point for the DNA VL................................. 108

Figure 4-1. Methylomes for CaSki and SiHa................................................................. 116 Figure 4-2. Correlation between the methylation profiles obtained by pyrosequencing and cloning strategy............................................................... 117 Figure 4-3. Methylation of HPV16 clinical samples....................................................... 119 Figure 4-4. Stratification of the methylation values in HPV16........................................ 120 Figure 4-5. Stratification of the methylation in the HPV16 LCR..................................... 122 Figure 4-6. Methylation profile for HeLa CCL2 obtained by pyrosequencing.................. 123 Figure 4-7. Methylation of HeLa CCL2 obtained by cloning.......................................... 124 Figure 4-8. Methylomes for the HPV18 clinical samples obtained by pyrosequencing.......................................................................................... 125 Figure 4-9. Methylation profiles of HeLa obtained by cloning analysis........................... 127 Figure 4-10. Methylation of HPV18 clinical samples obtained by cloning....................... 128 Figure 4-11. Stratification of the methylation values in HPV18...................................... 130 Figure 4-12. Methylation of HPV31 clinical samples obtained by cloning....................... 132 Figure 4-13. Methylation of HPV45 clinical samples obtained by cloning....................... 133 Figure 4-14. Optimal cut-off for the HPV16 3’-L1 methylation...................................... 135 Figure 4-15. Optimal cut-off for the HPV16 LCR overall methylation............................. 136 Figure 4-16. Optimal cut-off for the HPV18 3’-L1 methylation...................................... 137 Figure 4-17. Optimal cut-off for the HPV18 LCR overall methylation............................. 138 Figure 4-18. Optimal cut-off for the HPV31 3’-L1 methylation...................................... 139 Figure 4-19. Optimal cut-off for the HPV45 3’-L1 methylation...................................... 141

l

m

n

o

p

q

r

s

t

u

s

v

w

q

v

w

Figure 4-20. Stratification of HPV31 DNA VL according to the methylation cut-off.................................................................................... 143

Figure 5-1. Alignment of PCR primer sets.................................................................... 152 Figure 5-2. Empirical assessment of the lower episomal E2/E6 ratio...............................156 Figure 5-3. Comparison between tests........................................................................ 157 Figure 5-4. E2/E6 ratios obtained on the HPV16 clinical samples................................... 158 Figure 5-5. Stratification of the clinical samples according to the viral physical status.................................................................................... 159 Figure 5-6. Concordance between the two E2 fragments............................................. 160 Figure 5-7. HPV16 ROC analysis of viral integration...................................................... 163 Figure 5-8. Stratification of DNA VL by viral physical status........................................... 164 Figure 5-9. Methylation of clinical samples bearing mostly integrative viral forms.......... 166

Figure 6-1. Association between viral genomic status and cytology grade..................... 172 Figure 6-2. Proposed cervical screening algorithm....................................................... 185

Figure A-1. Methylation profile around the late HPV16 promoter.................................. 189 Figure A-2. Incorporation of digoxigenin..................................................................... 193 Figure A-3. Detection of viral DNA by Southern blot.................................................... 194 Figure A-4. Dendrogram of the HPV16 variants............................................................ 199 Figure A-5. Location of the identified SNPs within the LCR........................................... 203 Figure A-6. Location of the identified mutations within the E6 ORF............................... 204

x

y

z

{

|

}

~



€

~



‚

|



‚

ƒ

Figure A-7. Viral load.................................................................................................. 220 Figure A-8. Integration............................................................................................... 222 Figure A-9. Methylation.............................................................................................. 224 Figure A-10. Sensitivity and specificity plot.................................................................. 226 Figure A-11. (Supplementary) Impact of varying integration thresholds........................ 230 Figure A-12. Phylogenic distribution of LCR-E6 variants................................................ 240 Figure A-13. Site-specific intra-type sequence diversity................................................. 241

„

…

†

‡

ˆ

‰

Š

‹

Œ



‹

Ž



‰

Ž



List of tables

Table 1-1. HPV types as defined by the IARC classification............................................ 6 Table 1-2. The five most prevalent HPV genotypes in worldwide assessments............... 9 Table 1-3. Molecular-based HPV assays....................................................................... 39

Table 2-1. Overall cytology fluctuation in the longitudinal study set............................. 70 Table 2-2. Details of the cell lines used in the present study......................................... 73 Table 2-3. Primers used for the DNA VL analysis.......................................................... 77 Table 2-4. Concentration of the oligonucleotides used for the DNA VL assessment................................................................................... 78 Table 2-5. Primers used for the HPV16 CpG methylation analysis................................. 81 Table 2-6. Primers used for chemical status analysis of HPV18 by pyrosequencing......................................................................................... 83 Table 2-7. Primers used for the CpG methylation analysis by cloning strategy......................................................................................... 87 Table 2-8. Primers used for viral integration analysis.................................................... 92 Table 2-9. Primers used for viral variants analysis......................................................... 93

Table 3-1. Performances of the qPCR used to assess the DNA VL.................................. 99 Table 3-2. Variability over different runs of the qPCR used to essay the DNA VL............ 101 

‘

’

“

”

•

–

—

˜

–

™

š

”

™

š

›

Table 3-3. Discrimination of grades based on genotyping and DNA VL......................... 109

Table 4-1. Discrimination of severe dyskaryotic samples from lower cytology grades based on genotyping, viral load and methylation............ 142

Table 5-1. Performances of the qPCR used for viral integration analysis......................... 154 Table 5-2. Specificity of the qPCR used for the assessment of the viral integration......................................................................................... 155 Table 5-3. Analysis of the viral physical status in the longitudinal cohort....................... 162

Table 6-1. Nucleic acid variation profiles in HPV16...................................................... 175 Table 6-2. Prevalence of the variation profiles in the HPV16 samples............................. 176

Table A-1. Nucleic acid variation profiles in HPV16...................................................... 201 Table A-2. Prevalence of the variation profiles in the HPV16 samples............................. 201 Table A-3. (Supplementary) PCR primers and probe sequences.................................... 231

œ



ž

Ÿ

 

¡

¢

£

¤

¥

£

¦

§

¡

¦

§

Introduction

Cervical cancer Epidemiology More than 2 billion women worldwide are at risk of developing cancer of the cervix (figure 1-1) due to infection with oncogenic Human Papillomaviruses (HPV) (WHO Information Centre on HPV and cervical cancer, 2010b). The global annual incidence of cervical cancer is over 520,000 while 275,000 women die each year from the disease. Such figures are expected to increase in the next decade unless proper implementation of vaccine programme and early identification of patients at risk is achieved (Arbyn et al., 2012; Patel et al., 2012). In Europe, cervical infection with HPV has a prevalence of 9.7% and cervical cancer represents the fifth most common type of cancer for the European women, with more than 54,000 new cases of cervical cancer and 25,000 deaths per year (WHO Information Centre on HPV and cervical cancer, 2010a). In particular, for women aged 15-44 years, cervical cancer represents the second most common form of neoplasia after breast cancer. The seminal work carried out by Rigoni-Stern in the 19th century has shown an increased ratio of uterine cancers in married women with respect to nuns (Rigoni-Stern, 1842) and further assessments have established that the probability of development of uterine and cervical cancers was associated to sexual activity (Smith et al., 1980; Taylor et al., 1959; Wynder et al., 1954). In particular the most important risk factors for the cervical cancer were identified in the age of the onset of coitus, the number of sexual partners, parity and even circumcision (Lombard and Potter, 1950; Rotkin, 1967a, b). Several studies have established an increased risk of cervical and uterine cancers in women from the lowest ¨

©

ª

«

¬

­

®

¯

°

±

¬

²

®

«

³

FIGURE 1-1. Diagram of the human cervix. The position of the transformation zone, where the stratified squamous epithelial cells of the ectocervix (vagina) are substituted by columnar epithelial cells, is indicated with an arrow. (Hafez, 1982, with modifications). social classes; ethnicity, which also display differences in the risk of development of these malignancies, might be a surrogate factor for the overall income or a pointer to a varied lifestyle associated with the race groups (Akers et al., 2007; Downs et al., 2008; Faggiano et al., 1997; Kennaway, 1948; Rotkin, 1973). Despite the fact that national screening and vaccination programmes are implemented in many nations (allowing the early identification of, and protection from, the cervical cancer and thus drastically reducing the morbidity and mortality associated with this disease), the coverage is not absolute. Even in a high income country such as the United Kingdom (UK) socio-economical and ethnic factors affect the attendance of the eligible women to the screening and vaccination programmes (Bang et al., 2012; Kumar and Whynes, 2011; ´

µ



·

¸

¹

º

»

¼

½

¾

¹

¿

»

¸

Moser et al., 2009). Thus cervical cancer remains a major worldwide Public Health concern that requires further investigation.

Aetiology Experiments on mice had shown that application of smegma (an amalgam of exfoliated cells and skin oil) by speculum or injection induced cancer; these results, coupled by epidemiological data, have led to the theory of a carcinogenic agent carried by the smegma during the coitus, and one of the first candidate markers was Mycobacterium smegmatis, part of the normal flora of the male genitalia (Alexander, 1973; Dennis et al., 1956; Plaut and Kohn-Speyer, 1947). Subsequent studies suggested that infection with Treponema pallidum might be involved in the cervical cancer development, although others suggested that such connection might only point to more promiscuous sexual behaviours rather than indicate a causal relation (Harding, 1942; Wynder et al., 1954). A significant increase in antibodies against HSV type 2 (genital) was identified in samples derived from cervical cancer lesions, suggesting a role as carcinogenic agent (Nahmias et al., 1970; Rawls et al., 1968; Royston and Aurelian, 1970). Anyway, the attempt to identify HSV DNA by mean of hybridization assays could not recover HSV from cervical carcinoma tissues (Delap et al., 1976; zur Hausen et al., 1974). Conversely DNA hybridization assays definitely proved the consistent presence of HPV DNA in cervical cancer lesions (Boshart et al., 1984; Gissmann et al., 1984; Gissmann et al., 1983). HPVs are acknowledged to cause ‘papillomata’, localized hyperplasic lesions of the epithelium characterized by the presence of protuberances known as papillae (from the Latin for ‘nipple’) (Routh et al., 1997). Papillomata have been described since the time of the ancient Greeks and have been recognized for centuries to affect not only humans but several species of animals (Lancaster and Olson, 1982). The viral aetiology of the papillo-

À

Á

Â

Ã

Ä

Å

Æ

Ç

È

É

Ä

Ê

Æ

Ã

Ë

mata was proved at the beginning of the 20th century when it was shown the infectivity of cell-free filtrates of warts (Ciuffo, 1907). The first animal Papillomavirus was isolated in the 1930s (Shope and Hurst, 1933) and the first identification of viral particles in wart lesions by electron microscopy was achieved in the 1940s (Strauss et al., 1949). Papillomata are generally referred to as warts or verrucae (from the Latin for ‘height’); specifically, the term condyloma (from the Greek for ‘knob’) is reserved to designate the genital warts (Cardoso and Calonje, 2011). Condylomas manifest either in the external or internal genitalia; in the latter case the transformation zone of the cervix is preferentially affected (Doorbar et al., 2012; Meisels et al., 1985; Paavonen, 1985; Roy et al., 1981; zur Hausen, 1977). The recognition of condylomas as venereal diseases was established after the second world war (Barrett et al., 1954). Nowadays HPVs are recognized as the most common sexually transmitted viruses (Crosbie et al., 2013; Weinstock et al., 2004). Currently HPV shows a worldwide prevalence in the female population of 11.4% corresponding to almost 300 million women infected with a genital HPV at any given time. The association between cervical cancer and HPV infection was recognized in the second half of the 20th century (zur Hausen, 2009). Epidemiological evidence pointed to a correlation between cervical cancer and HPV infection: both diseases were more common in sexually promiscuous subjects than in women with few or none sexual partners and both shared sexually-related epidemiological factors, such as history of other venereal diseases and parity (Larsen et al., 1988; Wright and Richart, 1990). A worldwide study recovered HPV genotypes in 93% of the analysed cancer lesions (Bosch et al., 1995) but further re-evaluation identified false-negative samples, thus increasing the prevalence of HPV DNA in cervical cancer to 99.7% (Walboomers et al., 1999). These findings corroborated the involvement of HPV in the development of this malignancy ruling out other microbiological aetiologies (Herrington, 1999; Walboomers and Meijer, 1997).

Ì

Í

Î

Ï

Ð

Ñ

Ò

Ó

Ô

Õ

Ö

Ñ

×

Ó

Ð

Clinical and experimental data ascertained that papillomata could progress into malignancies (Rous and Beard, 1935; zur Hausen, 1977) and tissue cultures transfected with DNA derived from Papillomavirus particles showed morphological alterations demonstrating the transforming capability of this virus (Lancaster and Meinke, 1975). Grafts of warts and condylomas transplanted on the healthy skin of human volunteers developed into wart lesions (Goldschmidt and Kligman, 1958; Serra, 1924). Anti-sera from patients affected by genital warts reacted with common warts, suggesting a common etiological agent for the two types of lesion (Ogilvie, 1970). It was therefore believed that the different types of papillomata were due to a single transmissible agent; in the 1970s this conjecture has been subsequently revised (Koutsky et al., 1988; zur Hausen, 1977). Epidemiological data, hybridization patterns and serological outcomes revealed the presence of several Papillomavirus genotypes (Gissmann and zur Hausen, 1976). Several studies have shown that certain HPV genotypes could be recovered more frequently in cancerous lesions whereas others were more prevalent in benign injuries (Crum et al., 1984; de Villiers, 1992). In particular, the 6th and 11th genotypes to be characterized (HPV6 and HPV11) have been preferentially recovered from condylomas of the external genitalia (Brown et al., 1993); conversely the 16th and 18th (HPV16 and HPV18) were the most prevalent in cervical cancer samples (Boshart et al., 1984; Durst et al., 1983). Nonetheless genotypes more associated with cervical cancer lesions could be recovered in condylomas (Brown et al., 1999; Sturegard et al., 2013). The risk of developing cervical cancer associated to infection with HPV varied with the genotype, being maximal for the genotype 16 (HPV16, odds ratio = 434.5) (Munoz et al., 2003). Due to the different association with the cervical lesion grades, the HPV genotypes could be subdivided in low risk (LR) and high risk (HR, or oncogenic) for the development of cervical cancer (table 1-1) (Arbyn et al., 2012; Bouvard et al., 2009; Chan et al., 2012).

Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à

á

Ü

â

Þ

Û

ã

Category

Table 1-1 – HPV types as defined by the IARC classification¹. Strains Correlation

1

16

1

18, 31, 33, 35, 39, 45, 51, Sufficient evidence 52, 56, 58, 59

2a

68

2b

26, 30, 34, 53, 66, 67, 69, Limited evidence or phylogenetic analogy 70, 73, 82, 85, 97

3

6, 11, 40, 42, 43, 54, 61, Low risk alpha-papillomaviruses 70, 72, 81, CP6108

3

Several

Strong epidemiological and molecular evidence

Limited evidence in humans, strong mechanistic correlation

Beta and gamma papillomaviruses

¹ Derived from: Bouvard et al., 2009; Munoz et al., 2003.

The main characteristic of the HR HPV genotypes is the capacity to progress to cervical cancer in the presence of persistency, whereas the LR-HPV are very unlikely to be associated with these lesions in long lasting infections (Schiffman et al., 2005). In addition oncogenic types have been generally found to persist longer than the LR strains (Brown et al., 2005; Franco et al., 1999; Giuliano et al., 2002a). Even among the high risk genotypes, HPV16 has been shown to be the most persistent and progressive (Burk et al., 2009; Carcopino et al., 2011) and precursor lesions associated with this genotype develop at an earlier age than those related to other strains (Wentzensen et al., 2013). HPV18 has a particularly low recovery frequency in low grade lesions, suggesting that its rate of progression towards precursors and cancer might be even faster than that of HPV16 (Cox, 1995). Despite the strong association between persistent infection with HR-HPV infections and cervical cancer, only a small percentage of infected women develop cancer lesions, therefore infection with HR-HPV is considered a necessary but not sufficient cause for neoplasia (Giuliano et al., 2002b; Hildesheim et al., 2001; Munoz et al., 2002; Schiffman and Castle, 2003). Other co-risk factors are required, such as smoking, number of sexual partners, ä

å

æ

ç

è

é

ê

ë

ì

í

î

é

ï

ë

è

concomitant infections and prolonged contraceptive use. For instance, co-infection with Human Immunodeficiency virus (HIV) is also an important factor for persistence and progression of HPV infections, possibly due to the impairment of the immune system in the early stages of the Papillomavirus natural history (Palefsky, 2006). Genetic polymorphisms can increase the risk of cancer development: for instance, in presence of HPV infection, three XRCC1 variants have been associated with further increased risk of cervical cancer in comparison to the wild type (Huang et al., 2007); and women with systemic lupus erythematosus have been shown to be at higher risk of developing precancerous lesions than healthy subjects (Nath et al., 2007).

Grading of the cervical lesions Condylomas show two main morphologies: esophytic (also known as ‘acumimatum’ or spiked) and endophytic (otherwise named ‘planum’, that is flat), the latter has been described only in the late 1970s (Meisels et al., 1985; Paavonen, 1985). Esophytic lesions are characterized by vascularization that determines the projection of the affected tissue outward with respect to the rest of the unaffected mass, whereas flat lesions grow inward sometimes involving the glandular cells (Cox, 1995). Condylomas are associated prevalently with LR HPV genotypes and are distinguished by the presence of koilocytes, which bear the productive phase of the viral replicative cycle, and have a high probability of spontaneous regression (Liao and Manetta, 1993; Richart and Wright, 1991). Conversely atypical flat condylomas, known as cervical intraepithelial neoplasia (CIN) lesions, are characterized by a higher proportion of dyskeratocytes (from the Greek ‘dyskaryon’, nuclear condition) and are more frequently associated with HR HPV genotypes (Fu et al., 1988; Fu et al., 1981). The relative frequencies of the HPV genotypes in cervical samples vary with respect to the individual studies, geographical regions (figure 1-2) and

ð

ñ

ò

ó

ô

õ

ö

÷

ø

ù

ô

ú

ö

ó

û

FIGURE 1-2. World prevalence of HPV genotypes. Percentage of HPV genotypes in patient resulting positive to HPV DNA screening (n=8977). The patients were stratified by world geographic region in Europe (n=2058), America (North, Central and South, n=3564), Oceania (n=170), Africa (n=544) and Asia (n=2641). (de Sanjose et al., 2010, with modifications). cytology grade, but the most common genotypes in normal cytology samples can be identified as 16, 18, 31, and 58 (Bruni et al., 2010; Clifford et al., 2005; de Sanjose et al., 2007; Jacobs et al., 2000); and as 16, 18, 31, 33 and 45 in cervical cancer (Bosch et al., 1995; Clifford et al., 2003; de Sanjose et al., 2010; Li et al., 2011) (table 1-2). Only HPV18 and HPV45 belong to the species alpha-7, whereas the others are included in the species alpha-9 (Bernard et al., 2010). According to the presence of cellular and nuclear abnormalities the CIN lesions can be subdivided in grade 1, 2 or 3 (figure 1-3) (Apgar et al., 2003). Such lesions can also be defined as dysplasia (from the Greek ‘dys-plasis’, growth disorder); CIN1 are also defined as mildly dysplastic cervical lesions and are accepted to represent productive Papillomavirus infections (Doorbar, 2007; Evans et al., 1986). However flat condyloma, koilocytotic atypia and CIN1 are difficult to discriminate one another (Liao and Manetta, 1993) and are

ü

ý

þ

ÿ



















Table 1-2 – The five most prevalent HPV genotypes in worldwide assessments. Clifford de Sanjose Bruni Anderson et al., 2005 et al., 2007 et al., 2010 et al., 2013 (n=15,613) (n=15,764) (n=215,568) (n=72) Normal cytology 16 (19.7%) 16 (2.5%) 16 (3.2%) 16 (56.9%) 42 (9.4%) 18 (0.9%) 18 (1.4%) 31 (18.1%) 58 (7.6%) 31 (0.7%) 52 (0.9%) 39 (9.7%) 31 (7.5%) 58 (0.6%) 31 (0.8%) 52 (9.7%) 18 (7.2%) 52 (0.6%) 58 (0.7%) 51 (6.9%) Bosch Clifford de Sanjose Li et al., 1995 et al., 2003 et al., 2010 et al., 2011 (n=902) (n=141,275)¹ (n=8,977) (n=19,184) Cervical cancer 16 (49.9%) 16 (16.3%) 16 (61%) 16 (59.3%) 18 (13.7%) 18 (4.4%) 18 (10%) 18 (13.2%) 45 (8.4%) 45 (3.9%) 45 (6%) 58 (5.1%) 31 (5.3%) 31 (3.8%) 31 (4%) 33 (4.9%) 33 (2.8%) 33 (3.7%) 33 (4%) 45 (4.4%) ¹ Accounts also for adenocarcinomas.

grouped together to describe the low grade squamous intraepithelial lesions (LSIL) (Apgar et al., 2003). CIN2 and CIN3, on the other hand, share features and a natural history that can differentiate them from the CIN1 lesions and are grouped together in the high grade squamous intraepithelial lesions (HSIL) (Llewellyn, 2000). The lesion scoring can be based on either the British/European or the American/Bethesda systems (Apgar et al., 2003; Evans et al., 1986). The former, introduced by the British Society for Clinical Cytology, subdivides the nuclear aberrations as borderline and dyskaryosis of mild, moderate and severe grade. More recently a modification of the classification has been proposed but not yet universally accepted (Denton et al., 2008). The Bethesda system uses the dichotomization of the dysplastic lesions in LSIL and HSIL and classifies of lower cervical diseases as Atypical Squamous Cells (ASC) that can be of undetermined significance (ASC-US) or that cannot exclude HSIL (ASC-H).





























FIGURE 1-3. Classification of cytological and histological lesions. The diagram is arranged to represent the relationship between the different classifications. The European (British) system is highlighted. AGC = atypical glandular cells; ASC-H = atypical squamous cells cannot exclude HSIL; ASC-US = atypical squamous cells of undetermined significance; LSIL = low grade squamous intraepithelial lesion; HSIL = high grade squamous intraepithelial lesion; SCC = squamous cell carcinoma; ADC = adenocarcinoma. (Bulkmans et al., 2004, with modifications).

Cervical cancer can be subdivided according to the cell type precursors: squamous cell carcinoma (SCC) and adenocarcinoma (ADC) derive from epithelial and glandular cells, respectively (Bulkmans et al., 2004).

Progression of the cervical lesions In a 48 month follow up study, the percentage of women who developed cervical lesions after infection at baseline was 37.9% for CIN1, 6.3% for CIN2, 2.8% for CIN3 and 0.1% for ADC (Rodriguez et al., 2012). Different rates of progression have been associated with the disease grade: CIN1 has a 20% chance of progression to CIN2, which in turn progresses to CIN3 with a rate of 30%, and 40% of CIN3 lesions progress to SCC (Schiffman et al., 2011). Persistent infections with HR-HPV are therefore strongly correlated with the cervical disease progression (Chen et al., 2011). The odds ratio for progression to CIN3 at 4 years in patient infected with HPV16 is 347 as opposed to 10 for cigarette smoking and development of lung cancer (Bosch et al., 2002). 





























Human Papillomavirus Virion structure The genomes of the Papillomaviruses consist of covalently closed circular double stranded DNA molecules combined with cellular histones to form mini-chromosomes (figure 1-4A) (You, 2010). The nucleosomes are thought to freely slide along the genome (Stunkel and

FIGURE 1-4. Structure of the HPV16 genome. A: nucleosomal organization of the viral genome extracted from virions in mild conditions. B: organization of the viral genome due to the adhesion of the matrix attachment region on the nuclear matrix. C: organization of the Human Papillomavirus episomal genome exemplified by HPV16. Origin of replication, promoters, poly-adenilation sites, splicing donor, acceptors and other features are reported in the legend; SNR = short non-coding region. (A: Favre et al., 1977; B: Tan et al., 1998). !

"

#

$

%

&

'

(

)

$

*

&

#

+

Bernard, 1999). Nevertheless some nucleosomes have been shown to maintain specific positions; in particular, one is overlapping the viral enhancer (Ne) and another lays over the viral early promoter and the origin of replication (Np). These nucleosomes are expected to repress viral transcription and replication by concealing the cognate sequences for the transcriptional activators Sp1 and TATA binding protein (TBP) as well as the viral origin of replication. Activation of the late phases of the viral biochemistry requires the re-localization of such viral nucleosomes (del Mar Pena and Laimins, 2001). Papillomavirus genomes contain AT-rich sequences known as matrix attachment regions (MARs) that are assumed to tether the genome to the nuclear scaffold and possibly partitions it into functional loops (figure 1-4B) (McBride, 2008; Tan et al., 1998). The genome can be subdivided into two main transcriptional units: early (E) and late (L), each of them containing a major promoter (indicated as PE or PL, respectively) and a polyadenylation site (figure 1-4C) (Zheng and Baker, 2006). Nonetheless, several promoters have been characterized and have been shown to have multiple starting points; the Papillomavirus transcripts undergo splicing, are polycistronic and supposedly translated by a leaky scanning mechanism (figure 1-5) (Kim and Taylor, 2003; Stacey et al., 2000; Wang et al., 2011). Two ORFs have been identified in the late region, encoding for the capsid proteins L1 and L2, whereas a number of ORFs with regulatory function have been identified in the early region: E1, E2, E4, E5, E6 and E7 (Danos et al., 1982). The Papillomaviruses gene expression is controlled by the long control region (LCR), or upstream regulatory region (URR), which contains the cognate sites for several transcriptional factors and includes an enhancer (figure 1-6) (Bernard, 2000). The LCR region also allocates the origin of replication (ori); this is characterized by the presence of the cognate sequences for the viral polypeptides involved in the viral replication (E1 and E2) (McBride, 2008). The portion of DNA between the E and L regions contains the early poly-adenylation site and the PL and has been named short non-coding region (SNR) (Maki et al., 1996). ,

-

.

/

0

1

2

3

4

5

6

1

7

3

0

FIGURE 1-5. HPV16 transcription map. Linear representation of the HPV16 genome showing the different ORFs; the early (P97) and late (P670) promoters and the early (AE) and late (AL) poly-adenylation sites are illustrated (upper panel). The potential transcripts of HPV16 are depicted (lower panel); for each mRNA the exons (bars), the introns (thin lines) are reported. (Kajitani et al., 2012).

Cryoelectron microscopy has demonstrated that HPV capsids consists of a non-enveloped particles composed of 60 hexavalent (hexons) and 12 pentavalent (pentons) capsomeres, arranged with a right-handed T=7 morphology (figure 1-7A) (Xu et al., 2006). Each capsomere is formed by homopentamers of the major capsid protein L1; variable amounts of the minor capsid protein L2 are suggested to be embedded within the capsomeres (figure 1-7B) (Buck et al., 2008). Expression of L1 proteins by both eukaryotic or prokaryotic systems has resulted in the production of self-assembled empty capsids, known as virus-like particles (VLP), even in absence of L2 (Pereira et al., 2009; Xu et al., 2006).

Classification and phylogeny In 2001 the Papillomaviruses had been classified into a specific family, the Papillomaviridae (Fauquet and Mayo, 2001). The members share the features of a naked icosahedral

8

9

:

;




?

@

A




;

C

FIGURE 1-6. Structure of the LCR of the genital HPVs. The LCR is delimited between the L1 and E6 ORFs. The localizations of the enhancer, the matrix attachment regions (MARs), the origin of replication ( ), the specifically positioned nucleosomes (grey boxes) and the cognate sequence for transcriptional and replication factors, including CDP ( ), are indicated. The E2 binding sire (E2) are numbered. HPV strains and species are reported. (O’Connor et al., 1995, with modifications). P

capsid of about 55 nm in diameter, containing a circular double-stranded DNA genome of roughly 8 Kb in length in which all open reading frames (ORF) are orientated in the same direction on the same strand. The members of the Papillomaviridae family show a stringent species-specificity and can be recovered all the amniotes (Bennett et al., 2010; Campo, 2002; Herbst et al., 2009; Lange et al., 2011). The evolutionary rate of the Papillomaviruses is low, with a mutation fixation rate estimated in the order of 10–7-10–8 base substitutions per site per year, as opposed to a rate of 10–9 base substitutions per site per year for the human -globin and between 10–3 and 10–5 base substitutions per site per year for Human Immunodeficiency virus (Gojobori et al., 1990; Halpern, 2000).

D

E

F

G

H

I

J

K

L

M

N

I

O

K

H

FIGURE 1-7. HPV virion structure. A: surface-shaded representations of the HPV capsid showing the pentavalent (5) and hexavalent (6) capsomeres. B: close up of the pentavalent (left) and hexavalent (right) capsomeres (upper panel) and their cross-sections (lower panel); the possible position of L2 is indicated (arrow). (A: Belnap et al., 1996, with modifications; B Trus et al., 1997).

The classification of Papillomaviruses is based on sequence homology of the major capsid protein L1 ORF, the most conserved region within the genome (de Villiers et al., 2004). Based on the L1 sequence, the Papillomaviridae family is currently arranged in 29 genera, identified with Greek letters, further subdivided in species, genotypes and subtypes (figure 1-8) (Bernard et al., 2010). Nucleotide L1 identity between clades is defined as follows: in genera is 98 percent. The genital HR HPVs belong to the Alpha genus (Bernard et al., 2006). The International Committee on Taxonomy of Viruses does not recognize ‘type’ as a taxonomic unit, preferring the term ‘strain’, and applies the norm of naming the species after a prototype virus (Bernard, 2005). Thus, for instance, HPV16 is commonly named type 16 (alpha-9) but it should be referred to as strain 16 (HPV16). Nevertheless ‘type’, used as a synonym of ‘genotype’, is historically accepted as a label. HPV species correlates better than strains to pathological outcomes; consequently the former is a more clinically defining term.

Q

R

S

T

U

V

W

X

Y

Z

U

[

W

T

\

FIGURE 1-8. Phylogenetic tree of the Papillomaviridae family. Maximum likelihood tree of the known Papillomaviruses based on the E1-E2-L1 sequence, showing the main lineages (in red, green, blue, and yellow) and the not classified clade (black) together with the hosts (silhouettes). Species HPV16 (alpha-9) and HPV18 (alpha-7) are highlighted; high risk strains are indicated with a dot. (Bravo et al., 2010, with modifications). The HPV16 genome can be differentiated into six geographically defined phylogenic subtypes: European (E), African (Af) 1 and 2, East-Asian (EA), Asian-American (AA) and NorthAmerican (NA); the E lineage can be further subdivided according to a T350G single nucleotide polymorphism (SNP) (figure 1-9) (Cornet et al., 2013a; Yamada et al., 1997).

]

^

_

`

a

b

c

d

e

f

g

b

h

d

a

FIGURE 1-9. Geographical distribution of the HPV16 lineages. The prevalence of the different geographical variants is depicted. The European lineage is further subdivided according to the T350G polymorphism. AA = Asian-American; Af = African; As = Asian; E = European; NA = North America. (Yamada et al., 1997).

More recent analysis allowed a further separation of the AA and Af lineages rising to nine the number of HPV16 geographic lineages (Cornet et al., 2012). The HPV16 prototype has been originally isolated from a German patient belonging to the E-T350 lineage (Durst et al., 1983). The regulatory region sequences from 57 HPV18 isolates allowed the identification of four main geographical clusters distinct from the HPV18 prototype (Boshart et al., 1984): European, African, East Asian and American Indian (Ong et al., 1993). The HPV31 strain could be subdivided in the A, B and C lineages (Ferenczi et al., 2013) whereas HPV45 has been dichotomized in the A and B clades (Chen et al., 2009).

i

j

k

l

m

n

o

p

q

r

m

s

o

l

t

Life cycle Transmission, attachment and entry The transmission route of the Papillomaviruses is through direct contact; genital HPVs can be communicated by sexual contact (Forcier and Musacchio, 2010) and the identification of virgins infected with genital HPV has indicated the possibility of exposure by nonpenetrative intercourse (Winer et al., 2003). Horizontal transmission of Papillomaviruses by fomites and blood transfusion has been suggested (Bodaghi et al., 2005; Lacour and Trimble, 2012; Pao et al., 1993; Roden et al., 1997); vertical transmission of HR HPV genotypes, possibly by exposure of the newborn to an infected uterus, has been also reported (Cason et al., 1995; Kaye et al., 1996; Pakarian et al., 1994). Papillomaviruses are thought to begin their replicative cycle by gaining access to the basal layer cell through abrasions that expose the innermost layers of the epithelium; here they bind to sulphated polymers, in particular heparan sulphate proteoglycans, present on both the basal layer of the epithelium and on the surface of epithelial cells (figure 1-10) (Doorbar et al., 2012; Sapp and Bienkowska-Haba, 2009; Sapp and Day, 2009). The internalization of Papillomaviruses is a peculiarly slow process lasting for several hours; the genome is believed to gain access to the nucleus after the dissolution of the nuclear membrane during mitosis (Schiller et al., 2010). As in the case of Herpes Simplex virus, Adenovirus and SV40, the ignition of the early stages of the HPV biochemistry is believed to be carried out by cellular proteins present in the nuclear domains 10 (ND10), nuclear bodies associated with transcription and replication activities (Ching et al., 2005; Ishov and Maul, 1996; Ishov et al., 1997; Schiller et al., 2010). Significantly, early promoter transcription and replication independent from the viral proteins have been described, suggesting that viral proteins are not required to activate the viral replicative cycle (Kim et al., 2005; Romanczuk et al., 1990).

u

v

w

x

y

z

{

|

}

~



z

€

|

y

FIGURE 1-10. HPV life cycle. The virus binds to the heparan sulphate proteoglycans present on the extracellular matrix of the basement membrane. The access is obtained through abrasions. The complex virus/ receptor is transported to the cell’s surface, where internalization takes place. The virus replicates in the stem cells located in the basal layer of the epithelium, maintaining a reservoir. The differentiation pathway of the transiently replicating cells migrating towards the upper layers of the epithelium triggers the late phases of the viral biochemistry, with subsequent generation of proliferative lesions. The viral progeny is assembled in the uppermost layers of the epithelium, and released together with the desquamating keratinocytes. In a minority of infected cells the virus can integrate, a suggested risk factor for the development of unproductive infections and cervical cancer. (Forcier and Musacchio, 2010).

Replication The viral replication requires both E1 and E2 as factors in trans and the ori sequence as a cis element (figure 1-11A) (Kajitani et al., 2012). E1 is formed by about 600 residues and is the only Papillomavirus protein with an enzymatic activity. E1 is subdivided in an N-terminal DNA binding domain and a C-terminal domain with 3

5 helicase and ATPase activities,

separated by a variable hinge domain. E1 also interacts with the different proteins of the replication machinery and it is loaded at the ori site by E2 (McBride, 2008). 

‚

ƒ

„

…

†

‡

ˆ

‰

Š

…

‹

‡

„

Œ

FIGURE 1-11. Replication in HPV. A: alignment of DNA sequences of the ori region of the HPV strains 16, 18, 31, and 45; the E2BS, E1BS and the A/T rich stretches are reported ( ). Sequences upstream and downstream of the position zero are visualised with different colours. B: the replication in Papillomavirus proceeds bidirectionally through a theta structure (i-iii); failure in termination might allow one replication fork to establish a rolling circle (iv-v). (B: Kusumoto-Matsuo et al., 2011).

E2 is a protein of about 400 amino acids, subdivided in two main domains. The N-terminal end has a transactivation function, whereas the C-terminal domain allows the dimerization with both E2 and E1. The C-terminal domain also recognizes the viral DNA palindrome consensus 5 -ACCG–N4–CGGT-3 , known as E2 binding site (E2BS, where the underlined letters indicate a consensus with a certain degree of variability between genotypes) (Rogers et al., 2011). E2 is also recognized to bind to a plethora of regulators which influence the cellular differentiation, apoptosis and cell cycle (Muller and Demeret, 2012).



Ž





‘

’

“

”

•

–

—

’

˜

”

‘

Papillomaviruses are believed to display different rates of replication that mark the main phases of the infection (Doorbar et al., 2012). In the early stages of the viral infection the viral genome replicates, in a phase named ‘initial amplification’ or ‘establishment replication’, to about 102 copies per cell, ensuring the subdivision of the viral genomes in the daughter cells during mitosis (Bodily and Laimins, 2011). After this primary expansion, the viral genome is replicated at a steady state so that the number of genomes per cell is kept constant (‘maintenance replication’) and the virus can perpetuate in reservoir stem cells within the basal layer of the epithelium. The migration of the differentiating keratinocytes towards the upper layers of the epithelium is coupled with the activation of the late promoter and the ignition of a fast rate of viral duplication, known as ‘vegetative replication’; in this phase the viral copy number expands in the order of thousands of copies per cell (Hoffmann et al., 2006; Pittayakhajonwut and Angeletti, 2010). The replication proceeds bidirectionally through a theta structure and is carried out by the cellular replication machinery with E1 exploiting a helicase function (figure 1-11B) (Chow and Broker, 1994; Melendy et al., 1995). Rolling circle replication of the Papillomavirus genome has been induced in vitro and has been observed in HPV-derived cell lines, fostering the possibility that this modality of replication is associated with the vegetative phase (Geimanen et al., 2011). Alternatively, it has been proposed that the rolling circle might arise upon failure in the termination step of the Papillomavirus replication (Kusumoto-Matsuo et al., 2011). The replication of HPV has been related to the induction of the DNA damage repair system, suggesting the presence of abnormal replicative intermediates that are likely to be involved in the viral biochemistry and that can generate chromosomal aberrations (Gillespie et al., 2012; Olive, 2011).

Transcription Viral transcription is carried out by the cellular RNA polymerase II and it is modulated by E2 in concert with other cellular transcriptional factors (Thierry, 2009). E2 binds with the ™

š

›

œ



ž

Ÿ

 

¡

¢



£

Ÿ

œ

¤

highest affinity to the E2BS#1 (figure 1-6) thus at low concentrations of E2 this position is preferentially occupied and transcription promoted. At higher amounts, E2 binds to E2BS#3 and #4 displacing the transcription factors Sp1 and TBP, repressing the early promoter and activating both replication and late transcription (Kajitani et al., 2012). The engagement of the PL is coupled with replication but it is disjoint from the E2 modulation and is accompanied by chromosomal and nucleosomal rearrangements of the LCR (del Mar Pena and Laimins, 2001; Kajitani et al., 2012). The coordinated stimulation of both late transcription and vegetative replication in the upper layers of the epithelium assures the timely coexistence of viral genomes and capsid proteins to produce viral progeny in the desquamating cells (Pittayakhajonwut and Angeletti, 2010).

Extension of the S phase The epithelial stem cells generates a replicating progeny known as transit amplifying keratinocytes that, during their migration toward the upper layer of the epithelium, differentiate in mature keratinocytes and withdraw the cell cycle (Yan and Owens, 2008). Since both the epithelial stem cells and the transit amplifying keratinocytes are proliferating, the virus is passively replicated during the mitosis (Bodily and Laimins, 2011; McLaughlin-Drubin et al., 2012; Moody and Laimins, 2010). On the other hand Papillomaviruses evolved specific proteins to counteract the withdrawal from the cell cycle of the keratinocytes. The viral antagonists of the G0 state are encoded in the early region and include E7, E6 and E5. These proteins are not enzymes and absolve their functions interacting with several modulators of the cellular biochemistry (figure 1-12). The resulting aberrant cellular proliferation allows the classification of these polypeptides as oncoproteins. The early promoter is regulated to permit the expression of the appropriate amount of viral proteins to sustain the S phase without inducing senescence (Van Tine et al., 2004). Cells transfected with E6/E7-enconding plasmids have been exhibited to become resistant to final differentiation (Sherman and Schlegel, 1996). Another important outcome of the E6/ ¥

¦

§

¨

©

ª

«

¬

­

®

¯

ª

°

¬

©

FIGURE 1-12. Functions of the HR HPV oncoproteins. Diagram illustrating the binding partners of the HPV16 oncoproteins E7 (A), E6 (B) and E5 (C). The affected cellular pathways are depicted. (A,B: Moody and Laimins, 2010; C: Venuti et al., 2011). ±

²

³

´

µ



·

¸

¹

º

µ

»

·

´

¼

E7 expression is the induction of chromosomal instability (Duensing and Munger, 2002) and the increased rate of integration of foreign DNA (Kessis et al., 1996). In addition, these oncoproteins have been suggested to alter the cellular expression of tumor suppressive micro RNAs, to stabilize the viral transcripts and to influence the cell cycle (Zheng and Wang, 2011). The viral protein E7 (about 100 amino acids) has been demonstrated to interact with the members of the retinoblastoma family of proteins (pRb, p107, and p130) (Bodily and Laimins, 2011). The disruption of these factors leads to the stabilization of the transcriptional factor E2F, which in turn enhances the expression of genes involved in the S phase. E7 binds to other cellular proteins, in particular with several histone deacetylases (entangled in the activation of several genes, including E2F) and p21 (a repressor of the cell cycle). The unscheduled reactivation of the S phase brings into action p53, an effector of the DNA repair pathway that can trigger apoptosis (Lim et al., 2007). E6 (150 residues in the HPV16 full length form) associates with a wide range of cellular proteins, which can be classified in specific functional groups: DNA replication and repair, cell cycle control, cell adhesion, signal transduction, apoptosis, and immune recognition (Howie et al., 2009). The best characterized activity of E6 is the ubiquitination of the oncosuppressor p53, through the interaction with an E3 ubiquitin ligase known as E6 associated protein (E6AP) (Huibregtse et al., 1991). Interestingly, the most HR HPV genotypes have been shown not to encode the most efficient E6 proteins in inducing p53 degradation, suggesting that the Papillomavirus-associated oncogenicity might rely on other pathways (Mesplede et al., 2012). The E6 ORF generates both the full length form of the protein as well as smaller splicing variants indicated as E6* that are supposed to counteract the activity of the full length form to further modulate the activity of the viral oncogene (Pim et al., 1997).

½

¾

¿

À

Á

Â

Ã

Ä

Å

Æ

Ç

Â

È

Ä

Á

E5 (roughly 83 amino acids) is transcribed from both early and late transcripts, albeit at very low levels (Venuti et al., 2011). Its activity is supposed to enhance the functions of E6 and E7 through association with effectors of the cell cycle, apoptosis and cell-cell interactions. Anyhow, the E5 ORF is found disrupted in a substantial proportion of cervical cancers samples, henceforth its involvement in carcinogenesis is less recognized (Chang et al., 2001).

Viral latency Eukaryotic gene expression is regulated by epigenetic pathways which include the addition of methyl moieties to cytosines within the CG dinucleotide (CpG) and several chemical histone modifications; these alterations dynamically influence one another in what has been named ‘epigenetic cross-talk’ (Dupont et al., 2009; Kondo, 2009). Methylation of the eukaryotic genomes is performed by members of the DNA methyltransferases (DNMT) family: specifically, DNMT3 is responsible for the establishment of methylation in naïve DNA, a process known as de novo methylation; the maintenance of the methylation profiles is carried out by DNMT1 (Brenner and Fuks, 2006). Epigenetic modifications have also been shown to modulate Papillomavirus expression: methylation at the CpG sites within the LCR results in decreased transcription (Hublarova et al., 2009). It has been shown that HPV16 is moderately methylated in undifferentiated cells, whereas upon induction of differentiation the methylation is lost (Kalantari et al., 2008; Vinokurova and von Knebel Doeberitz, 2011). It has been proposed that methylation might be involved in the establishment of a latency state (Badal et al., 2003; Kalantari et al., 2004; Kim et al., 2003). Other viruses, for instance Epstein-Barr virus and Hepatitis B virus, have been shown to use epigenetic regulation to establish latency (Poreba et al., 2011). It has been suggested that the modulation of the E2 function could be exploited by methylation of the E2BS, since this modification inhibits the association of E2 and therefore enhances transcription or replication (Kim et al., 2003; Thain et al., 1996). É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

Ò

Í

Ó

Ï

Ì

Ô

Encapsidation and release Viral DNA, L1 and L2 assemble together in the nucleus; L2 directs the co-localization of viral genome complexed with E2 and pentamers of L1 at the ND10, thus promoting virion assemble (Florin et al., 2002). The Papillomaviruses can spread in the environment inside the defoliated squamous keratinocytes, which provide protection to the viral progeny (Bodily and Laimins, 2011). Papillomaviruses do not induce cell lysis and do not bud at the cell surface.

Viral transformation HPV and cervical cancer Papillomavirus infections of the cervix are usually self-limited, lasting for an average of 4-20 months (Tota et al., 2011), but about one fifth of the infections can persist for several years and progress towards cancer (Stanley, 2010), which represent a dead-end interaction for the virus because there is not production of viral progeny (figure 1-13) (McLaughlin-Drubin et al., 2012). Infection with HPV has been demonstrated to precede the development of the cervical lesions (Kjaer et al., 2002). Lesions of low grade cytology are diagnosed mostly in women aged 20-30 years whereas cervical cancer diagnosis is most common in patients 50-60 years old, suggesting a progressive evolution of the malignant phenotype (Schiffman et al., 2007; Ting et al., 2010; zur Hausen, 1996). Furthermore, the benign lesions have been shown to be polyclonal, whereas high grade tissues were formed by monoclonal cells, implying that the high grade lesions were derived from a single transformed cellular ancestor (Park et al., 1996; Vinokurova et al., 2005). These observations advocated that high grade lesions could effectively represent precursors of cancerous lesions. In precursor tissues, the expression of the viral early transcripts is extended throughout the thickness of the epithelium, whereas in productive infections these are limited to the Õ

Ö

×

Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

Ú

à

Ü

Ù

FIGURE 1-13. Progression of the HR HPV-associated lesions. Viral infection of the cells within the epithelium basal layer determines a series of morphological changes in the affected tissue which include koilocytosis and dyskeratocytosis, the latter being most prevalently identified in cervical intraepithelial neoplasia (CIN). CIN of low grade (CIN1) are usually self resolved but those of high grade (CIN3) are likely to progress toward cancer, with integration being considered a major factor of risk for lesion evolvement. CIN1 are a consequence of the productive phase of the viral infection, therefore high amounts of viral genome could be recovered in such lesions; conversely, the high grade CIN and cancer represents unproductive infections: the viral DNA is scarce and no viral progeny is present. A combination of not clearly defined host, environmental and viral factors are believed to be involved in determining the natural history of the Papillomavirus infection. The progression toward cervical cancer is supposed to span several decades. (Cox, 1995).

á

â

ã

ä

å

æ

ç

è

é

ê

å

ë

ç

ä

ì

inner layers (Doorbar et al., 2012). In addition, cancerous lesions have been characterized by the presence of viral integrants that constitutively transcribe E6/E7-containing mRNAs (Ho et al., 2011). On the contrary neither late transcripts, encoding for L1 and L2, nor viral particles could be recovered from precursor lesions. These data, coupled with the proliferative and destabilizing activities of E6 and E7, led to a model of carcinogenesis based on the uncontrolled expression of the viral oncoproteins due to the disruption of the modulator function of E2 (Yugawa and Kiyono, 2009; zur Hausen, 1994). Compatible with this consensus, ectopic expression of E2 has been shown to repress cellular proliferation and to inhibit early transcription (Goodwin and DiMaio, 2000). In addition, it has been proposed that E2 could inhibit the E7 activities by direct association (Gammoh et al., 2009). Thus the abolishment of the E2 function could release the activity of the viral oncoproteins.

Viral integrants and cervical cancer Viral integration determines a fundamental switch in the natural history of the Papillomavirus infection: since viral integrants do not generate viral progeny, they are the hallmark of the non productive Papillomavirus infections (Brown and Trimble, 2012). An analysis of integration sites from clinical samples and cell lines has shown that integration involves both viral and cellular sequence rearrangements, with no apparent specificity (Schmitz et al., 2012; Wentzensen et al., 2004). A loss in viral sequences, in particular within the E2 ORF, is typical. Common fragile sites and transcriptionally active regions have been reported to be preferentially targeted for integration, possibly because they have a more accessible chromatin structure. The role of insertional mutagenesis is unclear, given the heterogeneity of the targeted sites; however integration has been suggested to be paired with a chromatin remodelling that might expose the binding sites of transcriptional factors, thus enhancing viral transcription (Bechtold et al., 2003; Lazo, 1987). The identification of short stretches of homologies between cellular and viral sequences at the integrant junctions has pointed to a major role for DNA repair pathways in the integration mechanism (Dall et al., 2008).

í

î

ï

ð

ñ

ò

ó

ô

õ

ö

÷

ò

ø

ô

ñ

These findings fit with the model of carcinogenesis based on E6/E7 over-expression (figure 1-14) (Korzeniewski et al., 2011; von Knebel Doeberitz, 2002; zur Hausen, 1996). Integration is considered a by-product of the viral biochemistry and is assumed to be a rare event with no sequence specificity. The corollary of this suggestion is that the virus randomly integrates in the cellular chromosomes without preference for a target sequence within the viral genome; however clones with disrupted E2 ORFs are eventually selected because they over-express the early transcripts. The unleashed transcription of the oncoproteins might both improve the cellular proliferation and determine the accumulation of further genetic alterations that can lead, step wisely, to cancer.

FIGURE 1-14. Model of carcinogenesis in HR HPVs. A: in productive infections, E2 inhibits the functions of the oncoproteins E6 and E7, releasing the hindrance of the differentiation commitment. The differentiation pathway is also coupled with the replication of the virus, which requires the E1 polypeptide. B: in unproductive infections, the viral integration determines the disruption of the E2 ORF with a twofold outcome. Firstly, the viral replication is abolished; secondly, the oncoproteins are expressed without regulation. E7 stabilizes the transcriptional factor E2F through binding to pRb with subsequent deregulation of the cell cycle. E6 induces the disposal of the p53 regulatory factor, preventing the activation of the DNA repair and the apoptosis pathways, generating chromosomal instability. The accumulation of chromosomal aberrations is believed to induce cancer formation (Desaintes and Demeret, 1996, with modifications). ù

ú

û

ü

ý

þ

ÿ





ý



ÿ

ü



In addition, integrants can undergo replication under the control of ectopic E1/E2 proteins (Kadaja et al., 2009; Peter et al., 2010). Once activated, the replication could extend through the flanking regions, resulting in disproportionate replication processes, also known as onion skin replication. This aberrant replication could culminate in the generation of linear DNA fragments that can be recognized by the DNA repair machinery, resulting in chromosomal rearrangements (figure 1-15). Remarkably, origins of replication independent from E1/E2 were described in Papillomavirus (figure 1-8), propounding that silent integrants might act as points of genetic instability during the cellular replication (Hoffmann et al., 2006; Pittayakhajonwut and Angeletti, 2010). On the other hand, low grade lesions might contain silent integrants that are inhibited by the viral episomes (Dall et al., 2008; Pett and Coleman, 2007). The elimination of episomes could represent the trigger for the over-expression of the viral oncogenes and the onion skin replication.

FIGURE 1-15. Model of replication-induced chromosomal instability. The origin of replication of the virus can be fired more than once before the termination of the replicative process, inducing onion skin replication. The viral replication requires E1 and E2, that can be provided by episomes of the same or other viral types. (Kadaja et al., 2007). 



























The demonstration that de novo methylation targets foreign DNA after integration in the host chromosomes has led to the hypothesis that hypermethylation could represent a cellular mechanism of defence to integration by assuring the transcriptional and replicative repression of the integrants (Doerfler et al., 1995; Yoder et al., 1997). A high level of CpG methylation in the L1 ORF has been observed in HPV-related cancerous lesions (Kalantari et al., 2009; Sun et al., 2011; Turan et al., 2006). The methylation profile of the 3 -L1/ LCR/5 -E6 region has been assessed in W12 cells, which contains predominantly episomal forms of HPV16 (Kalantari et al., 2008). Episomal genomes were moderately methylated in undifferentiated cells and virtually un-methylated in differentiated cells; viral integrants instead did not change their profile upon differentiation.

Viral episomes and cervical cancer Despite this body of evidence linking the integrants to cervical cancer, an elevated proportion of high grade and cervical cancer lesions have been described to contain episomal forms of the virus, suggesting that integration might not be the only determinant for the HPV-associated cancerous phenotype (Chen et al., 1994; Das et al., 2010; Gallo et al., 2003). For instance, it has been observed that deletion of the E2BS induces a lower promoter activation than mutations of the cognate site for the transcriptional repressor YY1 (May et al., 1994). Luciferase experiments with constructs containing LCR have demonstrated an about three fold increased activity in the AA and NA lineages in comparison to the European reference sequence (Kammer et al., 2000). This increase is possibly due to a A7729C transition affecting the cognate site for the transcriptional factor TEF-1 (Veress et al., 1999). Similarly, the reduced and increased replicative phenotypes of the African and American variants, respectively, in comparison to the European lineage have been suggested to be linked to SNPs within the Sp-1 and AP1 binding sites, correspondingly (Hubert, 2005).































Furthermore, significantly higher amounts of early transcripts have been detected in cervical cancer samples bearing fully episomal forms of HPV as opposed to those with entirely integrated virus populations (Das Ghosh et al., 2012). In addition, cells bearing episomal forms of the virus with increased early expression has been reported to become more preponderant than clones containing integrative forms, as evidenced in an in vitro system based on W12 cells (Gray et al., 2010). These transcriptionally active episomal viral genomes were characterized by altered chromatin structure and fluctuating expression levels, suggesting epigenetic regulation of the viral transcription and dynamic adaptation of the viral biology to the cellular environment. These data have evinced that sequence mutations within the cognate binding site of transcriptional regulators and epigenetic modulation might be related to cancer development in samples bearing episomal forms of the virus (Dong et al., 1994).

Immunity and vaccination Immunity Viral regression and recurrence are believed to be influenced by the immune response (Palefsky and Holly, 2003; Schneider, 1994). The humoral response to natural Papillomavirus infection is characterized by low antibody titres, sometimes undetectable in some subjects (Carter et al., 2000). It has been proposed that Papillomaviruses minimize the activation of the immune system by not causing cell lysis, by not having a recognized viremic phase, and by limiting the production of the highly immunogenic capsid antigens in the upper layers of the epithelium and in the final stages of productive infections (Bodily and Laimins, 2011). This evasion, coupled with the activities of the early viral proteins, could explain the reduced immune response observed in Papillomavirus infections.







!

"

#

$

%

&

'

"

(

$

!

Nonetheless animal models demonstrated that neutralizing antibodies directed against L1 protect from incident infections even in low titers (Ghim et al., 2000). Natural seroconversion to Papillomavirus takes usually more than six months to become detectable (Carter et al., 2000). After clearance, the antibody levels drop very quickly, although about 50 percent of seropositive and HPV DNA negative individuals retain good levels of antibody for several years. Cell-mediated immunity has been indicated to play a pivotal role in the viral clearance by targeting the early viral proteins (Stanley, 2012). T-helper and T-killer cells are induced in HPV infection (de Jong et al., 2002; Welters et al., 2003) and the cellular response has been suggested to mount during the infection but then to regress after viral clearance, resembling the humoral response (de Gruijl et al., 1996). Lack of cellular immunity has been instead described in women with cervical cancer, strengthening its importance in the control of the HPV infection (de Jong et al., 2004). Significantly, cellular immunosuppression, as observed in patients co-infected with HIV, is an important co-factor for HPV infection persistence and cervical cancer development (Serraino et al., 2002; Sun et al., 1997). It has recently been suggested that complete viral clearance is probably never accomplished: Papillomaviruses might instead enter a stage of latency that can hide the virus from the immune system and maintain a reservoir of viral genomes in few cells within the basal layer of the epithelium that can be subsequently reactivated (Maglennon and Doorbar, 2012).

Vaccination Vaccination provides protection by inducing neutralizing antibodies and has several advantages over natural infection (Schiller and Lowy, 2012). The intramuscular immunization with L1 VLP induces the production of IgGs that can be recovered in the cervical mucus. In addition the VLPs retain the native conformation and the repetitive highly immunogenic structure of the virions. Two prophylactic vaccines based on L1 VLPs have been devel)

*

+

,

-

.

/

0

1

2

-

3

/

,

4

oped and commercially exploited (Schiller and Lowy, 2012). One is the bivalent Cervarix (GlaxoSmithKline), targeting strains 16 and 18 and produced in the baculovirus system. The other is the quadrivalent Gardasil (Merck), targeting strains 6, 11, 16, and 18 and developed in Saccharomyces cerevisiae cells. Both vaccines are administrated parenterally in three doses and contain aluminium salt adjuvant to delay the release into the body and stimulate the monocytes. The formulation of Cervarix also include monophosphoryl lipid A as an immune stimulator (Giannini et al., 2006). The L1 VLPs present in these vaccines are distinctly immunogenic and generate higher titres than those obtained by natural infection (Harper et al., 2006). The neutralizing antibody produced are protective against incidence infections (Frazer, 2010). More than 99% of vaccinated women have seroconverted to the targeted genotypes after 17 months (Koutsky et al., 2002). Cervarix has been shown to protect from incident infections over eight years after the first administration (Roteli-Martins et al., 2012); for Gardasil the protection from incident infection and absence of high grade cervical diseases has been described in studies performed 3.5 years after vaccination (Mao et al., 2006). Mathematical models have estimated that vaccine-induced immunity could last for 10-30 years (Fraser et al., 2007). The Centres for Disease Control Advisory Committee for Immunization Practices has recommended the administration of these vaccines to girls aged 11-12, that is prior to their sexual debut; vaccination of boys is also possible, but is not considered cost effective (Bonanni et al., 2011). To date, these programmes have been implemented in 33 out of 192 countries around the world (Arbyn et al., 2012). In Europe the nationwide HPV immunization programmes have been adopted since 2007; in United Kingdom the vaccination campaign has begun in September 2008 with the introduction of Cervarix, replaced in September 2012 by Gardasil. This programme is based on the routine vaccination of girls aged 12-13 years as part of the juvenile vaccination platform, and to girls up to 18 years old for the catch-up program. Mathematical simulations based on 80% population coverage 5

6

7

8

9

:

;




?

:

@




?

B

=

E

A

significantly decreased from 60.0% in the normal cytology specimens to 43.5% in severe dysplastic samples and reached 0% in the cancerous lesions (p=0.013).

Viral integration analysis of the longitudinal samples Seventeen longitudinal samples identified by qPCR as bearing HPV16 genomes were analysed for the physical status of the viral genome. Only eight patients (47.1%) had data spanning at least six months and three patients had both a samples at baseline and at study end. The physical analysis was performed averaging the results of two different runs; the correlation between E6 viral copy number obtained by the two tests returned rho=0.985 (p

6









,

+



-

.



/







,







,







!

!





!



,







5

%



-



!









.







.

#







0

%



%

&

'

%

!













A









.







@

?

6

5



9



/





!

6

%

-





-

,



%





%

)







!

,



2

(



.

*



4



6

:

%

#







.



,







5



0



3

5

5

,

>

.

4

A

2





!









*





%

:







3

*





+



.

.



,






I

B

7

G

>

I

D

K

F

7

I

7

F

G

H

I

8

B

2

B

F

2

?

G

?

@

?

?

F

I

J

@

E

1

J

L

.

M

*

+

*

*

M

*

+

*

M

*

+

*

M

*

*

M

+

+

*

*

+

M

*

M

*

*

M

*

*

*

M

*

*

M

*

M

*

+

*

+

*

M

*

*

*

M

*

+

*

M

*

M

$

*

*

M

*

+

*

3

.

M

*

M

$

*

*

M

*

+

+

+

*

+

*

*

+

+

M

*

*

M

*

+

*

M

*

M

*

M

*

*

*

M

*

+

*

M

*

+

*

M

M

*

+

*

+

+

*

+

+

+

$

+

$

M

*

M

*

M

*

.

:

.

+

*

M

*

M

*

*

*

*

*

+

+

+

*

M

$

*

*

M

*

M

*

+

+

$

*

+

*

*

M

*

M

*

$

+

*

M

$

+

$

$

+

*

+

+

+

*

+

+

+

$

*

*

+

*

*

M

*

*

*

.

N

.

$

+

+

$

+

$

$

*

+

$

*

+

+

*

*

M

*

M

*

*

M

*

M

M

*

*

+

*

*

$

+

*

*

M

*

+

*

+

*

+

+

+

$

*

+

*

+

*

*

*

M

$

*

+

$

+

*

$

$

*

:

O

.

M

*

*

*

*

*

M

*

*

*

*

+

*

+

*

+

*

+

$

*

+

*

+

*

*

*

*

M

*

+

M

$

M

$

$

+

M

$

M

M

$

$

+

*

*

*

*

M

*

+

M

$

*

*

$

+

+

$

$

M

;

.

+

+

*

*

$

M

M

*

*

M

$

+

*

M

$

*

*

*

*

*

M

M

$

+

$

+

+

+

+

*

M

*

M

*

*

*

*

*

*

*

+

+

+

*

+

M

*

*

$

*

+

*

M

*

$

+

M

$

+

+

3

.

$

*

+

*

M

M

*

*

*

+

+

+

$

*

*

M

*

+

$

M

*

*

*

$

$

*

M

$

*

*

M

$

$

+

*

M

$

M

*

M

$

$

+

+

+

*

$

$

$

*

M

*

*

*

*

$

$

*

M

+

O

:

.

$

$

*

M

$

+

$

*

M

$

*

*

M

$

$

+

+

$

$

+

*

*

$

$

+

*

*

M

*

*

*

*

*

*

+

$

+

$

*

M

$

+

$

*

+

*

M

*

M

$

+

+

$

*

+

$

*

M

+

+

O

N

.

*

$

+

$

*

+

*

M

*

+

$

+

*

*

M

*

M

*

$

+

*

+

*

+

+

+

+

*

+

+

+

*

$

+

$

*

+

*

M

$

M

$

$

+

+

$

M

$

$

*

*

+

$

+

*

+

$

$

M

$

O

.

*

M

*

*

+

M

M

$

+

$

+

*

+

*

*

*

*

*

M

M

$

*

*

M

*

*

*

*

+

+

$

*

+

+

$

$

*

+

+

*

*

M

$

+

*

+

*

*

*

M

M

$

+

*

+

+

M

M

*

*

3

;

.

*

+

+

+

$

*

*

$

*

+

+

M

M

$

$

+

+

$

*

+

+

+

*

M

*

$

+

$

$

$

*

+

M

*

*

$

+

*

+

$

+

*

M

+

+

$

*

M

*

M

*

+

+

+

M

M

*

*

+

M

3

3

.

*

$

+

*

+

$

+

*

*

M

*

*

$

+

*

*

*

M

*

+

+

+

+

$

*

M

$

+

$

+

*

M

M

M

*

M

*

M

*

M

$

+

+

+

$

$

M

*

*

*

*

M

M

M

*

*

+

$

+

$

:

.

+

*

*

*

+

$

+

+

M

$

+

+

$

*

*

+

*

+

*

+

+

*

+

+

*

+

$

*

+

+

+

$

*

+

$

+

+

*

+

+

*

*

$

+

*

M

*

+

*

+

+

+

+

$

*

+

+

M

M

M

N

.

$

M

*

+

+

$

$

M

+

+

+

*

$

M

M

*

*

M

+

+

$

$

M

+

+

+

$

$

M

M

*

*

+

M

*

+

*

+

+

+

+

M

$

+

M

+

$

+

*

*

*

*

+

*

M

$

+

$

$

+

N

O

.

+

+

+

M

+

M

+

+

$

*

M

$

+

+

*

M

*

*

*

$

+

M

M

+

$

$

$

+

$

+

M

M

+

M

$

M

+

$

$

$

+

M

+

+

+

M

*

*

+

$

$

+

$

+

M

*

*

+

*

M

9

;

.

$

+

$

+

M

+

M

$

*

M

$

+

+

+

$

+

+

$

*

+

*

+

$

+

*

M

+

*

+

*

+

+

*

+

*

*

+

M

+

+

*

M

*

M

*

M

*

+

$

*

M

$

+

+

M

$

+

+

$

+

9

3

.

M

*

*

+

$

*

M

$

M

+

$

M

*

M

+

M

M

*

+

*

+

*

M

+

$

*

*

*

M

$

*

*

*

*

$

M

M

M

+

*

*

*

+

*

M

$

+

*

+

M

*

+

*

+

*

+

M

+

M

+

.

;

:

.

*

M

M

M

+

+

*

$

$

+

*

+

*

M

$

*

M

*

+

*

M

*

M

+

*

+

+

+

*

M

*

*

*

+

+

+

M

*

*

*

*

+

*

*

$

*

+

+

+

+

*

*

+

M

*

M

+

M

*

+

.

;

N

.

*

+

M

+

$

+

*

*

+

*

*

M

*

*

+

*

+

M

*

*

*

M

*

+

*

M

M

+

+

$

+

+

$

+

*

*

+

M

+

+

$

+

M

$

+

+

*

+

$

+

+

$

+

+

+

$

$

M

*

*

.

.

O

.

M

*

M

*

M

+

*

*

*

M

*

*

+

+

*

*

+

M

M

*

M

*

+

*

*

+

+

$

*

M

*

$

+

+

+

+

M

$

O

9

.

.




A

K

=

+

,

%

5

,

4

0

\

F

]

+

'

&

a

b

)

\

K

]

L

B

7

T

B

S

F

A

2

D

J

6

F

K

0

U

W

$

*

5

K

*

*

4

&

\

0

U

W

5

&

Z

)

)

:

5

V

6

%

'

E

A

V

:

;

.

5

'

&

+




U




4

+

`

Q L

2

'

M




B

I

B

G

I

D

K

F

I

2

B

G

H

I

F

2

?

G

?

@

?

?

F

I

J

@

E

1

J

L

















!

"

u

v

w

x

w

w

v

w

x

w

v

w

x

w

v

w

w

v

y

x

w

w

x

v

w

v

w

w

v

w

w

w

v

w

w

v

w

v

w

x

w

x

w

v

w

w

w

v

w

x

w

v

w

v

y

w

w

v

w

x

w

z

u

v

w

v

y

w

w

v

w

x

x

x

w

x

w

w

x

x

v

w

w

v

w

x

w

v

w

v

w

v

w

w

w

v

w

x

w

v

w

x

w

v

v

w

x

w

x

x

w

x

x

x

y

x

y

v

w

v

w

v

w

u

{

u

x

w

v

w

v

w

w

w

w

w

x

x

x

w

v

y

w

w

v

w

v

w

x

x

y

w

x

w

w

v

w

v

w

y

x

w

v

y

x

x

y

x

w

x

x

x

w

x

x

x

y

w

w

x

w

w

v

w

w

w

u

|

u

y

x

x

y

x

y

y

w

x

y

w

x

x

w

w

v

w

v

w

w

v

w

v

v

w

w

x

w

w

y

x

w

w

v

w

x

w

x

w

x

x

x

y

w

x

w

x

w

w

w

v

y

w

x

y

x

w

y

y

w

{

}

u

v

w

w

w

w

w

v

w

w

w

w

x

w

x

w

x

w

x

y

w

x

w

x

w

w

w

w

v

w

x

v

y

v

y

y

x

v

y

v

v

y

y

x

w

w

w

w

v

w

x

v

y

w

w

y

x

x

y

y

v

~



u

x

x

w

w

y

v

v

w

w

v

y

x

w

v

y

w

w

w

w

w

v

v

y

x

y

x

x

x

x

w

v

w

v

w

w

w

w

w

w

w

x

x

x

w

x

v

w

w

y

w

x

w

v

w

y

x

v

y

x

x

~

z

u

y

w

x

w

v

v

w

w

w

x

x

x

y

w

w

v

w

x

y

v

w

w

w

y

y

w

v

y

w

w

v

y

y

x

w

v

y

v

w

v

y

y

x

x

x

w

y

y

y

w

v

w

w

w

w

y

y

w

v

x

}

{

u

y

y

w

v

y

x

y

w

v

y

w

w

v

y

y

x

x

y

y

x

w

w

y

y

x

w

w

v

w

w

w

w

w

w

x

y

x

y

w

v

y

x

y

w

x

w

v

w

v

y

x

x

y

w

x

y

w

v

x

x

}

|

u

w

y

x

y

w

x

w

v

w

x

y

x

w

w

v

w

v

w

y

x

w

x

w

x

x

x

x

w

x

x

x

w

y

x

y

w

x

w

v

y

v

y

y

x

x

y

v

y

y

w

w

x

y

x

w

x

y

y

v

y

}

u

w

v

w

w

x

v

v

y

x

y

x

w

x

w

w

w

w

w

v

v

y

w

w

v

w

w

w

w

x

x

y

w

x

x

y

y

w

x

x

w

w

v

y

x

w

x

w

w

w

v

v

y

x

w

x

x

v

v

w

w

z



u

w

x

x

x

y

w

w

y

w

x

x

v

v

y

y

x

x

y

w

x

x

x

w

v

w

y

x

y

y

y

w

x

v

w

w

y

x

w

x

y

x

w

v

x

x

y

w

v

w

v

w

x

x

x

v

v

w

w

x

v

z

z

u

w

y

x

w

x

y

x

w

w

v

w

w

y

x

w

w

w

v

w

x

x

x

x

y

w

v

y

x

y

x

w

v

v

v

w

v

w

v

w

v

y

x

x

x

y

y

v

w

w

w

w

v

v

v

w

w

x

y

x

y

{

u

x

w

w

w

x

y

x

x

v

y

x

x

y

w

w

x

w

x

w

x

x

w

x

x

w

x

y

w

x

x

x

y

w

x

y

x

x

w

x

x

w

w

y

x

w

v

w

x

w

x

x

x

x

y

w

x

x

v

v

v

|

u

y

v

w

x

x

y

y

v

x

x

x

w

y

v

v

w

w

v

x

x

y

y

v

x

x

x

y

y

v

v

w

w

x

v

w

x

w

x

x

x

x

v

y

x

v

x

y

x

w

w

w

w

x

w

v

y

x

y

y

x

|

}

u

x

x

x

v

x

v

x

x

y

w

v

y

x

x

w

v

w

w

w

y

x

v

v

x

y

y

y

x

y

x

v

v

x

v

y

v

x

y

y

y

x

v

x

x

x

v

w

w

x

y

y

x

y

x

v

w

w

x

w

v

‚



u

y

x

y

x

v

x

v

y

w

v

y

x

x

x

y

x

x

y

w

x

w

x

y

x

w

v

x

w

x

w

x

x

w

x

w

w

x

v

x

x

w

v

w

v

w

v

w

x

y

w

v

y

x

x

v

y

x

x

y

x

‚

z

u

v

w

w

x

y

w

v

y

v

x

y

v

w

v

x

v

v

w

x

w

x

w

v

x

y

w

w

w

v

y

w

w

w

w

y

v

v

v

x

w

w

w

x

w

v

y

x

w

x

v

w

x

w

x

w

x

v

x

v

x

u



{

u

w

v

v

v

x

x

w

y

y

x

w

x

w

v

y

w

v

w

x

w

v

w

v

x

w

x

x

x

w

v

w

w

w

x

x

x

v

w

w

w

w

x

w

w

y

w

x

x

x

x

w

w

x

v

w

v

x

v

w

x

u



|

u

w

x

v

x

y

x

w

w

x

w

w

v

w

w

x

w

x

v

w

w

w

v

w

x

w

v

v

x

x

y

x

x

y

x

w

w

x

v

x

x

y

x

v

y

x

x

w

x

y

x

x

y

x

x

x

y

y

v

w

w

u

u

}

u

v

w

v

w

v

x

w

w

w

v

w

w

x

x

w

w

x

v

v

w

v

w

x

w

w

x

x

y

w

v

w

y

x

x

x

x

v

y



€

}

‚

z



u

u



‘

“

x

”

u



—

š

›

š

‘





Ÿ

ž

x

 

‘

”



¡

w

¢

Œ

“

u

z

Ÿ



x

w

“

”

Ÿ

w

“

‘

z

¥

§

¡

z

¡

w

x

v

“

‘

”

‘

§

€





ƒ

ƒ

„

…

†



˜

™

‡

ˆ

š

‰

Ž

Ž

|



‹

Œ



Ž



’

•

–

Š

œ

„



ž

x

’

Œ

x

Œ

‘

¡

ž

‘

£

u

{

˜

z

Œ

—

{

v

“

’

“

¦

‘

x

’

w

¡



w

Š

’

¤

˜

‡



u

}

„

…



˜ †

•

š

†

˜

–

˜

©

ˆ

…

š …



€

‘

x



}

‚

z



y

}

‚

z



¨

œ



ž

x

’

Œ

x

Œ

‘





Ÿ

ž

x

 

‘

”



¡

w

¢

Œ

“

u

œ



ž

x

’

Œ

x

Œ

‘





Ÿ

ž

x

 

‘

”



¡

w

¢

Œ

“

u

§

¡



Ž

 

‘

”



¡

¡

¦





Ÿ

ž

†

–

˜

€

¨

«



Ž

š

…

–

w



Š



˜

‡

”

ˆ

– …

Š

‰

– …

ˆ

x

‰

Ž

ˆ

ª

‰

Œ

Ž

ˆ

ˆ

™

˜

–

˜

Ž

z

¬

•

‘





˜

”

Œ



¡

¯

x

u

¤

“

¡

Œ

­

x

‹

x

¡

’

v

‘

Œ

‘

“

¡

u



x

w

 

Ÿ

‘

”



¡

u

u

§

‘

¦



‘

”



’

Ÿ

–

Ž



­

®

x

Œ

‘

“

§

§

”

Ÿ







Ÿ

ž

x

¡

¦

“

v

‘

x

”

w

 

x

“

­

¨

|



“

¥

†



›

œ

–

‡

x

…

›

š

›

ˆ

”

Ÿ



¦

¨

¬

˜

¦

«

Ÿ

¨

¦

®

x

”

”

¢

¦

u

z

¨

x

¡

“

|

—

u

„

œ



ž

x

’

Œ

x

²

“

Œ

•

¨

x

’

§

°

Ÿ

±

¨

Š

‘





Ÿ

ž

x

 

¡

w

¢

Œ

“

ˆ



Ÿ

’

v

y

Ÿ

’

w

”

Ÿ

’

x

’

§

˜

z

 

x

”

„

¡

– Š

…

Ž

™

˜

’

”

x

w

‘

³

“

y

w

}

|

{

~

‚

z

‹

x

¡

x

”

Ÿ

’

v

‘

§

¨

«

“

‹

¢

’

“

y

w

“

¨

”

˜

 

‘

y

 

Ÿ



x



§

¨

{

‘

˜

¡

z

“

¦

„

° ‡

˜

š

‡

®

–



w

¡

w

~

¤

x

v

“

{



u

³

“

”

§

Ÿ

}

¥

†



{

{

¬

–

˜

Ž

˜

{

¤

“

¡

u

w

Ÿ

u

u



|

¥

§

§

†



›

œ

–

‡

…

›

š

›

ˆ



˜

x

’

§

°

“



‘

”

“

y

w



‹

Ÿ

±

¡

¦

¨ ˆ

ž

‘

¡

¡

‘

Ÿ

’

®

–

—

{



u

‘

’

§

x



“

ˆ

– …

¨ „

„

Š

¦

¬

Ž





‡

„

‹

ž

‘

w

w

“

§

¦

§

¤

{

—

€



}

¥

•

‘

”



¡

–

’

v



x

’

z

u

Ÿ





 

“

’



“

¦

Ÿ

†

˜ †

…

¬

Ž

“

“

’

y

“



“

Œ

ž

“

’

w

¦

®



š

œ

‹



‘

š

š

y

œ

“

x

¯

ˆ

˜

›

µ

µ



¡

¡

“

ž

‹



¢

—

’

’

Ž

ª

‚

€

˜

´

¦

¨

„



x

w

›

“

y

x

—

›



x

w

x

—

˜

x

w

‘

Ÿ

’

u

u

¬



–

›

µ

‡

¨ ‰

µ

ˆ

“





“

’

y

‘

’

v

¯

’

Ÿ



Ÿ

v

¢



µ

µ

·

·

x

ˆ

’

v

“

”

§

‘

§

“

Ÿ

¸

¢

¡

“





“

w

¢

Œ

“

‘

Ÿ

’

’

y

‘

u

z

„

†

’

v

ˆ

µ

µ



¡

¡

“

ž

‹



¢

—

Ž

ƒ ™

˜



›

–

˜

Ÿ

‡

ˆ

¡

Ÿ



y

´



x



‘

²

“

”

¡

„

”

y

“

u

¨

¨

|



ƒ Ÿ

”

v

Ÿ



x

’

‘

¡

ž

¹

º

¹

º

œ



ž

x

’

’

Ÿ

ž

Œ

x

Œ

‘





Ÿ

ž

x

 

‘

”



¡

º

ƒ ž

£

w

¢

Œ

“

x

w

“

¹

º

”

“

³

¹

º

x

”

v

“

‘

y

~

~



Ž



º

ƒ ‘

¡

Ÿ



ž

‘

£

u

x

¸

Ÿ

’

{

w

¹

º

˜

º

ƒ §

‹

£

¸

Œ

£

w

·

~



z



º

v

§

Ÿ



|

º

y

Ÿ

ƒ Œ

Ÿ

 

‘

x

’

–

º

‡

ƒ y

Ÿ

y

Ÿ



’

w

”

¢

“

y

w

¹

‘

º

~

{

º

y

Ÿ

u

u

’

‘

w

“

§

£

§

x

w

“

‘

‡

’

ž

º

’

w

‰

ƒ

ž

‘

¡

y

£

³

“

x

w



”

“

»

u



¨



¨

|

Ÿ

’

¹

º

{



ƒ ’

v

“

’

“

|

Ÿ

~

~

v

“

~

~

v

“

y

Ÿ

Œ

Œ

w

“

¨

¹

¨

¼

’

w

x

‘

’

¡



Ÿ

’

v

”

Ÿ



”

“

v

­

–

º

|



ƒ



|

†

’

“

¨

¹

¨

º

¼

˜

u

z

u

º

|



ˆ

ƒ ’

“

¹

§

Ÿ

’

”

Ÿ

§



”

Ÿ

w

”

x

º

˜

z

º

w

x

ƒ £

¡

”

w

¹

u

ƒ y

w

¹

º

˜

z

£

‘

§

¹

‘

Ÿ

’

Œ

”

Ÿ

w

“

‘



š

«

u

‚

{

’

º

ƒ “

‘

¡



’

º

u

{

º

ƒ w

’

x

w

¹

º

œ

´

–

¬

–

–

˜

•

©



™



™

–



š

„

„



–

š

«

š

„

†

š „

„

–

š

Ž

´

†

›



™

‰

•

©

´



®

´

˜

–

®

–

†

„

‰

¬

–



«

Ž

‰

®

©



•



†

†

®

´

ˆ

‰

›

„

™ ‰

„

©

˜

´

†

š

›

›



„

˜

©

–

˜ „

œ

©

©

ˆ

©

†

ˆ

„

«

›

•

©

˜

´

´

†

›

†

´

‰

Ž

…

k

l

m

u

v

w

x

w

w

v

w

x

w

v

w

x

w

v

w

w

v

x

x

w

w

x

v

w

v

w

w

v

w

w

w

v

w

w

v

w

v

w

x

w

x

w

v

w

w

w

v

w

x

w

v

w

v

y

w

w

v

w

x

w

z

u

v

w

v

y

w

w

v

w

x

x

x

w

x

w

w

x

x

v

w

w

v

w

x

w

v

w

v

w

v

w

w

w

v

w

x

w

v

w

x

w

v

v

w

x

w

x

x

w

x

x

x

y

x

y

v

w

v

w

v

w

u

{

u

x

w

v

w

v

w

w

w

w

w

x

x

x

w

v

y

w

w

v

w

v

w

x

x

y

w

x

w

w

v

w

v

w

y

x

w

v

y

x

x

y

x

w

x

x

x

w

x

x

x

y

w

w

x

w

w

v

w

w

w

u

|

u

y

x

x

y

x

y

y

w

x

y

w

x

x

w

w

v

w

v

w

w

v

w

v

v

w

w

x

w

w

y

x

w

w

v

w

x

w

x

w

x

x

x

y

w

x

w

x

w

w

w

v

y

w

x

y

x

w

y

y

w

{

}

u

v

w

w

w

w

w

v

w

w

w

w

x

w

x

w

x

w

x

y

w

x

w

x

w

w

w

w

v

w

x

v

y

v

y

y

x

v

y

v

v

y

y

x

w

w

w

w

v

w

x

v

y

w

w

y

x

x

y

y

v

~



u

x

x

w

w

y

v

v

w

w

v

y

x

w

v

y

w

w

w

w

w

v

v

y

x

y

x

x

x

x

w

v

w

v

w

w

w

w

w

w

w

x

x

x

w

x

v

w

w

y

w

x

w

v

w

y

x

v

y

x

x

~

z

u

y

w

x

w

v

v

w

w

w

x

x

x

y

w

w

v

w

x

y

v

w

w

w

y

y

w

v

y

w

w

v

y

y

x

w

v

y

v

w

v

y

y

x

x

x

w

y

y

y

w

v

w

w

w

w

y

y

w

v

x

n

o

o

p

q

r

s

t

„

Ž

® ‰

º

†

´

‰

©

„

È

É

Ê

Ê

Ë

Ì

Ê

Í

Ê

Ë

Ì

Ê

Ë

Ë

Ì

Ê

Ê

Í

Í

Ê

Ê

Í

Ë

Ë

Ê

Ê

Í

Ë

Ë

Ì

Ë

Ë

Ë

Ë

Ë

Ë

Í

Ê

Í

Ê

Ë

Ì

Ê

Í

Ê

Ë

Í

Ë

Ì

Ë

Ì

Ê

Í

Í

Ê

Ë

Í

Ê

Ë

Ì

Í

Í

Ç

Î

É

Ë

Ê

Í

Ê

Ë

Í

Ë

Ì

Ë

Í

Ê

Í

Ë

Ë

Ì

Ë

Ì

Ë

Ê

Í

Ë

Í

Ë

Í

Í

Í

Í

Ë

Í

Í

Í

Ë

Ê

Í

Ê

Ë

Í

Ë

Ì

Ê

Ì

Ê

Ê

Í

Í

Ê

Ì

Ê

Ê

Ë

Ë

Í

Ê

Í

Ë

Í

Ê

Ê

Ì

Ê

Ï

Ç

É

Ë

Ì

Ë

Ë

Í

Ì

Ì

Ê

Í

Ê

Í

Ë

Í

Ë

Ë

Ë

Ë

Ë

Ì

Ì

Ê

Ë

Ë

Ì

Ë

Ë

Ë

Ë

Í

Í

Ê

Ë

Í

Í

Ê

Ê

Ë

Í

Í

Ë

Ë

Ì

Ê

Í

Ë

Í

Ë

Ë

Ë

Ì

Ì

Ê

Í

Ë

Í

Í

Ì

Ì

Ë

Ë

Ð

Ñ

É

Ë

Í

Í

Í

Ê

Ë

Ë

Ê

Ë

Í

Í

Ì

Ì

Ê

Ê

Í

Í

Ê

Ë

Í

Í

Í

Ë

Ì

Ë

Ê

Í

Ê

Ê

Ê

Ë

Í

Ì

Ë

Ë

Ê

Í

Ë

Í

Ê

Í

Ë

Ì

Í

Í

Ê

Ë

Ì

Ë

Ì

Ë

Í

Í

Í

Ì

Ì

Ë

Ë

Í

Ì

Ð

Ð

É

Ë

Ê

Í

Ë

Í

Ê

Í

Ë

Ë

Ì

Ë

Ë

Ê

Í

Ë

Ë

Ë

Ì

Ë

Í

Í

Í

Í

Ê

Ë

Ì

Ê

Í

Ê

Í

Ë

Ì

Ì

Ì

Ë

Ì

Ë

Ì

Ë

Ì

Ê

Í

Í

Í

Ê

Ê

Ì

Ë

Ë

Ë

Ë

Ì

Ì

Ì

Ë

Ë

Í

Ê

Í

Ê

Ò

È

É

Í

Ë

Ë

Ë

Í

Ê

Í

Í

Ì

Ê

Í

Í

Ê

Ë

Ë

Í

Ë

Í

Ë

Í

Í

Ë

Í

Í

Ë

Í

Ê

Ë

Í

Í

Í

Ê

Ë

Í

Ê

Í

Í

Ë

Í

Í

Ë

Ë

Ê

Í

Ë

Ì

Ë

Í

Ë

Í

Í

Í

Í

Ê

Ë

Í

Í

Ì

Ì

Ì

Ò

Î

É

Ê

Ì

Ë

Í

Í

Ê

Ê

Ì

Í

Í

Í

Ë

Ê

Ì

Ì

Ë

Ë

Ì

Í

Í

Ê

Ê

Ì

Í

Í

Í

Ê

Ê

Ì

Ì

Ë

Ë

Í

Ì

Ë

Í

Ë

Í

Í

Í

Í

Ì

Ê

Í

Ì

Í

Ê

Í

Ë

Ë

Ë

Ë

Í

Ë

Ì

Ê

Í

Ê

Ê

Í

Î

Ç

É

Í

Í

Í

Ì

Í

Ì

Í

Í

Ê

Ë

Ì

Ê

Í

Í

Ë

Ì

Ë

Ë

Ë

Ê

Í

Ì

Ì

Í

Ê

Ê

Ê

Í

Ê

Í

Ì

Ì

Í

Ì

Ê

Ì

Í

Ê

Ê

Ê

Í

Ì

Í

Í

Í

Ì

Ë

Ë

Í

Ê

Ê

Í

Ê

Í

Ì

Ë

Ë

Í

Ë

Ì

Ó

Ñ

É

Ê

Í

Ê

Í

Ì

Í

Ì

Ê

Ë

Ì

Ê

Í

Í

Í

Ê

Í

Í

Ê

Ë

Í

Ë

Í

Ê

Í

Ë

Ì

Í

Ë

Í

Ë

Í

Í

Ë

Í

Ë

Ë

Í

Ì

Í

Í

Ë

Ì

Ë

Ì

Ë

Ì

Ë

Í

Ê

Ë

Ì

Ê

Í

Í

Ì

Ê

Í

Í

Ê

Í

Ó

Ð

É

Ì

Ë

Ë

Í

Ê

Ë

Ì

Ê

Ì

Í

Ê

Ì

Ë

Ì

Í

Ì

Ì

Ë

Í

Ë

Í

Ë

Ì

Í

Ê

Ë

Ë

Ë

Ì

Ê

Ë

Ë

Ë

Ë

Ê

Ì

Ì

Ì

Í

Ë

Ë

Ë

Í

Ë

Ì

Ê

Í

Ë

Í

Ì

Ë

Í

Ë

Í

Ë

Í

Ì

Í

Ì

Í

È

É

Ë

Ì

Ì

Ì

Í

Í

Ë

Ê

Ê

Í

Ë

Í

Ë

Ì

Ê

Ë

Ì

Ë

Í

Ë

Ì

Ë

Ì

Í

Ë

Í

Í

Í

Ë

Ì

Ë

Ë

Ë

Í

Í

Í

Ì

Ë

Ë

Ë

Ë

Í

Ë

Ë

Ê

Ë

Í

Í

Í

Í

Ë

Ë

Í

Ì

Ë

Ì

Í

Ì

Ë

Í

Î

É

Ë

Í

Ì

Í

Ê

Í

Ë

Ë

Í

Ë

Ë

Ì

Ë

Ë

Í

Ë

Í

Ì

Ë

Ë

Ë

Ì

Ë

Í

Ë

Ì

Ì

Í

Í

Ê

Í

Í

Ê

Í

Ë

Ë

Í

Ì

Í

Í

Ê

Í

Ì

Ê

Í

Í

Ë

Í

Ê

Í

Í

Ê

Í

Í

Í

Ê

Ê

Ì

Ë

Ë

É

Ì

Ë

Ì

Ë

Ì

Í

Ë

Ë

Ë

Ì

Ë

Ë

Í

Í

Ë

Ë

Í

Ì

Ì

Ë

Ì

Ë

Í

Ë

Ë

Í

Í

Ê

Ë

Ì

Ë

Ê

Í

Í

Í

Í

Ì

Ê

Ò

Ï

É

É

Ò

Î

á

â

ä

Í

å

Ñ

è

â

á

á

ð

ï

Í

ñ

â

å

î

ò

Ë

ó

Ý

ä

É

ð

á

Í

Ë

ä

å

ð

Ë

ä

â

ù

ò

ò

Ë

Í

Ì

ä

â

å

â

ù

Ñ

É

Ñ

É

Ô

Ç

É

É

Ç

ë

ì

ë

Ô

Õ

Ö

×

Þ

é

ê

Ø

Ù

ë

Ú

ß

ß

Ó

Ç

Ð

É

Ü

Ý

Þ

ß

à

ã

æ

ç

É

Û

í

î

è

Õ

ï

Í

ã

Ý

Í

Ý

Ð

â

ò

ï

â

ô

É

õ

Ð

é

Ý

Û

ã

ö

Ð

é

÷

Ø

Ñ

È

É

Ç

Õ

Ì

ä

ã

ä

ø

â

Í

ã

Ë

ò

á

Ë

Ö

à

é ×

æ

ë

×

é

ç

é

û

Ù

Ù

ë Ù

Ç

Ò

Ï

Ç

Í

á

Ó

Ð

Ó

Ð

Ê

ú

É

É

í

î

ï

Í

ã

Ý

Í

Ý

â

á

á

ð

ï

Í

ñ

â

å

î

ò

Ë

ó

Ý

ä

É

í

î

ï

Í

ã

Ý

Í

Ý

â

á

á

ð

ï

Í

ñ

â

å

î

ò

Ë

ó

Ý

ä

É

ù

ò

Þ

ß

ñ

â

å

î

ò

ò

ø

á

á

ð

ï

Ë

ó

Ð

×

ç

é

â

Ï

ú

ý

à

ß

ë

Ö

ç

Ë

Ò

Û

Þ

é

Ø

å

Ù

ç Ö

Û

Ú

ç Ö

Ù

Í

Ú

ß Ö

ü

Ú

Ý

ß Ö

Ù

ê

é

ç

é

ß

Ð

þ

æ

â

à

á

é

å

Ý

î

ò



Í

É

ö

ä

ò

Ý

ÿ

Í

Ü

Í

ò

ã

Ì

â

Ý

â

ä

ò

É

à

Í

Ë

ñ

ð

â

å

î

ò

É

É

Ò

ù

â

ø

à

â

å

î

ä

ã

ð

ç

ß

à

ÿ

Í

Ý

â

á

á

ð

ï

Í

ò

ø

ä

Ì

â

Í

å

Ë

ñ

Í

ä

ÿ

ú

÷

Î

×

à

ì

í

ç

Ø

ì

Í

Ö

ë

ì

Ù

å

ð

î

ø

ú

þ

é

ø

ý

ð

ú

ø

Í

å

å

ó

ø

ú

Õ

í

î

ï

Í

ã

Ý

Í



ä

Ý

æ

ú

Í

ã

ù



ä

ù

ù

å

ð

á

ð



ú

Û

â

á

á

ð

ï

Í

ñ

ò

Ý

ä

Ù

Ð

É

á

ð

ã

Ì

Ê

ð

ã

Ë

å

ð

ã

Í

ã

ù

Ð

é

ñ

Í

å

Õ

ò

ç Û

Ö

ß

à

é

ê

é

ã

å

Í

Ë

â

Ë



ä

Ê

Ç

Î

È

õ

Í

å

ð

ù

ú

ý

ä

Ü

ó

ã

ä

Ê

Ë

ä

ú

å

é

ñ

â

Ê

ñ

ð

á

Í

á

ù

ú

â

é

ò

Ð

È

ä

Í

ø

Õ

 Ø

ç

ë

Ø

Ë

ò

ä

è

Î

ò

É

Ë

õ

Í

ö

Ì

Ñ

È

ä

É

÷

Ç

×

Þ

È

Ó

Ð

Ü

Í

ò

ã

Ì

â

È

þ

ç

é

ß

é

È

ö

ä

ò

É

Ë

ð

É

É

Ò

Î

ä

ù

÷

×

à

ì

í

ç

Ø

ì

Ö

ë

ì

Ù

î

é

ç Ö

ú

Í

ã

ù



ù

ð



ò

ø

ú

Õ

Þ

â

å

ä

Ê

Ë

î

Õ

Û

ø

þ

Ü

Ù

ï

â

ò

È

Ï

ò

â

ð

á

â

ã

Ù

ß

à

î

Ø

Õ

Ü

ï

â

Ë

Ë

ä

ù

ø

ù

ö

è

à

è

ç

Ñ

È

É

÷

Ç

æ

â

å

î

ò

ç

ã

Ì

á

Í

ã

Ð

É

ð

ã

ù

Í

á

ä

à

ñ

ä

ã

î

ä

ø

ð

×

é ×

Ö

þ

ß

ä



ä

å

ù

ð

ä

ã

Ê

ä

Þ

ä

Ý

Ï

é

ï

ä

ã

Ë

ø

î

Ü

á

â

ë

ë

Ê

í

ä

Í



Ù

é

ì





à

ò

ò

ä

ï

Ü

á

è

ó

ã

ã

ß

Ó

ü



ø

ú

Õ

è

Þ

Í

Ë

ì

ä

Ê

Í

Þ

Í

Ë

Í

Í

Ë

â

ð

É

É

Ò

Î

ì

þ

à

ç

ì



Ø

ú Ú



Ù

ä



î

ä

ã

Ê

â

ã

Ì



ã

ð

á

ð

Ì

ó

Þ









Í

Ù



ã

Ì

ä

å

ù

â

ù

ä

ð



ó

ò

ä



î

ä

Ë

ó

Ý

ä

â

ð

ã

ã

Ê

â

ã

Ì

Ù



à

ò

ò

ä

ï

Ü

á

è

ó

è

é

ß

Ô

ê

é

à

ì

ç

é

ð

Ø

Ù

ò

ð

î

Ê

ã



î

Í

á

â



ä

å

ò

Õ

å

Ê

ä

É

ú

ú

Ô

ð

å

Ì

ð

á

Í

ã

â

ò

ï









í

î

ï

Í

ã

ã

ð

ï

Ý

Í

Ý

â

á

á

ð

ï

Í

ñ

â

å

î

ò

Ð

É



Ô

ï

ô

Ë

ó

Ý

ä

Í

Ë

ä





å

ä







Í

å

Ì

ä

â

Ê

õ

õ

Þ

ß

à



Ô

â

ò

ð

á

ï

â

ô

É

Í



ð

ã

õ

Ë





é



Ô

ù

Ü

ô



Ý

ô

Ë



õ

Ò

Ð

Ñ

Ì

ù

ð

Î



Ê

ð



Ô

Ý

ð

ñ

â

Í

ã

ç



Ø

Ô

Ê

ð

Ê

ð

î

ã

Ë

å

ó

ä

Ê

Ë



â



õ

È



Ê

ð

É

É

Ò

ã

â

Ë

ä

ù

ô

ù

Í

Ë

ä

â

Ø

ã

ï



ã

Ë

Ú

Ô

ï

â

ò

Ê

ô



ä

Í

Ë

î

å

ä

É

á

ú

á

ú

Î

ð

ã





Ñ

È

Ñ

Ô

ã

ð

Ë

ä



ã

Ë

Í

â

ã

ò

á

ð

ã

Ì

å

ð

á

å

ä

Ì

ÿ

ç Õ

Ì

ä

ã

ä

Î

õ

õ

Ì

ä

õ

õ

Ì

ä

Ê

ð

Ý

Ý

ú

ú





×

Î

Ô

Þ ×

Î

ã

ä

ú



ú





Ð

é

É

É



Ò

Î

Ù

Ô

ã

ä



ù

ð

ã

å

ð

ù

î

å

ð

Ë

å

Í



Ð

é



Ô

ô

ò

Ë

Í

å

Ë



É

Ô

Ê

Ë

Ð





é

ô

â

ù



â

ð

ã

Ý

å

ð

Ë

à

ë

ý

É

ä

â

ã



Ô

ä

â

ò

á

ã



Ó

È

É

õ



Ô

Ë

ã

Í

Ë





í



ç

þ

ç

ç

é

æ

û

Þ

ê

à

ê

ç

Þ

ë

Õ

Õ

Þ

ç

ë

ý

ë

Õ

×

ë Õ

Õ

ç

ë

ß



×

ì

à

ê

Ú

æ

û



Þ



é

ç

ç



þ

ç

Þ

ý

ß

Ú

û

à

æ

Þ

×

×

×

Õ

ì

Õ

ê Ú

Ú

Õ

û Ú

é



×

ë Ù

ì

ì

ë

í

Þ

é

Õ

é

û

ç

Õ

í

û

û

Ù

û

×

Ù

Õ

ý

æ

û

é





×

ì

×

ì



Õ

û

ß Ú



×

Ú

ß

Ö

Ð

É

Ì

Ë

Í

Ë

Ë

Ì

Ë

Í

Ë

Ì

Ë

Í

Ë

Ì

Ë

Ë

Ì

Í

Í

Ë

Ë

Í

Ì

Ë

Ì

Ë

Ë

Ì

Ë

Ë

Ë

Ì

Ë

Ë

Ì

Ë

Ì

Ë

Í

Ë

Í

Ë

Ì

Ë

Ë

Ë

Ì

Ë

Í

Ë

Ì

Ë

Ì

Ê

Ë

Ë

Ì

Ë

Í

Ë

É

Ì

Ë

Ì

Ê

Ë

Ë

Ì

Ë

Í

Í

Í

Ë

Í

Ë

Ë

Í

Í

Ì

Ë

Ë

Ì

Ë

Í

Ë

Ì

Ë

Ì

Ë

Ì

Ë

Ë

Ë

Ì

Ë

Í

Ë

Ì

Ë

Í

Ë

Ì

Ì

Ë

Í

Ë

Í

Í

Ë

Í

Í

Í

Ê

Í

Ê

Ì

Ë

Ì

Ë

Ì

Ë

É

È

É

Í

Ë

Ì

Ë

Ì

Ë

Ë

Ë

Ë

Ë

Í

Í

Í

Ë

Ì

Ê

Ë

Ë

Ì

Ë

Ì

Ë

Í

Í

Ê

Ë

Í

Ë

Ë

Ì

Ë

Ì

Ë

Ê

Í

Ë

Ì

Ê

Í

Ê

Ê

Í

Ë

Í

Í

Í

Ë

Í

Í

Í

Ê

Ë

Ë

Í

Ë

Ë

Ì

Ë

Ë

Ë

É

Î

É

Ê

Í

Í

Ê

Í

Ê

Ê

Ë

Í

Ê

Ë

Í

Í

Ë

Ë

Ì

Ë

Ì

Ë

Ë

Ì

Ë

Ì

Ì

Ë

Ë

Í

Ë

Ë

Ê

Í

Ë

Ë

Ì

Ë

Í

Ë

Í

Ë

Í

Í

Í

Ê

Ë

Í

Ë

Í

Ë

Ë

Ë

Ì

Ê

Ë

Í

Ê

Í

Ë

Ê

Ê

Ë

È

Ç

É

Ì

Ë

Ë

Ë

Ë

Ë

Ì

Ë

Ë

Ë

Ë

Í

Ë

Í

Ë

Í

Ë

Í

Ê

Ë

Í

Ë

Í

Ë

Ë

Ë

Ë

Ì

Ë

Í

Ì

Ê

Ì

Ê

Ê

Í

Ì

Ê

Ì

Ì

Ê

Ê

Í

Ë

Ë

Ë

Ë

Ì

Ë

Í

Ì

Ê

Ë

Ë

Ê

Í

Í

Ê

Ê

Ì

É

Í

Í

Ë

Ë

Ê

Ì

Ì

Ë

Ë

Ì

Ê

Í

Ë

Ì

Ê

Ë

Ë

Ë

Ë

Ë

Ì

Ì

Ê

Í

Ê

Í

Í

Í

Í

Ë

Ì

Ë

Ì

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Í

Í

Í

Ë

Í

Ì

Ë

Ë

Ê

Ë

Í

Ë

Ì

Ë

Ê

Í

Ì

Ê

Í

Í

É

Ê

Ë

Í

Ë

Ì

Ì

Ë

Ë

Ë

Í

Í

Í

Ê

Ë

Ë

Ì

Ë

Í

Ê

Ì

Ë

Ë

Ë

Ê

Ê

Ë

Ì

Ê

Ë

Ë

Ì

Ê

Ê

Í

Ë

Ì

Ê

Ì

Ë

Ì

Ê

Ê

Í

Í

Í

Ë

Ê

Ê

Ê

Ë

Ì

Ë

Ë

Ë

Ë

Ê

Ê

Ë

Ì

Í

õ

õ

Ñ

Ð

Ç

È

É

Ê

Ê

Ë

Ì

Ê

Í

Ê

Ë

Ì

Ê

Ë

Ë

Ì

Ê

Ê

Í

Í

Ê

Ê

Í

Ë

Ë

Ê

Ê

Í

Ë

Ë

Ì

Ë

Ë

Ë

Ë

Ë

Ë

Í

Ê

Í

Ê

Ë

Ì

Ê

Í

Ê

Ë

Í

Ë

Ì

Ë

Ì

Ê

Í

Í

Ê

Ë

Í

Ê

Ë

Ì

Í

Í

Ç

Î

É

Ë

Ê

Í

Ê

Ë

Í

Ë

Ì

Ë

Í

Ê

Í

Ë

Ë

Ì

Ë

Ì

Ë

Ê

Í

Ë

Í

Ë

Í

Í

Í

Í

Ë

Í

Í

Í

Ë

Ê

Í

Ê

Ë

Í

Ë

Ì

Ê

Ì

Ê

Ê

Í

Í

Ê

Ì

Ê

Ê

Ë

Ë

Í

Ê

Í

Ë

Í

Ê

Ê

Ì

Ê

Ï

Ç

É

Ë

Ì

Ë

Ë

Í

Ì

Ì

Ê

Í

Ê

Í

Ë

Í

Ë

Ë

Ë

Ë

Ë

Ì

Ì

Ê

Ë

Ë

Ì

Ë

Ë

Ë

Ë

Í

Í

Ê

Ë

Í

Í

Ê

Ê

Ë

Í

Í

Ë

Ë

Ì

Ê

Í

Ë

Í

Ë

Ë

Ë

Ì

Ì

Ê

Í

Ë

Í

Í

Ì

Ì

Ë

Ë

Ð

Ñ

É

Ë

Í

Í

Í

Ê

Ë

Ë

Ê

Ë

Í

Í

Ì

Ì

Ê

Ê

Í

Í

Ê

Ë

Í

Í

Í

Ë

Ì

Ë

Ê

Í

Ê

Ê

Ê

Ë

Í

Ì

Ë

Ë

Ê

Í

Ë

Í

Ê

Í

Ë

Ì

Í

Í

Ê

Ë

Ì

Ë

Ì

Ë

Í

Í

Í

Ì

Ì

Ë

Ë

Í

Ì

Ð

Ð

É

Ë

Ê

Í

Ë

Í

Ê

Í

Ë

Ë

Ì

Ë

Ë

Ê

Í

Ë

Ë

Ë

Ì

Ë

Í

Í

Í

Í

Ê

Ë

Ì

Ê

Í

Ê

Í

Ë

Ì

Ì

Ì

Ë

Ì

Ë

Ì

Ë

Ì

Ê

Í

Í

Í

Ê

Ê

Ì

Ë

Ë

Ë

Ë

Ì

Ì

Ì

Ë

Ë

Í

Ê

Í

Ê

Ò

È

É

Í

Ë

Ë

Ë

Í

Ê

Í

Í

Ì

Ê

Í

Í

Ê

Ë

Ë

Í

Ë

Í

Ë

Í

Í

Ë

Í

Í

Ë

Í

Ê

Ë

Í

Í

Í

Ê

Ë

Í

Ê

Í

Í

Ë

Í

Í

Ë

Ë

Ê

Í

Ë

Ì

Ë

Í

Ë

Í

Í

Í

Í

Ê

Ë

Í

Í

Ì

Ì

Ì

Ò

Î

É

Ê

Ì

Ë

Í

Í

Ê

Ê

Ì

Í

Í

Í

Ë

Ê

Ì

Ì

Ë

Ë

Ì

Í

Í

Ê

Ê

Ì

Í

Í

Í

Ê

Ê

Ì

Ì

Ë

Ë

Í

Ì

Ë

Í

Ë

Í

Í

Í

Í

Ì

Ê

Í

Ì

Í

Ê

Í

Ë

Ë

Ë

Ë

Í

Ë

Ì

Ê

Í

Ê

Ê

Í

½

¾

¿

À

À

Á

Â



Ú

Õ

Ã

Ä

Å

Æ



$





























































































































!



























































































































"





























































































































!

#





























































































































!

















































































































































































































"

#





3

4

6



7



!

:

,

-

=

>

=

4

3

3

B

A



C

4

7

@

D



E

/

6



"

B

3





6

7

B



6

4

"

H

J

D

"

D







6

4

7

4

J

$

 %

&

'

0

;




6

6

5



6

0

6

/

A

6

5



I

Q

@

=

?

.

3

4

=

=



?

6



R

-

5



3



5

"



B

3

2

C

6

5

@

6

I

B

'

&



K

%

;

'



)

9 &

#

D

#

%

+

K

4

,

9 &

=

J

'

0

'

> (

>

3

O

9

2



%

S (

;

=

(

Q

9

2



Y

Y

2

D

D

6

A

.

3

E

:

5

5

1

M

;

%

0





>

6





:

>

0







:

;





4

B

5





O

2

9

>

Y

X

I

K

-

(

K *

Y

)

6

Z

@

6

5



4

5



R

5

B

3

B



E

0

Y

Y

[

[



)

5



6

7

J

4

J

6

B

\

E

D

6

Z

@

6



E

/

6

4

B

5

5



4



"

%

'

5



)

Y

Y

2

D

D

6

A

.

3

E

:

1

$


9

;

B

(

)

D

B

@



X

@



3

4

U

6

7

D

%

7



6



K

K

 ,

$ B

7



B

3



5

4

D

A

]

^

]

^

?

@

A



5

5

B

A

/



/

4

3

3

B

A



C

4

7

@

D

^

$ A

F



E

/

6





6

]

^

7

6

V

]

^



7



6

4



W

W

0

1

2

^

$ 4

D

B

3

A

4

F





\

B

5





]

^

;

^

$ J

.

F

\

/

F



[

W

"

!

^



J

B

!



^



B

,

$ /

B

C

4



5

9

^

(

$ 

B



B

@

5



7

E

6





]

4

^

W

#

^



B





5

4



6

J

F

J





6

4

(

5

A

^

5



*

$

A

4

D



F

V

6





@

7

6

_



3

K

3

K



B

5

]

^

#

!

$ 5



6

5

6



B

W



W

6

K

]

K

`

5





4

5

D

3

B

5



7

B

3

7

6



P

9

^

 ,

$

0



'



6

W

W

5

6

K

]

K

^

`

;



"

^





)

,

$ 

6



B

/

/

5

6

]

J

B

5

7

B

J

@

7

B



7



^

;

"

^





$ F

D

7



]



$ 



]

^

;

"

F

4

J

]

4

B

5

/

7

B



2

=

N



6

4

5

^

$ 6

4

D

3

5

^

#





^

$ 

5





]

^

?

X

9

O

9

9

;

8

L

0




2




>

0

%

;

L

9

; %

?

L

L

)

L

'

)

%

N

>

8

L

;

X

X

'

>

'

X

*

1

&



























































































































"





























































































































#

























































































































































































































































#





























































































































W

!



























































































































W

"





























































































































#





















































































































































































































































































































































































"

!



























































































































"

"



























































































































#



















































































































































































































































































































































































!



























































































































"



























































































































-

,

,



$



!

#





























































































































!

















































































































































































































$























%

1

Q *

^

'

X

*

L

%

k

l

m

|

Š

‹

~

m

m

n

o

Œ

p

}

Š

o

…

Š

†

p

Š

ž

Ÿ

l

n

†

m

Š

l

†

 

~

o

†

Š

o

‹

~

Œ

l

Š





Œ



o

Œ

l

l

l

}

}

}

l

k



l

£

†

Š

‹

~

Š

o



”

€

ƒ



s

t

u

v

w

q

r

s

t

u

v

w

¡

q

l

‹

l

¡

Š

¡

~





‘



ƒ

’

€

„



“

”

•

{

‚

x



‘



ƒ

’

€

„



“

”

•

{

‚

x

œ

“

|

}

’

€

„



“

“

š





‘



…

€

~



„

{



“

¤

ƒ

—

ƒ



„



”



k



{

ƒ

“



™

€

ƒ



„

ƒ

”

€

›

”

‰

w

u

v

z

ƒ

“

ƒ

„

‘



™

€

€

„

‚



™

ª

ª

o

‚

ª

ª

~

«

~

ƒ

“

“



‚

“

“

”

‚

 

‚

„

›

•



‚

‚

š



z

›

–



€



z

v

x

•

ˆ

™



•

ˆ

k

‘

x

‚

ƒ

”



„

®

|

“

‘



ƒ

”

‚

“

”

ƒ

™

‚

}

~





€

–

x

s

Š

€



‚

v

{

ƒ

„

„

‘

”

‚

€

…

€

„

€

œ

†

k



—

Š

x

‡

v

˜

ˆ

q

ˆ

‰

™

n

‚



k

‚

š

€

ƒ



”

“



”

‡

x

t

r

€

š

~

€

„



„

Š



“

‚



‘

v

†

}

~

¢

£

ƒ

{

€

‚

œ

œ

„

‘







‘



ƒ

“

š

o

‚

™

€

ƒ

„

”

’

ƒ

‚

¢



y

˜



š

£

“

”

’

€

›

ƒ

’

‘





r

y

˜

‚

œ

œ

‘



ƒ

•

‰

„

{

„

‚

œ

€

“

v

m

š

“

š

o

‚

•

š

x

v

q

ƒ

“

‚

y

ˆ

x



…





‘

ƒ



“

™

”

w

—



œ

›

ƒ

™

‚

‰

‡

x

¨

‚

„

œ

‘

€

œ

‘

¥



t

”

‘

¦

„



‘



ƒ



œ

Š

v

’

ƒ

„

˜

€

œ

‚

‚

o

ˆ

m

‘

|

ƒ

”



‚

›

|

ƒ

”

ƒ

ˆ

Š

ƒ

”

€

‘



x

x

r

y

„

™

‘



‘

{

–



‘

›

‘

x



y

w

w

®

™

‚

y

w

w

®

™

‚

®

›

‘



y

”

‚





‚





œ

‘





{

„

‘

œ

®

{

„

‘

”

„

ƒ

†

Š



…

‰

‡

x

œ

ƒ



‚

o



‘



~

}

®

“



|

ª

ª



°

¯

°

‚

¯

°

‚

¨

¯

°

ƒ

„

”

„

•

‚

›

”

€

w

‰

°

›

‘

x

x

r

y

v

°

r

y

v

°

”

ƒ

x

Š

–

“

›

”

‚

€

“



ƒ

|

‹

k

m

|

k

k

Œ

¯

Š

x

ž

€

†



Ž

”

€

¬

§

‚



ƒ





‘



€

–

x

ƒ

­

‘



”

¯

°

Š

s

¬

n



€

”

‚

œ



–

œ

ƒ

”

‚

ƒ

„

”

€

œ

¯

€

‘



‹

}

Š

€

¯

©

“

‚

†

š

‚

k

‘



‚



›



}

‚

|

Ÿ

u

‚

{

s

Š

©

š



‚

n





”

p

š

£



Œ

Ž

z



€

›

Ž

‚

ƒ

Œ

Œ

k

m

…

ž

 





k

Š

©

¤



o

ƒ

„

“



™

ƒ

€

›

w

w

‚

{

„

€

|

}

œ





~

‘



ƒ

‚

‘

’

­

€

•

„

“



“

‚

«



‚



”

•

{

‚

€

‘



k

£

©

k

m

o

p

Œ

o

›

€

x

v

k

m



™

°

°

n

†

w

p

¯

“

r

v

‡

°

™

œ

‘

‡

y

°

›

°

€

°



‘



‰

‡



™



°

‘



”

„

‹

©

|

£

‘



„

‚

™

¢

†

°

x

°

|

m



¯

v

†



°

‘

”

„



{

°

–

Œ



‚



ª

¬



€

‚



°

m

ª



…

’

ƒ

¯

~

˜

~

™





”

t

ƒ

¯

”

°

‚

•

©

¦



™

„

°

{

†

‘

ƒ

²

¯

ˆ



•

¯

‚

†

€

€

²



£

”

¯





ˆ





‘



’

®

†

ƒ

¤





‘





‘

›

~

ƒ

­

®

€

–

–

®

”

x

¥

s

“



x

œ

‰

z

{

±

‘



{

„

‘

”

‚

€

~

Œ

 

x

u

‰

°

k

p

¡

m

Œ

Ž

©

p

…

ž

†

†



°

x

s



~

|

 

}

°

¡

£

ž

~

…

©

Š

m

|

†

p

£

†

m

k

p

p

‹

ž



Š

Š

k

ž

†

©



Ž

ž



m

ž

|

o

…

ž

Š

m

©

p

©

©

k

ž

}

p

£

°

}

x

™

”

ƒ

”

”

™

”

ƒ

”

™

”

ƒ

”

™

”

”

™

ƒ

ƒ

”

”

ƒ

™

”

™

”

”

™

”

”

”

™

”

”

™

”

”

”

ƒ

”

ƒ

”

™

”

”

”

™

”

ƒ

”

™

”

™

›

”

”

™

”

ƒ

”

v

x

™

”

™

›

”

”

™

”

ƒ

ƒ

ƒ

”

ƒ

”

”

ƒ

ƒ

™

”

”

™

”

ƒ

”

™

”

™

”

™

”

”

”

™

”

ƒ

”

™

”

ƒ

”

™

™

”

ƒ

”

ƒ

ƒ

”

ƒ

ƒ

ƒ

›

ƒ

›

™

”

™

”

™

”

x

‰

x

ƒ

”

™

”

™

”

”

”

”

”

ƒ

ƒ

ƒ

”

™

›

”

”

™

”

™

”

ƒ

ƒ

›

”

ƒ

”

”

™

”

™

”

›

ƒ

”

™

›

ƒ

ƒ

›

ƒ

”

ƒ

ƒ

ƒ

”

ƒ

ƒ

ƒ

›

”

”

ƒ

”

”

™

”

”

”

x

y

x

›

ƒ

ƒ

›

ƒ

›

›

”

ƒ

›

”

ƒ

ƒ

”

”

™

”

™

”

”

™

”

™

™

”

”

ƒ

”

”

›

ƒ

”

”

™

”

ƒ

”

ƒ

”

ƒ

ƒ

ƒ

›

”

ƒ

”

ƒ

”

”

”

™

›

”

ƒ

›

ƒ

”

›

›

”

‰

t

x

™

”

”

”

”

”

™

”

”

”

”

ƒ

”

ƒ

”

ƒ

”

ƒ

›

”

ƒ

”

ƒ

”

”

”

”

™

”

ƒ

™

›

™

›

›

ƒ

™

›

™

™

›

›

ƒ

”

”

”

”

™

”

ƒ

™

›

”

›

›

ƒ

ƒ

›

›

™

w

‡

x

ƒ

ƒ

”

”

›

™

™

”

”

™

›

ƒ

”

™

›

”

”

”

”

”

™

™

›

ƒ

›

ƒ

ƒ

ƒ

ƒ

”

™

”

™

”

”

”

”

”

”

”

ƒ

ƒ

ƒ

”

ƒ

™

”

”

›

”

ƒ

”

™

”

›

ƒ

™

›

ƒ

ƒ

w

v

x

›

”

ƒ

”

ƒ

™

”

”

”

ƒ

ƒ

ƒ

›

”

”

™

”

ƒ

›

™

”

”

”

›

›

”

™

›

”

”

™

›

›

ƒ

”

™

›

™

”

™

›

›

ƒ

ƒ

ƒ

”

›

›

›

”

™

”

”

”

”

›

›

”

™

ƒ

t

‰

x

›

›

”

™

›

ƒ

›

”

™

›

”

”

™

›

›

ƒ

ƒ

›

›

ƒ

”

”

›

›

ƒ

”

”

™

”

”

”

”

”

”

ƒ

›

ƒ

›

”

™

›

ƒ

›

”

ƒ

”

™

”

™

›

ƒ

ƒ

›

”

ƒ

›

”

™

ƒ

ƒ

t

y

x

”

›

ƒ

›

”

ƒ

”

™

”

ƒ

›

ƒ

”

”

™

”

™

”

›

ƒ

”

ƒ

”

ƒ

ƒ

ƒ

ƒ

”

ƒ

ƒ

ƒ

”

›

ƒ

›

”

ƒ

”

™

›

™

›

›

ƒ

ƒ

›

™

›

›

”

”

ƒ

›

ƒ

”

ƒ

›

›

™

›

s

t

x

”

™

”

”

ƒ

™

™

›

ƒ

›

ƒ

”

ƒ

”

”

”

”

”

™

™

›

”

”

™

”

”

”

”

ƒ

ƒ

›

”

ƒ

ƒ

›

›

”

ƒ

ƒ

”

”

™

›

ƒ

”

ƒ

”

”

”

™

™

›

ƒ

”

ƒ

ƒ

™

™

”

”

v

‡

x

”

ƒ

ƒ

ƒ

›

”

”

›

”

ƒ

ƒ

™

™

›

›

ƒ

ƒ

›

”

ƒ

ƒ

ƒ

”

™

”

›

ƒ

›

›

›

”

ƒ

™

”

”

›

ƒ

”

ƒ

›

ƒ

”

™

ƒ

ƒ

›

”

™

”

™

”

ƒ

ƒ

ƒ

™

™

”

”

ƒ

™

v

v

x

”

›

ƒ

”

ƒ

›

ƒ

”

”

™

”

”

›

ƒ

”

”

”

™

”

ƒ

ƒ

ƒ

ƒ

›

”

™

›

ƒ

›

ƒ

”

™

™

™

”

™

”

™

”

™

›

ƒ

ƒ

ƒ

›

›

™

”

”

”

”

™

™

™

”

”

ƒ

›

ƒ

›

r

‰

x

ƒ

”

”

”

ƒ

›

ƒ

ƒ

™

›

ƒ

ƒ

›

”

”

ƒ

”

ƒ

”

ƒ

ƒ

”

ƒ

ƒ

”

ƒ

›

”

ƒ

ƒ

ƒ

›

”

ƒ

›

ƒ

ƒ

”

ƒ

ƒ

”

”

›

ƒ

”

™

”

ƒ

”

ƒ

ƒ

ƒ

ƒ

›

”

ƒ

ƒ

™

™

™

r

y

x

›

™

”

ƒ

ƒ

›

›

™

ƒ

ƒ

ƒ

”

›

™

™

”

”

™

ƒ

ƒ

›

›

™

ƒ

ƒ

ƒ

›

›

™

™

”

”

ƒ

™

”

ƒ

”

ƒ

ƒ

ƒ

ƒ

™

›

ƒ

™

ƒ

›

ƒ

”

”

”

”

ƒ

”

™

›

ƒ

›

›

ƒ

y

t

x

ƒ

ƒ

ƒ

™

ƒ

™

ƒ

ƒ

›

”

™

›

ƒ

ƒ

”

™

”

”

”

›

ƒ

™

™

ƒ

›

›

›

ƒ

›

ƒ

™

™

ƒ

™

›

™

ƒ

›

›

›

ƒ

™

ƒ

ƒ

ƒ

™

”

”

ƒ

›

›

ƒ

›

ƒ

™

”

”

ƒ

”

™

u

‡

x

›

ƒ

›

ƒ

™

ƒ

™

›

”

™

›

ƒ

ƒ

ƒ

›

ƒ

ƒ

›

”

ƒ

”

ƒ

›

ƒ

”

™

ƒ

”

ƒ

”

ƒ

ƒ

”

ƒ

”

”

ƒ

™

ƒ

ƒ

”

™

”

™

”

™

”

ƒ

›

”

™

›

ƒ

ƒ

™

›

ƒ

ƒ

›

ƒ

u

v

x

™

”

”

ƒ

›

”

™

›

™

ƒ

›

™

”

™

ƒ

™

™

”

ƒ

”

ƒ

”

™

ƒ

›

”

”

”

™

›

”

”

”

”

›

™

™

™

ƒ

”

”

”

ƒ

”

™

›

ƒ

”

ƒ

™

”

ƒ

”

ƒ

”

ƒ

™

ƒ

™

ƒ

x

‡

‰

x

”

™

™

™

ƒ

ƒ

”

›

›

ƒ

”

ƒ

”

™

›

”

™

”

ƒ

”

™

”

™

ƒ

”

ƒ

ƒ

ƒ

”

™

”

”

”

ƒ

ƒ

ƒ

™

”

”

”

”

ƒ

”

”

›

”

ƒ

ƒ

ƒ

ƒ

”

”

ƒ

™

”

™

ƒ

™

”

ƒ

x

‡

y

x

”

ƒ

™

ƒ

›

ƒ

”

”

ƒ

”

”

™

”

”

ƒ

”

ƒ

™

”

™

”

™

”

ƒ

”

™

™

ƒ

ƒ

›

ƒ

ƒ

›

ƒ

”

”

ƒ

™

ƒ

ƒ

›

ƒ

™

›

ƒ

ƒ

”

ƒ

›

ƒ

ƒ

›

ƒ

ƒ

ƒ

›

›

™

”

”

x

x

t

x

™

”

™

”

™

ƒ

”

”

”

™

”

”

ƒ

ƒ

”

”

ƒ

™

™

”

™

”

ƒ

”

”

ƒ

ƒ

›

”

™

”

›

ƒ

ƒ

ƒ

ƒ

™

›

r

s

t

u

v

t

x

x

r

y



€

‚

ƒ

„

x

‡

ˆ

q

k

ˆ

‰

Œ



Œ

€





‘



ƒ

’

€

„



“

”

•

{

‚

x

v

‘



ƒ

”

„

‘

”

‚

€

v

˜

‚

š

œ

“

o

Œ

€



‘



ƒ

’

€

„



“

”

•

{

‚

x

v

®

k

l

m

|

Š

‹

~

m

m

n

o

Œ

Š

†

p

Š

ž

Ÿ

l

n

†

p

}

Š

…

o

Œ

x

œ

“



‘

®

k

 

x

’

‚



„

“

›



®

Œ

”

€

€



®

®



ƒ

›

ƒ

—

‚

¨

‘



”



®

“

‘

‘



œ

z

›

k

o





z

’

 

x

š

œ



‚

ƒ

š



“



”





‚

œ

~

”



€

®

†

{

€

‰

o



x

k

{



”

€



“

š

‚

‚

z

‚



§

y



€

ƒ

¨



{

{

t

›

¢

ƒ

z

—

o

“

‘

‰

¡

‚

®

l

v

z





¡

o

~

|

v



|

m

x

€

Š

‚

x

€

Š

†

™

‚

{

l

€

{

{

}



•

ƒ

Ž

‘

”

ƒ

Ž

Š

“

{

Š

“



{

‰

†

„



Œ

n

€



|

}

’

ƒ

k

Š

ƒ

ƒ

Š

m

y





x

o

Š

}

“

r

‘



Š

†

œ





~

n





¡

k

›

€

Ž

}



{

Ž

¥

Œ

x

ƒ

r

Š

†

m

w

„

†



v

{

q

n

†

u



ƒ

n

n

t

ƒ

p

“

q

s



Œ

m

r



{

o

}

Ž

q

Ž

p

|

Š



Œ

}

†

†

n

Œ

o

o

Œ

l

l

†

m

Š

l

l

}

}

}

q

Ž



ƒ



{

ƒ

{

ƒ

„

”

€

ƒ



p

q

r

s

t

u

v

t

q

r

s

t

u

v

t

p

|



o

{

›

z

{

€

|

“

‚

}

~



€

–

x

v

Š

v



{

…

†

k



—

Š

n

™

‚



‡





Ž





ƒ



{

ƒ

{



a

b

c

d

d

e

f

g

h

i

j

x

t

½

¾

¿

À

Á

Â

Ã

Ä

Å

Æ

À

¾

ß

à

À

ß

¾

ç

è

è

Â

ß

Á

Å

½

è

é

á

ß

¾

½

Ü

¾

ß

à

À

ß

ß

È

Å

¾

Á

À

é

Â

ë

Ä

ß

Ù

ð

ß

Á

Å

½

è

è

ê

Â

½

è

é

ç

á

ß

¾

À

É

é

Ã

à

½

Ä

ß

Ä

ß

À

è

Á

ç

è

¾

ß

Ð

Ó

È

Ð

Ê

ã

È

Ð

É

Û

Ë

È

É

Ï

È

Ñ

Ë

í

Ñ

ð

ò

õ

Õ

ã

È

Ð

È

Ï

Í

É

Û

Ë

Ë

Ï

Ó

ã

Ç

Û

ú

ú

Ã

Ó

ú

ú

À

û

È

Ð

Ð

Æ

À

Ó

Ð

Ñ

Ó

Ð

Ó

Æ

Ï

í

Ì

Í

Ç

Í

Ó

Ç

È

ã

Ò

É

Ó

Ë

Ï

Æ

Ð

Î

Ë

Ï

Æ

Ð

Î

¿

Ì

Î

Í

Ú

Ì

È

À

Ñ

Þ

Ë

Í

Í

Ç

È

í

Ñ

Ô

Ú

Ó

Ú

Æ

é

ã

Ë

Ï

Ô

Ô

ä

Ø

Ë

Ú

À

Ë

Ï

Æ

Î

Ó

Þ

Ñ

Þ

Ï

ß

ã

â

Ì

Ë

É

ã

Õ

Ô

Ò

ñ

Û

Ì

Ó

Ò

ñ

é

Í

Ô

Æ

Ð

Ó

Ñ

Ò

Ð

Ú

Ê

Ó

Ô

É

Í

Õ

¾

Á

À

Ð

Ñ

È

Û

Ó

×

Ü

È

Ê

Ë

Ó

Ø

Ø

Ï

Í

Ì

Ì

Ì

Í

Ç

È

Ð

Ú

Ã

Ó

Û

Ë

È

Ï

Ñ

Î

Ë

Ï

Ë

Ø

È

Ó

×

Þ

å

æ

Þ

Ú

Ü

Ð

Ñ

Î

Ë

í

Î

Í

Ì

ä

å

æ

Ó

Ø

Ø

Í

þ

Ô

ë

Ð

ð

ö

ñ

á

Í

Ù

È

Ñ

è

Ó

í

Ù

È

Ñ

È

ñ

ß

È

Ñ

Ë

Í

É

Ô

Ô

ä

å

Ï

Û

È

Í

Ì

Ð

Í

Þ

Í

Ø

Ð

í

Ç

Ô

É

Ë

Þ

þ

Í

È

Ç

Ø

Ã

Í

Ì

Ð

Æ

Ø

Ç

Á

Ô

¿

í

Ó

Ù

È

Ì

Þ

È

Ò

ð

Ï

Ê

Ï

Ó

Ø

Ë

Ð

Õ

á

Ú

Ð

Ú

Ã

Ó

Ò

Ú

Ô

Õ

ê

È

Ð

Ó

å

ñ

Ô

Þ

Þ

Ö

Ì

Í

È

É

Ð

É

Û

Ñ

ò

â

Ø

í

È

Û

Ó

ð

ó

Ô

ï

Ó

Ï

Ø

Í

Ë

Ø

Í

ë

É

ô

Ñ

Í

ì

Ï

Þ

Í

É

È

É

Ø

ß

Õ

Î

È

Ï

Ë

È

É

Ñ

Ð

Ì

Ñ

æ

ð

Ñ

Ç

É

Ì

Ð

Ø

Ã

É

Ì

Ø

é

Ê

Þ

Ñ

Ë

Ì

Ë

Ð

Ú

Ó

Ó

É

Ó

Æ

î

å

Æ

Ë

È

ï

í

Ê

Ê

ô

Ê

×

È

Í

â

Ä

ß

á

Ç

Ñ

Ù

Á

È

ð

Ã

ß

¾

Ý

Ï

Æ

Ê

Ð

â

Ä

ç

¾

Ê

É

Æ

Ô

Ã

ç

ç

È

Ï

Ì

Ð

ê

Ç

Ë

Ö

Ë

À

Ì

È

Ý

Í

É

Ü

¾

ñ

ð

ó

Ô

Ë

É

Ø

È

Ì

Ó

ñ

É

É

Ë

Ã

è

Í

Ì

À

Á

þ

Ð

Ç

Ñ

Ò

Ê

È

Ñ

Ó

ÿ

Ï

Ó

ï

ÿ

È

Ï

Ñ

Ï

Ò

Ó

í

ò

ð

¾

Û

Ò

Ù

ú

ú

Æ

Å

ÿ

æ

ú

Î

Ó

É

Ï

Æ

Æ

Ð

Ó

¾

Ú

Ó

é

Í

É

Ó

É

í

É

Á

Ó

Ù

÷

õ

Ó

Ê

ö

ß

ø

Ú

Ç

Ó

ç

É

Þ

Ñ

ù

Ú

Ü

Æ

Â

Å

ã

Ì

Ë

í

Å

Ó

Â

Â

é

¿

è

è

é

È

Ý

Þ

ú

Ì

Æ

Ë

Ó

ü

Û

Þ

Ö

À

È

ÿ

Ó

ô

è

Í

ø

ì

Ë

ü

î

Ó

Ç

È

É

É

Í

Ç

Ã

È

Ï

Ð

É

Ê

Û

È

Ë

í

ò

ò

Ó

Ê

Ï

Ë

Ù

Ø

Ì

Á

Ì

Í

Ç

È

Ó

Í

Î

ý

Ë

Ò

Ï

Ð

Æ

Ð

Ó

û

Æ

Ó

É

Ñ

Ò

Ê

Ó

Ë

Í

É

é

Ü

ø

é

á

Ã

ù

Â

Ã

í

Ë

Ô

Õ

é

á

É

Û

À



þ

Ë

þ

Ø

Ì

Ç

Ë

Ô

Õ



ã

ý

Ñ

È

ý

Ñ

ÿ

Í

É

ü

ò

ä

Õ

ó

Û

Ø

ó

å



þ

Ê

Í

Ê

Æ

Î

Ë

È

Ñ

Ë

Í

í

Í

Ô

ä

É

ß

ç

¾



þ

í

Í

þ

í

Í

É

Ì

Ì

ÿ

ç

É

É

Ë

Ñ

Ó

Ø

Ø

È

Ñ

Ó

ù

Ë

ÿ

É

ð

ó

Í

Ç

Í

É

à

ø



Ç

Ë

Ð

í

ï

Ó

È

Ñ

Æ

Ï

Ó



Ô

Þ

Þ

å



þ

Û

Ó

á

Ù

É

Ó

Ã

É

Í

å

ò

ò

þ

Û

Ó

å

ò

ò

þ

Û

Ó

í

þ

Ñ

Ó

Þ

ÿ

Þ

É

Ó

Þ

Ô



Ô

ÿ

Þ

É



Ó

ÿ

Í

Ø

Í

É

þ

Ê

Ï

Í

Ø

Æ

þ

Ê

Ï

Í

Ñ

Ï

È

ß

É

Ñ

È

Ï

Ñ

Ë

É

Ð

Ì

Í

É

Û

í

Ñ

Ï

Ù

Ü

Í

Ì

Ï

Ó

Û

×

¾

å

Õ

Ô

ä

ß

å

Õ

Ð

Ñ

È

ÿ

Ô



í

Ñ

Ó

Ë

Ð

Ì

È

Ù

à

ÿ

ß

É

Õ

Ë

Ø

ÿ

Ë

Í

É

Ê

Ï

Í

Ñ

Ó

Ë

À

Â

¿

Ô

õ

ð

É

Ô

Õ



þ

é

½

¾

þ

Â

¿

Â

Ñ

¾

¾

ß

É

Ö



é

á

Ù

é

é

Â

¾

Ñ

À

à

á

Â

Á

¾

ÿ

Ù

á

ø

Ä

é

á

Â

Å

ø

Ö



ù

¾

¾

è

À

Ù

¿

Á

Ä

Ü

À



Ö

ø

ß

á

Ù

¾

ù

Ü

¾

á

é

ù

ù

à



è

ß

ß

é

¾



ø

è

Å

è

á





Ù

Ã

é



ß

á

Ö



ß

ø

á

ø

ù



½

á

Ù

ß

à

á

ß

ß

Ã

Ü

Á

Ô

Û

Ñ

È

Ñ

Ñ

Û

Ñ

È

Ñ

Û

Ñ

È

Ñ

Û

Ñ

Ñ

Û

È

È

Ñ

Ñ

È

Û

Ñ

Û

Ñ

Ñ

Û

Ñ

Ñ

Ñ

Û

Ñ

Ñ

Û

Ñ

Û

Ñ

È

Ñ

È

Ñ

Û

Ñ

Ñ

Ñ

Û

Ñ

È

Ñ

Û

Ñ

Û

í

Ñ

Ñ

Û

Ñ

È

Ñ

Õ

Ô

Û

Ñ

Û

í

Ñ

Ñ

Û

Ñ

È

È

È

Ñ

È

Ñ

Ñ

È

È

Û

Ñ

Ñ

Û

Ñ

È

Ñ

Û

Ñ

Û

Ñ

Û

Ñ

Ñ

Ñ

Û

Ñ

È

Ñ

Û

Ñ

È

Ñ

Û

Û

Ñ

È

Ñ

È

È

Ñ

È

È

È

í

È

í

Û

Ñ

Û

Ñ

Û

Ñ

Ô

ð

Ô

È

Ñ

Û

Ñ

Û

Ñ

Ñ

Ñ

Ñ

Ñ

È

È

È

Ñ

Û

í

Ñ

Ñ

Û

Ñ

Û

Ñ

È

È

í

Ñ

È

Ñ

Ñ

Û

Ñ

Û

Ñ

í

È

Ñ

Û

í

È

È

í

È

Ñ

È

È

È

Ñ

È

È

È

í

Ñ

Ñ

È

Ñ

Ñ

Û

Ñ

Ñ

Ñ

Ô

å

Ô

í

È

È

í

È

í

í

Ñ

È

í

Ñ

È

È

Ñ

Ñ

Û

Ñ

Û

Ñ

Ñ

Û

Ñ

Û

Û

Ñ

Ñ

È

Ñ

Ñ

í

È

Ñ

Ñ

Û

Ñ

È

Ñ

È

Ñ

È

È

È

í

Ñ

È

Ñ

È

Ñ

Ñ

Ñ

Û

í

Ñ

È

í

È

Ñ

í

í

Ñ

ð

ô

Ô

Û

Ñ

Ñ

Ñ

Ñ

Ñ

Û

Ñ

Ñ

Ñ

Ñ

È

Ñ

È

Ñ

È

Ñ

È

í

Ñ

È

Ñ

È

Ñ

Ñ

Ñ

Ñ

Û

Ñ

È

Û

í

Û

í

í

È

Û

í

Û

Û

í

í

È

Ñ

Ñ

Ñ

Ñ

Û

Ñ

È

Û

í

Ñ

Ñ

í

È

È

í

í

Û

ò

ó

Ô

È

È

Ñ

Ñ

í

Û

Û

Ñ

Ñ

Û

í

È

Ñ

Û

í

Ñ

Ñ

Ñ

Ñ

Ñ

Û

Û

í

È

í

È

È

È

È

Ñ

Û

Ñ

Û

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

È

È

È

Ñ

È

Û

Ñ

Ñ

í

Ñ

È

Ñ

Û

Ñ

í

È

Û

í

È

È

ò

Õ

Ô

í

Ñ

È

Ñ

Û

Û

Ñ

Ñ

Ñ

È

È

È

í

Ñ

Ñ

Û

Ñ

È

í

Û

Ñ

Ñ

Ñ

í

í

Ñ

Û

í

Ñ

Ñ

Û

í

í

È

Ñ

Û

í

Û

Ñ

Û

í

í

È

È

È

Ñ

í

í

í

Ñ

Û

Ñ

Ñ

Ñ

Ñ

í

í

Ñ

Û

È

ô

ð

Ô

í

í

Ñ

Û

í

È

í

Ñ

Û

í

Ñ

Ñ

Û

í

í

È

È

í

í

È

Ñ

Ñ

í

í

È

Ñ

Ñ

Û

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

È

í

È

í

Ñ

Û

í

È

í

Ñ

È

Ñ

Û

Ñ

Û

í

È

È

í

Ñ

È

í

Ñ

Û

È

È

ô

å

Ô

Ñ

í

È

í

Ñ

È

Ñ

Û

Ñ

È

í

È

Ñ

Ñ

Û

Ñ

Û

Ñ

í

È

Ñ

È

Ñ

È

È

È

È

Ñ

È

È

È

Ñ

í

È

í

Ñ

È

Ñ

Û

í

Û

í

í

È

È

í

Û

í

í

Ñ

Ñ

È

í

È

Ñ

È

í

í

Û

í

ö

ô

Ô

Ñ

Û

Ñ

Ñ

È

Û

Û

í

È

í

È

Ñ

È

Ñ

Ñ

Ñ

Ñ

Ñ

Û

Û

í

Ñ

Ñ

Û

Ñ

Ñ

Ñ

Ñ

È

È

í

Ñ

È

È

í

í

Ñ

È

È

Ñ

Ñ

Û

í

È

Ñ

È

Ñ

Ñ

Ñ

Û

Û

í

È

Ñ

È

È

Û

Û

Ñ

Ñ

Õ

ó

Ô

Ñ

È

È

È

í

Ñ

Ñ

í

Ñ

È

È

Û

Û

í

í

È

È

í

Ñ

È

È

È

Ñ

Û

Ñ

í

È

í

í

í

Ñ

È

Û

Ñ

Ñ

í

È

Ñ

È

í

È

Ñ

Û

È

È

í

Ñ

Û

Ñ

Û

Ñ

È

È

È

Û

Û

Ñ

Ñ

È

Û

Õ

Õ

Ô

Ñ

í

È

Ñ

È

í

È

Ñ

Ñ

Û

Ñ

Ñ

í

È

Ñ

Ñ

Ñ

Û

Ñ

È

È

È

È

í

Ñ

Û

í

È

í

È

Ñ

Û

Û

Û

Ñ

Û

Ñ

Û

Ñ

Û

í

È

È

È

í

í

Û

Ñ

Ñ

Ñ

Ñ

Û

Û

Û

Ñ

Ñ

È

í

È

í

ä

ð

Ô

È

Ñ

Ñ

Ñ

È

í

È

È

Û

í

È

È

í

Ñ

Ñ

È

Ñ

È

Ñ

È

È

Ñ

È

È

Ñ

È

í

Ñ

È

È

È

í

Ñ

È

í

È

È

Ñ

È

È

Ñ

Ñ

í

È

Ñ

Û

Ñ

È

Ñ

È

È

È

È

í

Ñ

È

È

Û

Û

Û

ä

å

Ô

í

Û

Ñ

È

È

í

í

Û

È

È

È

Ñ

í

Û

Û

Ñ

Ñ

Û

È

È

í

í

Û

È

È

È

í

í

Û

Û

Ñ

Ñ

È

Û

Ñ

È

Ñ

È

È

È

È

Û

í

È

Û

È

í

È

Ñ

Ñ

Ñ

Ñ

È

Ñ

Û

í

È

í

í

È

å

ô

Ô

È

È

È

Û

È

Û

È

È

í

Ñ

Û

í

È

È

Ñ

Û

Ñ

Ñ

Ñ

í

È

Û

Û

È

í

í

í

È

í

È

Û

Û

È

Û

í

Û

È

í

í

í

È

Û

È

È

È

Û

Ñ

Ñ

È

í

í

È

í

È

Û

Ñ

Ñ

È

Ñ

Û

õ

ó

Ô

í

È

í

È

Û

È

Û

í

Ñ

Û

í

È

È

È

í

È

È

í

Ñ

È

Ñ

È

í

È

Ñ

Û

È

Ñ

È

Ñ

È

È

Ñ

È

Ñ

Ñ

È

Û

È

È

Ñ

Û

Ñ

Û

Ñ

Û

Ñ

È

í

Ñ

Û

í

È

È

Û

í

È

È

í

È

õ

Õ

Ô

Û

Ñ

Ñ

È

í

Ñ

Û

í

Û

È

í

Û

Ñ

Û

È

Û

Û

Ñ

È

Ñ

È

Ñ

Û

È

í

Ñ

Ñ

Ñ

Û

í

Ñ

Ñ

Ñ

Ñ

í

Û

Û

Û

È

Ñ

Ñ

Ñ

È

Ñ

Û

í

È

Ñ

È

Û

Ñ

È

Ñ

È

Ñ

È

Û

È

Û

È

Ô

ó

ð

Ô

Ñ

Û

Û

Û

È

È

Ñ

í

í

È

Ñ

È

Ñ

Û

í

Ñ

Û

Ñ

È

Ñ

Û

Ñ

Û

È

Ñ

È

È

È

Ñ

Û

Ñ

Ñ

Ñ

È

È

È

Û

Ñ

Ñ

Ñ

Ñ

È

Ñ

Ñ

í

Ñ

È

È

È

È

Ñ

Ñ

È

Û

Ñ

Û

È

Û

Ñ

È

Ô

ó

å

Ô

Ñ

È

Û

È

í

È

Ñ

Ñ

È

Ñ

Ñ

Û

Ñ

Ñ

È

Ñ

È

Û

Ñ

Ñ

Ñ

Û

Ñ

È

Ñ

Û

Û

È

È

í

È

È

í

È

Ñ

Ñ

È

Û

È

È

í

È

Û

í

È

È

Ñ

È

í

È

È

í

È

È

È

í

í

Û

Ñ

Ñ

Ô

Ô

ô

Ô

Û

Ñ

Û

Ñ

Û

È

Ñ

Ñ

Ñ

Û

Ñ

Ñ

È

È

Ñ

Ñ

È

Û

Û

Ñ

Û

Ñ

È

Ñ

Ñ

È

È

í

Ñ

Û

Ñ

í

È

È

È

È

Û

í

ç

ä

ö

ô

õ

Õ

ö

Ô

Ô

ä

å

Ì

Ë

Ó

È

Ï

Ô

ó

ñ

ê

é

Â

è

Â

Ë

Ì

Ì

Í

Ë

Ï

Ñ

Ò

Ô

Õ

Í

Ì

È

Ñ

Ï

Í

Ñ

Ó

Ë

Õ

æ

Ø

Ð

Ã

Â

Ë

Ï

Ë

Ø

Ã

Â

ù

Á

½

Á

ê

Å

Æ

½

á

ß

Ã

¾

Ã

÷



Â

½

½

¾

á

ß

½

¾

¿

À

Á

Á

¾

ç

½

Ç

È

É

Ê

È

Ê

È

Ï

Ñ

Ë

È

Ì

ù

ê

ä

ö

ô

õ

Õ

ö

ê

ä

ö

ô

õ

Õ

ö

ù

Ù

Ã

Ê

Ç

È

Î

Æ

Ð

Ê

Ó

ã

Ê

Ë

Ù

Ð

Á

À

Ó

Ç

Ë

Ô

ä

ß

É

Õ

Ê

¾

Ö

é

É

â

ß

ñ

ð

Û

ç

Ó

É

Ó

Ú

Á

Â

Ã

Ä

à

À

ß

¾

ç

è

è

Â

è

ß

Á

Å

½

é

á

¾

Ë

È

É

Ñ

Ð

Æ

Ç

È

É

Ê

È

Ê

Ë

Ì

Ì

Í

Ç

È

Î

Ë

Ï

Æ

Ð

Ñ

Ò

Ê

Ó

Ô

Å

Æ

Ç

È

É

Ê

È

Ê

Ë

Ì

Ì

Í

Ç

È

Î

Ë

Ï

Æ

Ð

Ñ

Ò

Ê

Ó

Ô

Ø

Ð

Ù

Á

Î

Ë

Ï

Æ

Ð

Ð

Ú

Ì

Ì

Í

Ç

Ë

ß

´

Ð

Ý

È

â

Ä

È

Å



Ê

Æ

Ô

Ã

ß

µ

Ï

Ì

·

·

¸

¹

Ï

Æ

Ð

³

Þ

Å

À

ß

í

Þ

Ö

¾

é

ù

ù



À

ù

ø

Á

þ

é

Ö

ø

Ç

Ñ

º

Ï

»

¼

Ó

Ð

Ê

È

ã

È

Ð

Í

É

Û

Ë

È

É

È

Ñ

Ë

×

Ê

Ë

Ó

Ð

Æ

Ú

Ê

È

î

Ó

Ê

Ô

é

Ø

Ì

ã

È

Ñ

Þ

Ë

À

Í

Ú

Ì

Ò

¿

Í

Î

Ç

Í

È

í

Ó

Ë

Ï

Ô

Ô

ä

Ø

Ë

Ú

À

Ë

Ï

Æ

Î

Ï

Î

Æ

Ð

Ë

å

Ó

Í

Õ

¾

Á

À

Ð

Ñ

È

Û

Ó

×

Ü

È

Ê

Ë

Ó

Ø

Ø

Ï

Í

Ì

Ì

Ì

Í

Ç

È

Ð

Ú

Ã

Ó

Û

Ë

Î

È

Ó

×

Þ

æ

Þ

Ú

Ð

í

É

Õ

È

Ü

Ñ

Ì

Ò

Ø

È

Ê

Ï

Ï

Ó

Ë

Ð

Ó

Ò

Ú

Ô

Õ

È

Ð

ê

Þ

Ì

Ó

Þ

Ö

Í

Ð

É

È

Û

Ñ

È

É

Ø

í

Û

Ó

Í

ë

É

Ñ

Í

ì

Ï

Þ

Í

É

È

É

Ø

ß

Õ

Î

È

Ï

ó

Ô

ô





.





3



















/

0



1

"





9







8



8





8







$









:

3



0



0





8





8







)

2

#

4

5

6

5

;








$



"

*

0

1





&

"

:







,

4





A








6









6



?

%

>

4



;



A

4

#

(

J

'

!

J



'

N

=

6



R





5



>

;





$

1



:

?

N









$

1



3



$

$





"

#

$

%

6

%

:

&

'

(

)

*

"

+

(





;

,

-



N







!

5







1

5



5

5



=

(

(

7




6



J

D



(

?

6

1



=

;

>

6

6

%

!

!

C

=



!

;

D

>

6

E

5

*

0

5

9

>



1

"





9





;

A





5

1



:



>



6

D

4

5

6






5





;

A

0



=

A



8



>

/



&

5

>

(

:

$



7

A

9







D

9



8

5







D

5







H

6



5





$

A

D

:



9



9

H

1



8













8



!



C





N



:

'

D

N





B

!

=

N



"

;

S



6

A

N

N











:





"



=

!



%

!



!

4

J





A

5





;

(

(

7

?

=

%



=

;

>







=

;





>

6

=



&



#







6

T

.

5



?

D

=

!

!

A

5



=

5



T



-



%

.

6







5

!

J

!



"

5

;

D

;



?

=

6

#

$

%

6

%

:



J

%

(

#



5

6



&

'

(



C



!

5



6




(

%

:





?

%

>



4





5

A

?

*

#

(

(



=

6

6

"

B

'

$

(

?

/

=





!

7

&

-



?

?

@

.



'

"

+

(

=



?

5

!



,

-





C



=





;

>

>

6



%









?













F

1

2



D

B



G

%

A









H



%

.

>

4

!

=



9



5























E

(

,

a



b

c

d

c

d

h

f

e

‚

f

t

d

i

g

g

s

j

g

g

h

i

u

i

v

h

j

i

j

k

w

i

l

x

j

m

y

k

n

w

l

m

s

|

v

~

x

o

z

j

n

o

ƒ

|

‡

k

y

i

x

‘

’

j

q

r

v

~

j

j

a

p

w

y



s

š

›

š

r

q

o

d

q

r

y

|

w

‡

‡

‰

Š

~

z

|

m

i

|

Ž

‘

v

|

|

‡

ˆ

Š

“

“

„

z

j

Š

“

“

„

z

j

„

x

|

m

ˆ

|

Š

r

j

ˆ

j

ˆ

w



|

w

v

„

Ž

~

|



„

Ž

~

|

r

~

q

r

t

t

d

w

ž

e

„

i

k

n

p

g

g

…

v

Œ

‹

Œ

‹

Œ

’

‹

Œ

q

~

r

~

n

j

x

r

y

“

–

Œ

x

|

‡

‡

‰

Š



Œ

‰

Š



Œ

r

q

‡

d

‘

i

x

j

y

i

m

r

w

a

p

ƒ

ƒ

š



t



k

r

j

k

q

w

w

|

k

y

‘

‡

q

€

|

w

Š

r

‹

Œ

d

}

w

y

r

j



w

‘



q

r

j

q

~

r



‹

y

|

w



d

i

z

q

y

x

“

“

j

Ž

~

y

p

‚

t



m

e

m

h

|

y



k

q

j

|



€

y

n

~

i

v

i

j

u

v

j

w

r

n

Ž

j

y

|

w

ƒ



…

ƒ

a

s

•

š

s

x

y

‡



ƒ

a

w

z

Œ

Œ

“

•

‹

i

‰



”

Œ

z



|

”

Š

Œ

x

|

Œ

y

Œ

m

|

w

–

”

w

z

Ž

~

|

r

j

y

h

š

›

‡

œ

–

‹

…

~

w

k

Œ

w

r

~

p



|

m

~

j

z

˜

t

Œ

‡

Œ

p

a

w

‹



t

e

y

q

Œ

‚

r

s

Ž

|

y

š

j

†

Œ

‘

a

v

y

w

Œ

h

m

}

q

w

r

g

}

z

‹

q

p

ƒ

‹

d

‡

Ÿ

y

g

q

‹

j

Œ

j

f

z

j

Œ

Ž

t

|

r

™

‹

h

~

‹

j

m

q

™

ˆ

f

|

n

‹

ˆ

w

y

s

r



w

m

o

w

w

m

|

x

w

q

€

x

q

{

‘

‘

„

ƒ

t

q

„

„

b

p

l

Ž

—

j

x

ˆ

|

„

„

z

r

j

x

k

„

„

q

f

ˆ

„

„

p

Œ

ƒ

c

a

•

š



…

•

ž

Ÿ

t

w

Œ

‡

t

Š

f

h

p

›

e

Œ

c

…





Ÿ

h

ž

…

d

a

p

t

•



t

a

ƒ

•

•



Ÿ

f

d

d

ƒ

Ÿ

t

…

f



Ÿ

f

a

š



Ÿ

p

s

š

ž

Ÿ

š

ƒ

a

ž

Ÿ

›

f

d

f

ƒ

d

…

a

…

•

…

…

ƒ

Ÿ

e

•



Œ

e

‡

z

r

q

r

r

z

r

q

r

z

r

q

r

z

r

r

z

q

q

r

r

q

z

r

z

r

r

z

r

r

r

z

r

r

z

r

r

r

q

r

q

r

z

r

r

r

z

r

q

r

z

r

z

x

r

r

z

r

q

r



‡

z

r

z

x

r

r

z

r

q

q

q

r

q

r

r

q

q

z

r

r

z

r

q

r

z

r

z

r

z

r

r

r

z

r

q

r

z

r

q

r

z

z

r

q

r

q

q

r

q

q

q

x

q

x

z

r

z

r

z

r

‡

–

‡

q

r

z

r

z

r

r

r

r

r

q

q

q

r

z

x

r

r

z

r

z

r

q

q

x

r

q

r

r

z

r

z

r

x

q

r

z

x

q

q

x

q

r

q

q

q

r

q

q

q

x

r

r

q

r

r

z

r

r

r

‡

Š

‡

x

q

q

x

q

x

x

r

q

x

r

q

q

r

r

z

r

z

r

r

z

r

z

z

r

r

q

r

r

x

q

r

r

z

r

q

r

q

r

q

q

q

x

r

q

r

q

r

r

r

z

x

r

q

x

q

r

x

x

r

–

 

‡

z

r

r

r

r

r

z

r

r

r

r

q

r

q

r

q

r

q

x

r

q

r

q

r

r

r

r

z

r

q

z

x

z

x

x

q

z

x

z

z

x

x

q

r

r

r

r

z

r

q

z

x

r

r

x

q

q

x

x

z

“

”

‡

q

q

r

r

x

z

z

r

r

z

x

q

r

z

x

r

r

r

r

r

z

z

x

q

x

q

q

q

q

r

z

r

z

r

r

r

r

r

r

r

q

q

q

r

q

z

r

r

x

r

q

r

z

r

x

q

z

x

q

q

“



‡

x

r

q

r

q

z

r

r

r

q

q

q

x

r

r

z

r

q

x

z

r

r

r

x

x

r

z

x

r

r

z

x

x

q

r

z

x

z

r

z

x

x

q

q

q

r

x

x

x

r

z

r

r

r

r

x

x

r

z

q

 

–

‡

x

x

r

z

x

q

x

r

z

x

r

r

z

x

x

q

q

x

x

q

r

r

x

x

q

r

r

z

r

r

r

r

r

r

q

x

q

x

r

z

x

q

x

r

q

r

z

r

z

x

q

q

x

r

q

x

r

z

q

q

 

Š

‡

r

x

q

x

r

q

r

z

r

q

x

q

r

r

z

r

z

r

x

q

r

q

r

q

q

q

q

r

q

q

q

r

x

q

x

r

q

r

z

x

z

x

x

q

q

x

z

x

x

r

r

q

x

q

r

q

x

x

z

x

 

‡

r

z

r

r

q

z

z

x

q

x

q

r

q

r

r

r

r

r

z

z

x

r

r

z

r

r

r

r

q

q

x

r

q

q

x

x

r

q

q

r

r

z

x

q

r

q

r

r

r

z

z

x

q

r

q

q

z

z

r

r



”

‡

r

q

q

q

x

r

r

x

r

q

q

z

z

x

x

q

q

x

r

q

q

q

r

z

r

x

q

x

x

x

r

q

z

r

r

x

q

r

q

x

q

r

z

q

q

x

r

z

r

z

r

q

q

q

z

z

r

r

q

z





‡

r

x

q

r

q

x

q

r

r

z

r

r

x

q

r

r

r

z

r

q

q

q

q

x

r

z

x

q

x

q

r

z

z

z

r

z

r

z

r

z

x

q

q

q

x

x

z

r

r

r

r

z

z

z

r

r

q

x

q

x

‰

–

‡

q

r

r

r

q

x

q

q

z

x

q

q

x

r

r

q

r

q

r

q

q

r

q

q

r

q

x

r

q

q

q

x

r

q

x

q

q

r

q

q

r

r

x

q

r

z

r

q

r

q

q

q

q

x

r

q

q

z

z

z

‰

Š

‡

x

z

r

q

q

x

x

z

q

q

q

r

x

z

z

r

r

z

q

q

x

x

z

q

q

q

x

x

z

z

r

r

q

z

r

q

r

q

q

q

q

z

x

q

z

q

x

q

r

r

r

r

q

r

z

x

q

x

x

q

Š

 

‡

q

q

q

z

q

z

q

q

x

r

z

x

q

q

r

z

r

r

r

x

q

z

z

q

x

x

x

q

x

q

z

z

q

z

x

z

q

x

x

x

q

z

q

q

q

z

r

r

q

x

x

q

x

q

z

r

r

q

r

z

œ

”

‡

x

q

x

q

z

q

z

x

r

z

x

q

q

q

x

q

q

x

r

q

r

q

x

q

r

z

q

r

q

r

q

q

r

q

r

r

q

z

q

q

r

z

r

z

r

z

r

q

x

r

z

x

q

q

z

x

q

q

x

q

œ



‡

z

r

r

q

x

r

z

x

z

q

x

z

r

z

q

z

z

r

q

r

q

r

z

q

x

r

r

r

z

x

r

r

r

r

x

z

z

z

q

r

r

r

q

r

z

x

q

r

q

z

r

q

r

q

r

q

z

q

z

q

‡

”

–

‡

r

z

z

z

q

q

r

x

x

q

r

q

r

z

x

r

z

r

q

r

z

r

z

q

r

q

q

q

r

z

r

r

r

q

q

q

z

r

r

r

r

q

r

r

x

r

q

q

q

q

r

r

q

z

r

z

q

z

r

q

‡

”

Š

‡

r

q

z

q

x

q

r

r

q

r

r

z

r

r

q

r

q

z

r

z

r

z

r

q

r

z

z

q

q

x

q

q

x

q

r

r

q

z

q

q

x

q

z

x

q

q

r

q

x

q

q

x

q

q

q

x

x

z

r

r

‡

‡

 

‡

z

r

z

r

z

q

r

r

r

z

r

r

q

q

r

r

q

z

z

r

z

r

q

r

r

q

q

x

r

z

r

x

q

q

q

q

z

x

 

œ



‰

‡

‡

‰

Š

m

y

j

q

~

‡

”

o

¢

ƒ

š

f

š

y

m

m

|

k

q



y

~

v

i

r

n

Ž

j

‡



|

m

q

r

j

~

|

r

j

y



¤



i

s

š



i

r

q

z

j

y

~

y



¡

„

„

¡ ƒ

b

p

d

a

‚

s

š



•

e

b

e

¢



‰

v

k

q

Ž

q

~

•

¢

‰

¢

‰

w

r

Ž

q

y

q

m

 

œ



‰

 

œ



‰

Ž

x

l

Ž

y

p

i

e

h

k

y

‘

‡

œ

d

w



Ž

ž

t

ƒ

w

£

d

o

–

z

‚

j

w

j

¥

y

q

w

r

i

m

r

”

ˆ

¡ h

a

a

d

s

b

e

¡ ž

d

t

•

d

Ÿ

¦

b

‚

t

a

d

b

t

›

h

s

t

d

s



h

š

b

b

d

t

‚

f

f

š

e

t

s

e

d

e



b

f

•

p

ƒ

ˆ

š

a

s

c



v

k

q

w

Ž

q

Ž

y

m

m

|

k

q



y

~

v

i

r

n

Ž

j

‡



v

k

q

w

Ž

q

Ž

y

m

m

|

k

q



y

~

v

i

r

n

Ž

j

‡



i

p

e



y

~

v

i

i

¥

m

m

|

k

ž

y

h

m

d

t

b



t

d



h

d

d

q



t

e

h

ƒ

š

§

c

d

p

–

d

e



b

f

f

š

f

ƒ

a

t

{

q

d

~

v

‚

t

i

£

c

‚

‚

Ž

v

‡

s

i

¢

~

k

r

w

d

p

Ž

q

i

w

z

y

q

w

~

q

r

y

Ž

y

j

†

j

j

x

r

Š

–

“

œ



l

q

i

q

~

|

w

z

y

y

~

j

‡

¥

q

’

i

v

Ž

 

x

˜

q

l

£

c

i

|

–

s

j

ƒ

Ž



ˆ

›

j

q

r

ˆ

y

h

|

¥

m

›

m

l

n

w

j



|

|

k

q

x

r

~

‡

‡

‰



y

¥

h

y

~

v



j

ˆ

y

~

d

v

i

j

w

|



t

e

h

˜



q

Ž

y

j





~

|

m

m

m

|

k

q

i

¥

s

j

z

y

q

~

r



q

j

˜

ˆ

Š

¤

ˆ

¥



i

r



y

x

q



|

m

m

‰

Š

¤

j





|

ˆ

q

n

–

~

Ž

~

j



y

i



a

¥

i

¥

s

j

n

¥

‡



¢

q

i

j

Š

o

‡

ˆ

ž

m

ˆ

|

i

q

w

z

r

“

£

w



x

q

z

j

–

”

‡

’

j

~



|

y



|

§

w

 

r

|

¨

~

ˆ

|

w

q

w



d





q

~

¤

–

j

i

v

r

‡

¥

s

v

ƒ

l

r

ˆ

q

k

y

|

‡

w

i



i

‡

§

y

|

w



t

o

–

”

‡

y

w



q

m

j

¨

ˆ

¡ ¢

b

‚

t

e

h

ƒ

s

v

l

k

y

r

r

j



¥



£

–

o

h

 

¤

ž

y

~

v

i

t

j

j

w

x

j

p

j

Ž

k

j

w

r

¥

¡ d

a



b

d

c

c

d

h

f

e

‚

f

t

d

i

w

z

g

g

s

j

g

g

h

u

h

v

~

x

q

i

i

v

j

i

s

|

m

j

i

w

j

k

w

l

x

j

k

m

y

l

w



‡

n

o

z

m

n

o

ƒ

|

‡

W

X

Y

Z

[

[

\

]

^

_

`

|

p

q

r

f

j

x

p

q

r

q

o

d

q

r

y

|

w

‡

‡

‰

Š

x

ˆ

„

„

a

|

k

ˆ

~

z

|

m

q

‘

m

q

{

o

w

w

y

r

n

s

f

|

m

e

„

i

Ž

h

k

j

…

t

h

f

|

z

n

p

g

g

v

g

Œ

‹

Œ



j

w

v

j

¥

ƒ

|

w

w

e

¦

œ

d

…

¥

‚

ˆ

•

ˆ

g

m

v

z

j

}

q

‹



y

}

†

j

k

q

w

w

|

k

s

q

~

i

Ž

y

w

z

q

x

j

Ž

~

y

p

e

m

h



m

Œ

|

k

q

j



|

y

€

n

~

v

i

i

j

u

v

j

r

n

Ž

j

w

x

y

‡



w

z

Œ



v

l

m

y

x



j

q

{

‡

 

³

´

³

Á

³

½

´

µ

Ñ

¾

Å

º

¸

¹

Ò

Ä

º

º

Ü

Þ

Æ

º

ß



Ì

¾

Ò

Ñ



Ñ



¿

Æ

Ù

È

È

³

Õ

º

×

È

È

³

Õ

º

³

Ñ



Ì

·

Ù

¹

×

º

Ù

Æ

º

Á

Ù

Ù

¹

º

»

¼

Ä

º

Å

»

¼

¸

Ä

¹

Ä

Ó

º

Ñ

¹

´

È

Ö

¼

Ñ



¿

¿

É

×

Ê

¼

É

×

Ê

¼

¹

¸

»

Ù

Ù

Æ

¸

Í

Æ

·



×

³

·

Ã

³

Ø



¾

³

³

Õ

Ì

µ

Â

Ý

»

Ù

¼

Ý

º

»



Æ

Î

¿

¼

¾

¿

Î

µ

´

»

½

¹

´

¾

¿

¸

Ã



Æ

À

¹

»

¼

Î

¼

Ç

¸

Æ

¼

Ï

Æ

´

¹

º

Á



Æ

¾

Á

¸

¹

º

Æ

¹

¸

Ä

¹

´

»

Æ

Ï

µ

È

È

Ð

È

É

Ê

Ë

¼

Õ

Á



Ë

×

¼

Ñ



¼

Ô

»

´

¼

·



Ö

Æ

Æ

Ë

Õ

½

¼

Æ

¹

Ä



·

Ä

º

Õ

´



Æ

Ú

Û

Ü

Ð

¼

¿

Ù

©

ª

«

¬

¬

­

®

¯

°

±

²

à

á

â

ã

ä

ä

å

æ

ç

è

é

References Abreu, A.L., Souza, R.P., Gimenes, F., and Consolaro, M.E. (2012). A review of methods for detect human Papillomavirus infection. Virol J 9, 262. Agoff, S.N., Lin, P., Morihara, J., Mao, C., Kiviat, N.B., and Koutsky, L.A. (2003). p16(INK4a) expression correlates with degree of cervical neoplasia: a comparison with Ki-67 expression and detection of high-risk HPV types. Mod Pathol 16, 665-673. Akers, A.Y., Newmann, S.J., and Smith, J.S. (2007). Factors underlying disparities in cervical cancer incidence, screening, and treatment in the United States. Curr Probl Cancer 31, 157-181. Albrow, R., Kitchener, H., Gupta, N., and Desai, M. (2012). Cervical screening in England: the past, present, and future. Cancer Cytopathol 120, 87-96. Alexander, E.R. (1973). Possible etiologies of cancer of the cervix other than herpesvirus. Cancer Res 33, 1485-1490. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410. Andersson, E., Karrberg, C., Radberg, T., Blomqvist, L., Zetterqvist, B.M., Ryd, W., Lindh, M., and Horal, P. (2011). Type-specific human papillomavirus E6/E7 mRNA detection by real-time PCR improves identification of cervical neoplasia. J Clin Microbiol 49, 3794-3799. Apgar, B.S., Zoschnick, L., and Wright, T.C., Jr. (2003). The 2001 Bethesda System terminology. Am Fam Physician 68, 1992-1998. Apostolidou, S., Hadwin, R., Burnell, M., Jones, A., Baff, D., Pyndiah, N., Mould, T., Jacobs, I.J., Beddows, S., Kocjan, G., et al. (2009). DNA methylation analysis in liquid-based cytology for cervical cancer screening. Int J Cancer 125, 2995-3002. Arbyn, M., de Sanjose, S., Saraiya, M., Sideri, M., Palefsky, J., Lacey, C., Gillison, M., Bruni, L., Ronco, G., Wentzensen, N., et al. (2012). EUROGIN 2011 roadmap on prevention and treatment of HPV-related disease. Int J Cancer 131, 1969-1982. Arias-Pulido, H., Peyton, C.L., Joste, N.E., Vargas, H., and Wheeler, C.M. (2006). Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol 44, 1755-1762. Arroyo, S.L., Basaras, M., Arrese, E., Hernaez, S., Andia, D., Esteban, V., Garcia-Etxebarria, K., Jugo, B.M., and Cisterna, R. (2012). Human papillomavirus (HPV) genotype 18 variants in patients with clinical manifestations of HPV related infections in Bilbao, Spain. Virol J 9, 258. Asadurian, Y., Kurilin, H., Lichtig, H., Jackman, A., Gonen, P., Tommasino, M., Zehbe, I., and Sherman, L. (2007). Activities of human papillomavirus 16 E6 natural variants in human keratinocytes. J Med Virol 79, 1751-1760. Badal, S., Badal, V., Calleja-Macias, I.E., Kalantari, M., Chuang, L.S., Li, B.F., and Bernard, H.U. (2004). The human papillomavirus-18 genome is efficiently targeted by cellular DNA methylation. Virology 324, 483492. Badal, V., Chuang, L.S., Tan, E.H., Badal, S., Villa, L.L., Wheeler, C.M., Li, B.F., and Bernard, H.U. (2003). CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77, 6227-6234. Balderas-Loaeza, A., Anaya-Saavedra, G., Ramirez-Amador, V.A., Guido-Jimenez, M.C., Kalantari, M., Calleja-Macias, I.E., Bernard, H.U., and Garcia-Carranca, A. (2007). Human papillomavirus-16 DNA methylation patterns support a causal association of the virus with oral squamous cell carcinomas. Int J Cancer 120, 2165-2169. Bang, J.Y., Yadegarfar, G., Soljak, M., and Majeed, A. (2012). Primary care factors associated with cervical screening coverage in England. J Public Health (Oxf) 34, 532-538. ê

ë

ì

í

î

í

ï

í

ð

ñ

í

ò

ó

Barrett, T.J., Silbar, J.D., and Mc, G.J. (1954). Genital warts-a venereal disease. J Am Med Assoc 154, 333334. Basu, P., Chandna, P., Bamezai, R.N., Siddiqi, M., Saranath, D., Lear, A., and Ratnam, S. (2011). MassARRAY spectrometry is more sensitive than PreTect HPV-Proofer and consensus PCR for type-specific detection of high-risk oncogenic human papillomavirus genotypes in cervical cancer. J Clin Microbiol 49, 3537-3544. Bavin, P.J., Giles, J.A., Deery, A., Crow, J., Griffiths, P.D., Emery, V.C., and Walker, P.G. (1993). Use of semiquantitative PCR for human papillomavirus DNA type 16 to identify women with high grade cervical disease in a population presenting with a mildly dyskaryotic smear report. Br J Cancer 67, 602-605. Bechtold, V., Beard, P., and Raj, K. (2003). Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol 77, 2021-2028. Bencomo-Alvarez, A.E., Limones-Perches, I., Suarez-Rincon, A.E., Ramirez-Jirano, L.J., Borrayo-Carbajal, E., Sanchez-Corona, J., and Montoya-Fuentes, H. (2012). Human papillomavirus viral load in cervical intraepithelial neoplasia as a prognostic factor in a Mexican population. Genet Mol Res 11, 4720-4727. Benevolo, M., Vocaturo, A., Caraceni, D., French, D., Rosini, S., Zappacosta, R., Terrenato, I., Ciccocioppo, L., Frega, A., and Giorgi Rossi, P. (2011). Sensitivity, specificity, and clinical value of human papillomavirus (HPV) E6/E7 mRNA assay as a triage test for cervical cytology and HPV DNA test. J Clin Microbiol 49, 26432650. Bennett, M.D., Reiss, A., Stevens, H., Heylen, E., Van Ranst, M., Wayne, A., Slaven, M., Mills, J.N., Warren, K.S., O’Hara, A.J., et al. (2010). The first complete papillomavirus genome characterized from a marsupial host: a novel isolate from Bettongia penicillata. J Virol 84, 5448-5453. Bernard, H.U. (2000). Regulation of the transcription of the genital human papillomaviruses by CDP, nucleosomes and nuclear matrix attachment regions. Papillomavirus Report 11, 73-80. Bernard, H.U. (2005). The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. J Clin Virol 32 Suppl 1, S1-6. Bernard, H.U., Burk, R.D., Chen, Z., van Doorslaer, K., Hausen, H., and de Villiers, E.M. (2010). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401, 70-79. Bernard, H.U., Calleja-Macias, I.E., and Dunn, S.T. (2006). Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer 118, 1071-1076. Bloom, M.E., Mayer, L.W., and Garon, C.F. (1983). Characterization of the Aleutian disease virus genome and its intracellular forms. J Virol 45, 977-984. Bodaghi, S., Wood, L.V., Roby, G., Ryder, C., Steinberg, S.M., and Zheng, Z.M. (2005). Could human papillomaviruses be spread through blood? J Clin Microbiol 43, 5428-5434. Bodily, J., and Laimins, L.A. (2011). Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol 19, 33-39. Bonanni, P., Levi, M., Latham, N.B., Bechini, A., Tiscione, E., Lai, P., Panatto, D., Gasparini, R., and Boccalini, S. (2011). An overview on the implementation of HPV vaccination in Europe. Hum Vaccin 7 Suppl, 128-135. Bosch, F.X. (2011). Human papillomavirus: science and technologies for the elimination of cervical cancer. Expert Opin Pharmacother 12, 2189-2204. Bosch, F.X., Lorincz, A., Munoz, N., Meijer, C.J., and Shah, K.V. (2002). The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55, 244-265. Bosch, F.X., Manos, M.M., Munoz, N., Sherman, M., Jansen, A.M., Peto, J., Schiffman, M.H., Moreno, V., Kurman, R., and Shah, K.V. (1995). Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 87, 796-802. Boshart, M., Gissmann, L., Ikenberg, H., Kleinheinz, A., Scheurlen, W., and zur Hausen, H. (1984). A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical ô

õ

ö

÷

ø

ù

ø

ú

ø

û

ü

ø

ý

cancer. EMBO J 3, 1151-1157. Boulet, G.A., Benoy, I.H., Depuydt, C.E., Horvath, C.A., Aerts, M., Hens, N., Vereecken, A.J., and Bogers, J.J. (2009). Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: biomarkers for cervical intraepithelial neoplasia >or=2 in a liquid-based cytology setting? Cancer Epidemiol Biomarkers Prev 18, 2992-2999. Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., et al. (2009). A review of human carcinogens--Part B: biological agents. Lancet Oncol 10, 321-322. Brandsma, J.L., Sun, Y., Lizardi, P.M., Tuck, D.P., Zelterman, D., Haines, G.K., 3rd, Martel, M., Harigopal, M., Schofield, K., and Neapolitano, M. (2009). Distinct human papillomavirus type 16 methylomes in cervical cells at different stages of premalignancy. Virology 389, 100-107. Brenner, C., and Fuks, F. (2006). DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 301, 45-66. Briolat, J., Dalstein, V., Saunier, M., Joseph, K., Caudroy, S., Pretet, J.L., Birembaut, P., and Clavel, C. (2007). HPV prevalence, viral load and physical state of HPV-16 in cervical smears of patients with different grades of CIN. Int J Cancer 121, 2198-2204. Broccolo, F., Fusetti, L., Rosini, S., Caraceni, D., Zappacosta, R., Ciccocioppo, L., Matteoli, B., Halfon, P., Malnati, M.S., and Ceccherini-Nelli, L. (2013). Comparison of oncogenic HPV type-specific viral DNA load and E6/E7 mRNA detection in cervical samples: results from a multicenter study. J Med Virol 85, 472-482. Brown, A.J., and Trimble, C.L. (2012). New technologies for cervical cancer screening. Best Pract Res Clin Obstet Gynaecol 26, 233-242. Brown, D.R., Bryan, J.T., Cramer, H., and Fife, K.H. (1993). Analysis of human papillomavirus types in exophytic condylomata acuminata by hybrid capture and Southern blot techniques. J Clin Microbiol 31, 2667-2673. Brown, D.R., Schroeder, J.M., Bryan, J.T., Stoler, M.H., and Fife, K.H. (1999). Detection of multiple human papillomavirus types in Condylomata acuminata lesions from otherwise healthy and immunosuppressed patients. J Clin Microbiol 37, 3316-3322. Brown, D.R., Shew, M.L., Qadadri, B., Neptune, N., Vargas, M., Tu, W., Juliar, B.E., Breen, T.E., and Fortenberry, J.D. (2005). A longitudinal study of genital human papillomavirus infection in a cohort of closely followed adolescent women. J Infect Dis 191, 182-192. Bruni, L., Diaz, M., Castellsague, X., Ferrer, E., Bosch, F.X., and de Sanjose, S. (2010). Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis 202, 1789-1799. Bryder, L. (2008). Debates about cervical screening: an historical overview. J Epidemiol Community Health 62, 284-287. Buck, C.B., Cheng, N., Thompson, C.D., Lowy, D.R., Steven, A.C., Schiller, J.T., and Trus, B.L. (2008). Arrangement of L2 within the papillomavirus capsid. J Virol 82, 5190-5197. Buh Gasparic, M., Cankar, K., Zel, J., and Gruden, K. (2008). Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol 8, 26. Bulkmans, N.W., Rozendaal, L., Snijders, P.J., Voorhorst, F.J., Boeke, A.J., Zandwijken, G.R., van Kemenade, F.J., Verheijen, R.H., v Groningen, K., Boon, M.E., et al. (2004). POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 44,102 women. Int J Cancer 110, 94-101. Burger, E.A., Kornor, H., Klemp, M., Lauvrak, V., and Kristiansen, I.S. (2011). HPV mRNA tests for the detection of cervical intraepithelial neoplasia: a systematic review. Gynecol Oncol 120, 430-438. Burk, R.D., Chen, Z., and Van Doorslaer, K. (2009). Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics 12, 281-290.

þ

ÿ





















Burk, R.D., Terai, M., Gravitt, P.E., Brinton, L.A., Kurman, R.J., Barnes, W.A., Greenberg, M.D., Hadjimichael, O.C., Fu, L., McGowan, L., et al. (2003). Distribution of human papillomavirus types 16 and 18 variants in squamous cell carcinomas and adenocarcinomas of the cervix. Cancer Res 63, 7215-7220. Burland, T.G. (2000). DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132, 71-91. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, 611-622. Campo, M.S. (2002). Animal models of papillomavirus pathogenesis. Virus Res 89, 249-261. Canadas, M.P., Darwich, L., Sirera, G., Cirigliano, V., Bofill, M., Clotet, B., and Videla, S. (2009). New molecular method for the detection of human papillomavirus type 16 integration. Clin Microbiol Infect. Cao, Y., Zhao, J., Lei, Z., Shen, S., Liu, C., Li, D., Liu, J., Shen, G.X., Zhang, G.M., Feng, Z.H., et al. (2008). Local accumulation of FOXP3+ regulatory T cells: evidence for an immune evasion mechanism in patients with large condylomata acuminata. J Immunol 180, 7681-7686. Carcopino, X., Bolger, N., Henry, M., Mancini, J., Boubli, L., Olive, D., Cleary, S., Prendiville, W., and Tamalet, C. (2011). Evaluation of type-specific HPV persistence and high-risk HPV viral load quantitation in HPV positive women under 30 with normal cervical cytology. J Med Virol 83, 637-643. Cardoso, J.C., and Calonje, E. (2011). Cutaneous manifestations of human papillomaviruses: a review. Acta Dermatovenerol Alp Panonica Adriat 20, 145-154. Carter, J.J., Koutsky, L.A., Hughes, J.P., Lee, S.K., Kuypers, J., Kiviat, N., and Galloway, D.A. (2000). Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis 181, 1911-1919. Cason, J., Kaye, J.N., Jewers, R.J., Kambo, P.K., Bible, J.M., Kell, B., Shergill, B., Pakarian, F., Raju, K.S., and Best, J.M. (1995). Perinatal infection and persistence of human papillomavirus types 16 and 18 in infants. J Med Virol 47, 209-218. Castle, P.E., Dockter, J., Giachetti, C., Garcia, F.A., McCormick, M.K., Mitchell, A.L., Holladay, E.B., and Kolk, D.P. (2007). A cross-sectional study of a prototype carcinogenic human papillomavirus E6/E7 messenger RNA assay for detection of cervical precancer and cancer. Clin Cancer Res 13, 2599-2605. Cattani, P., Zannoni, G.F., Ricci, C., D’Onghia, S., Trivellizzi, I.N., Di Franco, A., Vellone, V.G., Durante, M., Fadda, G., Scambia, G., et al. (2009). Clinical performance of human papillomavirus E6 and E7 mRNA testing for high-grade lesions of the cervix. J Clin Microbiol 47, 3895-3901. Cavuslu, S., Mant, C., Starkey, W.G., Bible, J.M., Biswas, C., Kell, B., Rice, P., Best, J.M., and Cason, J. (1996). Analytic sensitivities of hybrid-capture, consensus and type-specific polymerase chain reactions for the detection of human papillomavirus type 16 DNA. J Med Virol 49, 319-324. Chan, P.K., Picconi, M.A., Cheung, T.H., Giovannelli, L., and Park, J.S. (2012). Laboratory and clinical aspects of human papillomavirus testing. Crit Rev Clin Lab Sci 49, 117-136. Chang, J.L., Tsao, Y.P., Liu, D.W., Huang, S.J., Lee, W.H., and Chen, S.L. (2001). The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J Biomed Sci 8, 206-213. Chen, C.M., Shyu, M.P., Au, L.C., Chu, H.W., Cheng, W.T., and Choo, K.B. (1994). Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. J Med Virol 44, 206-211. Chen, H.C., Schiffman, M., Lin, C.Y., Pan, M.H., You, S.L., Chuang, L.C., Hsieh, C.Y., Liaw, K.L., Hsing, A.W., and Chen, C.J. (2011). Persistence of type-specific human papillomavirus infection and increased long-term risk of cervical cancer. J Natl Cancer Inst 103, 1387-1396. Chen, Z., DeSalle, R., Schiffman, M., Herrero, R., and Burk, R.D. (2009). Evolutionary dynamics of variant genomes of human papillomavirus types 18, 45, and 97. J Virol 83, 1443-1455. Chernesky, M.A., and Jang, D.E. (2006). APTIMA transcription-mediated amplification assays for Chlamydia trachomatis and Neisseria gonorrhoeae. Expert Rev Mol Diagn 6, 519-525.

























Cheung, J.L., Cheung, T.H., Ng, C.W., Yu, M.Y., Wong, M.C., Siu, S.S., Yim, S.F., and Chan, P.K. (2009). Analysis of human papillomavirus type 18 load and integration status from low-grade cervical lesion to invasive cervical cancer. J Clin Microbiol 47, 287-293. Cheung, J.L., Lo, K.W., Cheung, T.H., Tang, J.W., and Chan, P.K. (2006). Viral load, E2 gene disruption status, and lineage of human papillomavirus type 16 infection in cervical neoplasia. J Infect Dis 194, 17061712. Ching, R.W., Dellaire, G., Eskiw, C.H., and Bazett-Jones, D.P. (2005). PML bodies: a meeting place for genomic loci? J Cell Sci 118, 847-854. Choo, K.B., Pan, C.C., and Han, S.H. (1987). Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology 161, 259-261. Chopjitt, P., Ekalaksananan, T., Pientong, C., Kongyingyoes, B., Kleebkaow, P., and Charoensri, N. (2009). Prevalence of human papillomavirus type 16 and its variants in abnormal squamous cervical cells in Northeast Thailand. Int J Infect Dis 13, 212-219. Chow, L.T., and Broker, T.R. (1994). Papillomavirus DNA replication. Intervirology 37, 150-158. Christensen, N.D., Kirnbauer, R., Schiller, J.T., Ghim, S.J., Schlegel, R., Jenson, A.B., and Kreider, J.W. (1994). Human papillomavirus types 6 and 11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes. Virology 205, 329-335. Ciuffo, G. (1907). Innesto positivo con filtrato di verruca volgare. Giorn Ital Mal Ven Pelle 48, 12-17. Clarke, M.A., Wentzensen, N., Mirabello, L., Ghosh, A., Wacholder, S., Harari, A., Lorincz, A., Schiffman, M., and Burk, R.D. (2012). Human papillomavirus DNA methylation as a potential biomarker for cervical cancer. Cancer Epidemiol Biomarkers Prev 21, 2125-2137. Clifford, G.M., Gallus, S., Herrero, R., Munoz, N., Snijders, P.J., Vaccarella, S., Anh, P.T., Ferreccio, C., Hieu, N.T., Matos, E., et al. (2005). Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 366, 991-998. Clifford, G.M., Smith, J.S., Plummer, M., Munoz, N., and Franceschi, S. (2003). Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88, 63-73. Collins, S.I., Constandinou-Williams, C., Wen, K., Young, L.S., Roberts, S., Murray, P.G., and Woodman, C.B. (2009). Disruption of the E2 gene is a common and early event in the natural history of cervical human papillomavirus infection: a longitudinal cohort study. Cancer Res 69, 3828-3832. Constandinou-Williams, C., Collins, S.I., Roberts, S., Young, L.S., Woodman, C.B., and Murray, P.G. (2010). Is human papillomavirus viral load a clinically useful predictive marker? A longitudinal study. Cancer Epidemiol Biomarkers Prev 19, 832-837. Cooper, K., Evans, M., and Mount, S. (2003). Biology and evolution of cervical squamous intraepithelial lesions: a hypothesis with diagnostic prognostic implications. Adv Anat Pathol 10, 200-203. Corden, S.A., Sant-Cassia, L.J., Easton, A.J., and Morris, A.G. (1999). The integration of HPV-18 DNA in cervical carcinoma. Mol Pathol 52, 275-282. Cornet, I., Gheit, T., Clifford, G.M., Combes, J.D., Dalstein, V., Franceschi, S., Tommasino, M., and Clavel, C. (2013a). Human papillomavirus type 16 E6 variants in France and risk of viral persistence. Infect Agent Cancer 8, 4. Cornet, I., Gheit, T., Franceschi, S., Vignat, J., Burk, R.D., Sylla, B.S., Tommasino, M., and Clifford, G.M. (2012). Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol 86, 6855-6861. Cornet, I., Gheit, T., Iannacone, M.R., Vignat, J., Sylla, B.S., Del Mistro, A., Franceschi, S., Tommasino, M., and Clifford, G.M. (2013b). HPV16 genetic variation and the development of cervical cancer worldwide. Br J Cancer 108, 240-244. Cox, J.T. (1995). Epidemiology of cervical intraepithelial neoplasia: the role of human papillomavirus. Bail

























lieres Clin Obstet Gynaecol 9, 1-37. Cox, J.T. (2009). History of the use of HPV testing in cervical screening and in the management of abnormal cervical screening results. J Clin Virol 45 Suppl 1, S3-S12. Cricca, M., Morselli-Labate, A.M., Venturoli, S., Ambretti, S., Gentilomi, G.A., Gallinella, G., Costa, S., Musiani, M., and Zerbini, M. (2007). Viral DNA load, physical status and E2/E6 ratio as markers to grade HPV16 positive women for high-grade cervical lesions. Gynecol Oncol 106, 549-557. Cricca, M., Venturoli, S., Leo, E., Costa, S., Musiani, M., and Zerbini, M. (2009). Molecular analysis of HPV 16 E6I/E6II spliced mRNAs and correlation with the viral physical state and the grade of the cervical lesion. J Med Virol 81, 1276-1282. Cronje, H.S. (2011). Cervical screening strategies in resourced and resource-constrained countries. Best Pract Res Clin Obstet Gynaecol 25, 575-584. Crosbie, E.J., Einstein, M.H., Franceschi, S., and Kitchener, H.C. (2013). Human papillomavirus and cervical cancer. Lancet. Crum, C.P., Ikenberg, H., Richart, R.M., and Gissman, L. (1984). Human papillomavirus type 16 and early cervical neoplasia. N Engl J Med 310, 880-883. Cuzick, J., Arbyn, M., Sankaranarayanan, R., Tsu, V., Ronco, G., Mayrand, M.H., Dillner, J., and Meijer, C.J. (2008). Overview of human papillomavirus-based and other novel options for cervical cancer screening in developed and developing countries. Vaccine 26 Suppl 10, K29-41. Cuzick, J., Cadman, L., Mesher, D., Austin, J., Ashdown-Barr, L., Ho, L., Terry, G., Liddle, S., Wright, C., Lyons, D., et al. (2013). Comparing the performance of six human papillomavirus tests in a screening population. Br J Cancer 108, 908-913. Cuzick, J., Castanon, A., and Sasieni, P. (2010). Predicted impact of vaccination against human papillomavirus 16/18 on cancer incidence and cervical abnormalities in women aged 20-29 in the UK. Br J Cancer 102, 933-939. Dall, K.L., Scarpini, C.G., Roberts, I., Winder, D.M., Stanley, M.A., Muralidhar, B., Herdman, M.T., Pett, M.R., and Coleman, N. (2008). Characterization of naturally occurring HPV16 integration sites isolated from cervical keratinocytes under noncompetitive conditions. Cancer Res 68, 8249-8259. Dalstein, V., Riethmuller, D., Pretet, J.L., Le Bail Carval, K., Sautiere, J.L., Carbillet, J.P., Kantelip, B., Schaal, J.P., and Mougin, C. (2003). Persistence and load of high-risk HPV are predictors for development of highgrade cervical lesions: a longitudinal French cohort study. Int J Cancer 106, 396-403. Danos, O., Katinka, M., and Yaniv, M. (1982). Human papillomavirus 1a complete DNA sequence: a novel type of genome organization among papovaviridae. EMBO J 1, 231-236. Das, B.C., Sharma, J.K., Gopalakrishna, V., and Luthra, U.K. (1992). Analysis by polymerase chain reaction of the physical state of human papillomavirus type 16 DNA in cervical preneoplastic and neoplastic lesions. J Gen Virol 73 ( Pt 9), 2327-2336. Das, D., Bhattacharjee, B., Sen, S., Mukhopadhyay, I., and Sengupta, S. (2010). Association of viral load with HPV16 positive cervical cancer pathogenesis: causal relevance in isolates harboring intact viral E2 gene. Virology 402, 197-202. Das Ghosh, D., Bhattacharjee, B., Sen, S., Premi, L., Mukhopadhyay, I., Chowdhury, R.R., Roy, S., and Sengupta, S. (2012). Some novel insights on HPV16 related cervical cancer pathogenesis based on analyses of LCR methylation, viral load, E7 and E2/E4 expressions. PLoS One 7, e44678. Day, P.M., Kines, R.C., Thompson, C.D., Jagu, S., Roden, R.B., Lowy, D.R., and Schiller, J.T. (2010). In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 8, 260-270. de Gruijl, T.D., Bontkes, H.J., Stukart, M.J., Walboomers, J.M., Remmink, A.J., Verheijen, R.H., Helmerhorst, T.J., Meijer, C.J., and Scheper, R.J. (1996). T cell proliferative responses against human papillomavirus type 16 E7 oncoprotein are most prominent in cervical intraepithelial neoplasia patients with a persistent viral infection. J Gen Virol 77 ( Pt 9), 2183-2191. de Jong, A., van der Burg, S.H., Kwappenberg, K.M., van der Hulst, J.M., Franken, K.L., Geluk, A., van 







!

"

#

$

%

Meijgaarden, K.E., Drijfhout, J.W., Kenter, G., Vermeij, P., et al. (2002). Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res 62, 472-479. de Jong, A., van Poelgeest, M.I., van der Hulst, J.M., Drijfhout, J.W., Fleuren, G.J., Melief, C.J., Kenter, G., Offringa, R., and van der Burg, S.H. (2004). Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64, 5449-5455. De Marco, L., Gillio-Tos, A., Bonello, L., Ghisetti, V., Ronco, G., and Merletti, F. (2007). Detection of human papillomavirus type 16 integration in pre-neoplastic cervical lesions and confirmation by DIPS-PCR and sequencing. J Clin Virol 38, 7-13. de Roda Husman, A.M., Walboomers, J.M., van den Brule, A.J., Meijer, C.J., and Snijders, P.J. (1995). The use of general primers GP5 and GP6 elongated at their 3’ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76 ( Pt 4), 1057-1062. de Sanjose, S., Diaz, M., Castellsague, X., Clifford, G., Bruni, L., Munoz, N., and Bosch, F.X. (2007). Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis 7, 453-459. de Sanjose, S., Quint, W.G., Alemany, L., Geraets, D.T., Klaustermeier, J.E., Lloveras, B., Tous, S., Felix, A., Bravo, L.E., Shin, H.R., et al. (2010). Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 11, 1048-1056. de Villiers, E.M. (1992). Laboratory techniques in the investigation of human papillomavirus infection. Genitourin Med 68, 50-54. de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., and zur Hausen, H. (2004). Classification of papillomaviruses. Virology 324, 17-27. Dehn, D., Torkko, K.C., and Shroyer, K.R. (2007). Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma. Cancer 111, 1-14. del Mar Pena, L.M., and Laimins, L.A. (2001). Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J Virol 75, 10005-10013. Delap, R.D., Friedman-klen, A., and Rush, M.G. (1976). The absence of human papilloma viral DNA sequences in condylomata acuminata. Virology 74, 268-272. Dennis, E.J., Heins, H.C., Latham, E., McIver, F.A., and Pratt-Thomas, H.R. (1956). The carcinogenic effect of human smegma: an experimental study. I. Preliminary report. Cancer 9, 671-680. Denton, K.J., Herbert, A., Turnbull, L.S., Waddell, C., Desai, M.S., Rana, D.N., Dudding, N., and Smith, J.H. (2008). The revised BSCC terminology for abnormal cervical cytology. Cytopathology 19, 137-157. Depuydt, C.E., Criel, A.M., Benoy, I.H., Arbyn, M., Vereecken, A.J., and Bogers, J.J. (2012). Changes in typespecific human papillomavirus load predict progression to cervical cancer. J Cell Mol Med 16, 3096-3104. Dillner, J., Rebolj, M., Birembaut, P., Petry, K.U., Szarewski, A., Munk, C., de Sanjose, S., Naucler, P., Lloveras, B., Kjaer, S., et al. (2008). Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: joint European cohort study. BMJ 337, a1754. Ding, D.C., Chiang, M.H., Lai, H.C., Hsiung, C.A., Hsieh, C.Y., and Chu, T.Y. (2009). Methylation of the long control region of HPV16 is related to the severity of cervical neoplasia. Eur J Obstet Gynecol Reprod Biol 147, 215-220. Doerfler, W., Orend, G., Schubbert, R., Fechteler, K., Heller, H., Wilgenbus, P., and Schroer, J. (1995). On the insertion of foreign DNA into mammalian genomes: mechanism and consequences. Gene 157, 241245. Donaldson, Y.K., Arends, M.J., Duvall, E., and Bird, C.C. (1993). A PCR approach to discriminate between integrated and episomal HPV DNA in small clinical specimens. Mol Cell Probes 7, 285-292. Dong, X.P., Stubenrauch, F., Beyer-Finkler, E., and Pfister, H. (1994). Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer 58, 803-808. Doorbar, J. (2007). Papillomavirus life cycle organization and biomarker selection. Dis Markers 23, 297-313. &

'

(

)

*

)

+

)

,

-

)

.

/

Doorbar, J., Quint, W., Banks, L., Bravo, I.G., Stoler, M., Broker, T.R., and Stanley, M.A. (2012). The biology and life-cycle of human papillomaviruses. Vaccine 30 Suppl 5, F55-70. Downs, L.S., Smith, J.S., Scarinci, I., Flowers, L., and Parham, G. (2008). The disparity of cervical cancer in diverse populations. Gynecol Oncol 109, S22-30. Duensing, S., and Munger, K. (2002). The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62, 7075-7082. Dunbar, S.A. (2006). Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363, 71-82. Dupont, C., Armant, D.R., and Brenner, C.A. (2009). Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27, 351-357. Durst, M., Gissmann, L., Ikenberg, H., and zur Hausen, H. (1983). A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 80, 3812-3815. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797. Einstein, M.H., Baron, M., Levin, M.J., Chatterjee, A., Fox, B., Scholar, S., Rosen, J., Chakhtoura, N., Lebacq, M., van der Most, R., et al. (2011). Comparison of the immunogenicity of the human papillomavirus (HPV)16/18 vaccine and the HPV-6/11/16/18 vaccine for oncogenic non-vaccine types HPV-31 and HPV-45 in healthy women aged 18-45 years. Hum Vaccin 7, 1359-1373. Evans, D.M., Hudson, E.A., Brown, C.L., Boddington, M.M., Hughes, H.E., Mackenzie, E.F., and Marshall, T. (1986). Terminology in gynaecological cytopathology: report of the Working Party of the British Society for Clinical Cytology. J Clin Pathol 39, 933-944. Faggiano, F., Partanen, T., Kogevinas, M., and Boffetta, P. (1997). Socioeconomic differences in cancer incidence and mortality. IARC Sci Publ 138, 65-176. Fahey, M.T., Irwig, L., and Macaskill, P. (1995). Meta-analysis of Pap test accuracy. Am J Epidemiol 141, 680-689. Fauquet, C.M., and Mayo, M.A. (2001). The 7th ICTV report. Arch Virol 146, 189-194. Ferenczi, A., Gyongyosi, E., Szalmas, A., Hernadi, Z., Toth, Z., Konya, J., and Veress, G. (2013). Sequence variation of human papillomavirus Type 31 long control region: Phylogenetic and functional implications. J Med Virol 85, 852-859. Fernandez, A.F., Rosales, C., Lopez-Nieva, P., Grana, O., Ballestar, E., Ropero, S., Espada, J., Melo, S.A., Lujambio, A., Fraga, M.F., et al. (2009). The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res 19, 438-451. Fiander, A.N., Hart, K.W., Hibbitts, S.J., Rieck, G.C., Tristram, A.J., Beukenholdt, R.W., and Powell, N.G. (2007). Variation in human papillomavirus type-16 viral load within different histological grades of cervical neoplasia. J Med Virol 79, 1366-1369. Flores-Munguia, R., Siegel, E., Klimecki, W.T., and Giuliano, A.R. (2004). Performance assessment of eight high-throughput PCR assays for viral load quantitation of oncogenic HPV types. J Mol Diagn 6, 115-124. Florin, L., Sapp, C., Streeck, R.E., and Sapp, M. (2002). Assembly and translocation of papillomavirus capsid proteins. J Virol 76, 10009-10014. Florkowski, C.M. (2008). Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev 29 Suppl 1, S83-87. Flusberg, B.A., Webster, D.R., Lee, J.H., Travers, K.J., Olivares, E.C., Clark, T.A., Korlach, J., and Turner, S.W. (2010). Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7, 461-465. Forcier, M., and Musacchio, N. (2010). An overview of human papillomavirus infection for the dermatologist: disease, diagnosis, management, and prevention. Dermatol Ther 23, 458-476. 0

1

2

3

4

5

4

6

4

7

8

4

9

Franco, E.L., Villa, L.L., Sobrinho, J.P., Prado, J.M., Rousseau, M.C., Desy, M., and Rohan, T.E. (1999). Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J Infect Dis 180, 1415-1423. Fraser, C., Tomassini, J.E., Xi, L., Golm, G., Watson, M., Giuliano, A.R., Barr, E., and Ault, K.A. (2007). Modeling the long-term antibody response of a human papillomavirus (HPV) virus-like particle (VLP) type 16 prophylactic vaccine. Vaccine 25, 4324-4333. Frazer, I.H. (2010). Measuring serum antibody to human papillomavirus following infection or vaccination. Gynecol Oncol 118, S8-11. Fu, Y.S., Huang, I., Beaudenon, S., Ionesco, M., Barrasso, R., de Brux, J., and Orth, G. (1988). Correlative study of human papillomavirus DNA, histopathology and morphometry in cervical condyloma and intraepithelial neoplasia. Int J Gynecol Pathol 7, 297-307. Fu, Y.S., Reagan, J.W., and Richart, R.M. (1981). Definition of precursors. Gynecol Oncol 12, S220-231. Furtado, Y.L., Almeida, G., Lattario, F., Silva, K.S., Maldonado, P., Silveira, F.A., do Val, I.C., Fonseca, R., and da Gloria Carvalho, M. (2010). The Presence of Methylation of the p16INK4A Gene and Human Papillomavirus in High-grade Cervical Squamous Intraepithelial Lesions. Diagn Mol Pathol 19, 15-19. Gallo, G., Bibbo, M., Bagella, L., Zamparelli, A., Sanseverino, F., Giovagnoli, M.R., Vecchione, A., and Giordano, A. (2003). Study of viral integration of HPV-16 in young patients with LSIL. J Clin Pathol 56, 532-536. Gammoh, N., Isaacson, E., Tomaic, V., Jackson, D.J., Doorbar, J., and Banks, L. (2009). Inhibition of HPV-16 E7 oncogenic activity by HPV-16 E2. Oncogene 28, 2299-2304. Geimanen, J., Isok-Paas, H., Pipitch, R., Salk, K., Laos, T., Orav, M., Reinson, T., Ustav, M., Jr., Ustav, M., and Ustav, E. (2011). Development of a cellular assay system to study the genome replication of high- and low-risk mucosal and cutaneous human papillomaviruses. J Virol 85, 3315-3329. Gersch, E.D., Gissmann, L., and Garcea, R.L. (2012). New approaches to prophylactic human papillomavirus vaccines for cervical cancer prevention. Antivir Ther 17, 425-434. Gheit, T., Cornet, I., Clifford, G.M., Iftner, T., Munk, C., Tommasino, M., and Kjaer, S.K. (2011). Risks for persistence and progression by human papillomavirus type 16 variant lineages among a population-based sample of Danish women. Cancer Epidemiol Biomarkers Prev 20, 1315-1321. Ghim, S., Newsome, J., Bell, J., Sundberg, J.P., Schlegel, R., and Jenson, A.B. (2000). Spontaneously regressing oral papillomas induce systemic antibodies that neutralize canine oral papillomavirus. Exp Mol Pathol 68, 147-151. Giannini, S.L., Hanon, E., Moris, P., Van Mechelen, M., Morel, S., Dessy, F., Fourneau, M.A., Colau, B., Suzich, J., Losonksy, G., et al. (2006). Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24, 5937-5949. Giannoudis, A., and Herrington, C.S. (2001). Human papillomavirus variants and squamous neoplasia of the cervix. J Pathol 193, 295-302. Gillespie, K.A., Mehta, K.P., Laimins, L.A., and Moody, C.A. (2012). Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol 86, 9520-9526. Giroglou, T., Sapp, M., Lane, C., Fligge, C., Christensen, N.D., Streeck, R.E., and Rose, R.C. (2001). Immunological analyses of human papillomavirus capsids. Vaccine 19, 1783-1793. Gissmann, L., Boshart, M., Durst, M., Ikenberg, H., Wagner, D., and zur Hausen, H. (1984). Presence of human papillomavirus in genital tumors. J Invest Dermatol 83, 26s-28s. Gissmann, L., Wolnik, L., Ikenberg, H., Koldovsky, U., Schnurch, H.G., and zur Hausen, H. (1983). Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci U S A 80, 560-563. Gissmann, L., and zur Hausen, H. (1976). Human papilloma virus DNA: physical mapping and genetic heterogeneity. Proc Natl Acad Sci U S A 73, 1310-1313.

:

;




=

?

=

@

A

=

B

C

Giuliano, A.R., Harris, R., Sedjo, R.L., Baldwin, S., Roe, D., Papenfuss, M.R., Abrahamsen, M., Inserra, P., Olvera, S., and Hatch, K. (2002a). Incidence, prevalence, and clearance of type-specific human papillomavirus infections: The Young Women’s Health Study. J Infect Dis 186, 462-469. Giuliano, A.R., Sedjo, R.L., Roe, D.J., Harri, R., Baldwi, S., Papenfuss, M.R., Abrahamsen, M., and Inserra, P. (2002b). Clearance of oncogenic human papillomavirus (HPV) infection: effect of smoking (United States). Cancer Causes Control 13, 839-846. Godinez, J.M., Heideman, D.A., Gheit, T., Alemany, L., Snijders, P.J., Tommasino, M., Meijer, C.J., de Sanjose, S., Bosch, F.X., and Bravo, I.G. (2013). Differential presence of Papillomavirus variants in cervical cancer: an analysis for HPV33, HPV45 and HPV58. Infect Genet Evol 13, 96-104. Gojobori, T., Moriyama, E.N., and Kimura, M. (1990). Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci U S A 87, 10015-10018. Goldhaber-Fiebert, J.D., Stout, N.K., Salomon, J.A., Kuntz, K.M., and Goldie, S.J. (2008). Cost-effectiveness of cervical cancer screening with human papillomavirus DNA testing and HPV-16,18 vaccination. J Natl Cancer Inst 100, 308-320. Goldschmidt, H., and Kligman, A.M. (1958). Experimental inoculation of humans with ectodermotropic viruses. J Invest Dermatol 31, 175-182. Goodwin, E.C., and DiMaio, D. (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci U S A 97, 12513-12518. Gravitt, P.E. (2012). Evidence and impact of human papillomavirus latency. Open Virol J 6, 198-203. Gravitt, P.E., Coutlee, F., Iftner, T., Sellors, J.W., Quint, W.G., and Wheeler, C.M. (2008). New technologies in cervical cancer screening. Vaccine 26 Suppl 10, K42-52. Gravitt, P.E., Peyton, C., Wheeler, C., Apple, R., Higuchi, R., and Shah, K.V. (2003). Reproducibility of HPV 16 and HPV 18 viral load quantitation using TaqMan real-time PCR assays. J Virol Methods 112, 23-33. Gravitt, P.E., Peyton, C.L., Alessi, T.Q., Wheeler, C.M., Coutlee, F., Hildesheim, A., Schiffman, M.H., Scott, D.R., and Apple, R.J. (2000). Improved amplification of genital human papillomaviruses. J Clin Microbiol 38, 357-361. Gravitt, P.E., Peyton, C.L., Apple, R.J., and Wheeler, C.M. (1998). Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J Clin Microbiol 36, 3020-3027. Gray, E., Pett, M.R., Ward, D., Winder, D.M., Stanley, M.A., Roberts, I., Scarpini, C.G., and Coleman, N. (2010). In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis. Cancer Res 70, 4081-4091. Gu, Y., Wu, S.L., Meyer, J.L., Hancock, W.S., Burg, L.J., Linder, J., Hanlon, D.W., and Karger, B.L. (2007). Proteomic analysis of high-grade dysplastic cervical cells obtained from ThinPrep slides using laser capture microdissection and mass spectrometry. J Proteome Res 6, 4256-4268. Gustafson, K.S., Furth, E.E., Heitjan, D.F., Fansler, Z.B., and Clark, D.P. (2004). DNA methylation profiling of cervical squamous intraepithelial lesions using liquid-based cytology specimens: an approach that utilizes receiver-operating characteristic analysis. Cancer 102, 259-268. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95-98. Halpern, A.L. (2000). Comparison of papillomavirus and immunodeficiency virus evolutionary patterns in the context of a papillomavirus vaccine. J Clin Virol 19, 43-56. Harding, W.G. (1942). The Influence of Syphilis in Cancer of the Cervix Uteri. Cancer Res, 59-61. Harper, D.M., Franco, E.L., Wheeler, C.M., Moscicki, A.B., Romanowski, B., Roteli-Martins, C.M., Jenkins, D., Schuind, A., Costa Clemens, S.A., and Dubin, G. (2006). Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247-1255. D

E

F

G

H

I

H

J

H

K

L

H

M

Hawkins, M.G., Winder, D.M., Ball, S.L., Vaughan, K., Sonnex, C., Stanley, M.A., Sterling, J.C., and Goon, P.K. (2013). Detection of specific HPV subtypes responsible for the pathogenesis of condylomata acuminata. Virol J 10, 137. Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M. (1996). Real time quantitative PCR. Genome Res 6, 986-994. Herbst, L.H., Lenz, J., Van Doorslaer, K., Chen, Z., Stacy, B.A., Wellehan, J.F., Jr., Manire, C.A., and Burk, R.D. (2009). Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1. Virology 383, 131-135. Herrington, C.S. (1999). Do HPV-negative cervical carcinomas exist? — revisited. J Pathol 189, 1-3. Hesselink, A.T., Berkhof, J., Heideman, D.A., Bulkmans, N.W., van Tellingen, J.E., Meijer, C.J., and Snijders, P.J. (2009). High-risk human papillomavirus DNA load in a population-based cervical screening cohort in relation to the detection of high-grade cervical intraepithelial neoplasia and cervical cancer. Int J Cancer 124, 381-386. Hibma, M.H. (2012). The immune response to papillomavirus during infection persistence and regression. Open Virol J 6, 241-248. Hildesheim, A., Herrero, R., Castle, P.E., Wacholder, S., Bratti, M.C., Sherman, M.E., Lorincz, A.T., Burk, R.D., Morales, J., Rodriguez, A.C., et al. (2001). HPV co-factors related to the development of cervical cancer: results from a population-based study in Costa Rica. Br J Cancer 84, 1219-1226. Hirt, B. (1967). Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26, 365369. Ho, C.M., Chien, T.Y., Huang, S.H., Lee, B.H., and Chang, S.F. (2006). Integrated human papillomavirus types 52 and 58 are infrequently found in cervical cancer, and high viral loads predict risk of cervical cancer. Gynecol Oncol 102, 54-60. Ho, C.M., Lee, B.H., Chang, S.F., Chien, T.Y., Huang, S.H., Yan, C.C., and Cheng, W.F. (2011). Integration of human papillomavirus correlates with high levels of viral oncogene transcripts in cervical carcinogenesis. Virus Res 161, 124-130. Hoffmann, R., Hirt, B., Bechtold, V., Beard, P., and Raj, K. (2006). Different modes of human papillomavirus DNA replication during maintenance. J Virol 80, 4431-4439. Hong, D., Ye, F., Lu, W., Hu, Y., Wan, X., Chen, Y., and Xie, X. (2008). Methylation status of the long control region of HPV 16 in clinical cervical specimens. Mol Med Report 1, 555-560. Howell-Jones, R., Bailey, A., Beddows, S., Sargent, A., de Silva, N., Wilson, G., Anton, J., Nichols, T., Soldan, K., and Kitchener, H. (2010a). Erratum -- Multi-site study of HPV type-specific prevalence in women with cervical cancer, intraepithelial neoplasia and normal cytology, in England. Br J Cancer 103, 928. Howell-Jones, R., Bailey, A., Beddows, S., Sargent, A., de Silva, N., Wilson, G., Anton, J., Nichols, T., Soldan, K., and Kitchener, H. (2010b). Multi-site study of HPV type-specific prevalence in women with cervical cancer, intraepithelial neoplasia and normal cytology, in England. Br J Cancer 103, 209-216. Howie, H.L., Katzenellenbogen, R.A., and Galloway, D.A. (2009). Papillomavirus E6 proteins. Virology 384, 324-334. Hsu, E.M., McNicol, P.J., Guijon, F.B., and Paraskevas, M. (1993). Quantification of HPV-16 E6-E7 transcription in cervical intraepithelial neoplasia by reverse transcriptase polymerase chain reaction. Int J Cancer 55, 397-401. Huang, J., Ye, F., Chen, H., Lu, W., and Xie, X. (2007). The nonsynonymous single nucleotide polymorphisms of DNA repair gene XRCC1 and susceptibility to the development of cervical carcinoma and highrisk human papillomavirus infection. Int J Gynecol Cancer 17, 668-675. Hubert, W.G. (2005). Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol 79, 5914-5922. Hublarova, P., Hrstka, R., Rotterova, P., Rotter, L., Coupkova, M., Badal, V., Nenutil, R., and Vojtesek, B. (2009). Prediction of human papillomavirus 16 e6 gene expression and cervical intraepithelial neoplasia N

O

P

Q

R

Q

S

Q

T

U

Q

V

W

progression by methylation status. Int J Gynecol Cancer 19, 321-325. Hudelist, G., Manavi, M., Pischinger, K.I., Watkins-Riedel, T., Singer, C.F., Kubista, E., and Czerwenka, K.F. (2004). Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. Gynecol Oncol 92, 873-880. Huibregtse, J.M., Scheffner, M., and Howley, P.M. (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10, 4129-4135. Hwang, S.J., and Shroyer, K.R. (2012). Biomarkers of cervical dysplasia and carcinoma. J Oncol 2012, 507286. Iftner, T., and Villa, L.L. (2003). Chapter 12: Human papillomavirus technologies. J Natl Cancer Inst Monogr, 80-88. Ihaka, R., and Gentleman, R. (1996). R: a language for data analysis and graphics. J Comp Graph Stat 5, 299-314. Ishov, A.M., and Maul, G.G. (1996). The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134, 815-826. Ishov, A.M., Stenberg, R.M., and Maul, G.G. (1997). Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138, 5-16. Jacobs, M.V., Walboomers, J.M., Snijders, P.J., Voorhorst, F.J., Verheijen, R.H., Fransen-Daalmeijer, N., and Meijer, C.J. (2000). Distribution of 37 mucosotropic HPV types in women with cytologically normal cervical smears: the age-related patterns for high-risk and low-risk types. Int J Cancer 87, 221-227. Jin, X.W., Sikon, A., and Yen-Lieberman, B. (2011). Cervical cancer screening: Less testing, smarter testing. Cleve Clin J Med 78, 737-747. Josefsson, A.M., Magnusson, P.K., Ylitalo, N., Sorensen, P., Qwarforth-Tubbin, P., Andersen, P.K., Melbye, M., Adami, H.O., and Gyllensten, U.B. (2000). Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet 355, 2189-2193. Kadaja, M., Isok-Paas, H., Laos, T., Ustav, E., and Ustav, M. (2009). Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5, e1000397. Kajitani, N., Satsuka, A., Kawate, A., and Sakai, H. (2012). Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front Microbiol 3, 152. Kalantari, M., Blennow, E., Hagmar, B., and Johansson, B. (2001). Physical state of HPV16 and chromosomal mapping of the integrated form in cervical carcinomas. Diagn Mol Pathol 10, 46-54. Kalantari, M., Calleja-Macias, I.E., Tewari, D., Hagmar, B., Lie, K., Barrera-Saldana, H.A., Wiley, D.J., and Bernard, H.U. (2004). Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 78, 12762-12772. Kalantari, M., Chase, D.M., Tewari, K.S., and Bernard, H.U. (2010). Recombination of human papillomavirus-16 and host DNA in exfoliated cervical cells: a pilot study of L1 gene methylation and chromosomal integration as biomarkers of carcinogenic progression. J Med Virol 82, 311-320. Kalantari, M., Garcia-Carranca, A., Morales-Vazquez, C.D., Zuna, R., Montiel, D.P., Calleja-Macias, I.E., Johansson, B., Andersson, S., and Bernard, H.U. (2009). Laser capture microdissection of cervical human papillomavirus infections: copy number of the virus in cancerous and normal tissue and heterogeneous DNA methylation. Virology 390, 261-267. Kalantari, M., Lee, D., Calleja-Macias, I.E., Lambert, P.F., and Bernard, H.U. (2008). Effects of cellular differentiation, chromosomal integration and 5-aza-2’-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. Virology 374, 292-303. Kalof, A.N., and Cooper, K. (2007). Our approach to squamous intraepithelial lesions of the uterine cervix. J Clin Pathol 60, 449-455. Kammer, C., Warthorst, U., Torrez-Martinez, N., Wheeler, C.M., and Pfister, H. (2000). Sequence analysis of the long control region of human papillomavirus type 16 variants and functional consequences for P97 X

Y

Z

[

\

]

\

^

\

_

`

\

a

promoter activity. J Gen Virol 81, 1975-1981. Kanai, Y., and Hirohashi, S. (2007). Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 28, 2434-2442. Karlsen, F., Kristensen, G., Holm, R., Chitemerere, M., Berner, A., and Hagmar, B.M. (1995). High incidence of human papillomavirus in 146 cervical carcinomas. A study using three different pairs of consensus primers, and detecting viral genomes with putative deletions. Eur J Cancer 31A, 1511-1516. Kaye, J.N., Starkey, W.G., Kell, B., Biswas, C., Raju, K.S., Best, J.M., and Cason, J. (1996). Human papillomavirus type 16 in infants: use of DNA sequence analyses to determine the source of infection. J Gen Virol 77 ( Pt 6), 1139-1143. Kennaway, E.L. (1948). The racial and social incidence of cancer of the uterus. Br J Cancer 2, 177-212. Kessis, T.D., Connolly, D.C., Hedrick, L., and Cho, K.R. (1996). Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13, 427-431. Khouadri, S., Villa, L.L., Gagnon, S., Koushik, A., Richardson, H., Matlashewski, G., Roger, M., Ferenczy, A.S., Franco, E.L., and Coutlee, F. (2007). Viral load of episomal and integrated forms of human papillomavirus type 33 in high-grade squamous intraepithelial lesions of the uterine cervix. Int J Cancer 121, 2674-2681. Kim, K., Angeletti, P.C., Hassebroek, E.C., and Lambert, P.F. (2005). Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J Virol 79, 5933-5942. Kim, K., Garner-Hamrick, P.A., Fisher, C., Lee, D., and Lambert, P.F. (2003). Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J Virol 77, 12450-12459. Kim, K.Y., and Taylor, M.W. (2003). Identification of a novel promoter in the E2 open reading frame of the human papillomavirus type 18 genome. J Med Virol 69, 122-131. Kitchener, H.C., Almonte, M., Gilham, C., Dowie, R., Stoykova, B., Sargent, A., Roberts, C., Desai, M., and Peto, J. (2009). ARTISTIC: a randomised trial of human papillomavirus (HPV) testing in primary cervical screening. Health Technol Assess 13, 1-150, iii-iv. Kitkumthorn, N., Yanatatsanajit, P., Kiatpongsan, S., Phokaew, C., Triratanachat, S., Trivijitsilp, P., Termrungruanglert, W., Tresukosol, D., Niruthisard, S., and Mutirangura, A. (2006). Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer 6, 55. Kjaer, S.K., van den Brule, A.J., Paull, G., Svare, E.I., Sherman, M.E., Thomsen, B.L., Suntum, M., Bock, J.E., Poll, P.A., and Meijer, C.J. (2002). Type specific persistence of high risk human papillomavirus (HPV) as indicator of high grade cervical squamous intraepithelial lesions in young women: population based prospective follow up study. BMJ 325, 572. Klaassen, C.H., Prinsen, C.F., de Valk, H.A., Horrevorts, A.M., Jeunink, M.A., and Thunnissen, F.B. (2004). DNA microarray format for detection and subtyping of human papillomavirus. J Clin Microbiol 42, 21522160. Klaes, R., Friedrich, T., Spitkovsky, D., Ridder, R., Rudy, W., Petry, U., Dallenbach-Hellweg, G., Schmidt, D., and von Knebel Doeberitz, M. (2001). Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92, 276-284. Kleter, B., van Doorn, L.J., Schrauwen, L., Molijn, A., Sastrowijoto, S., ter Schegget, J., Lindeman, J., ter Harmsel, B., Burger, M., and Quint, W. (1999). Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol 37, 2508-2517. Kleter, B., van Doorn, L.J., ter Schegget, J., Schrauwen, L., van Krimpen, K., Burger, M., ter Harmsel, B., and Quint, W. (1998). Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am J Pathol 153, 1731-1739. Kondo, Y. (2009). Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 50, 455-463.

b

c

d

e

f

e

g

e

h

i

e

j

k

Korzeniewski, N., Spardy, N., Duensing, A., and Duensing, S. (2011). Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett 305, 113-122. Kosel, S., Burggraf, S., Engelhardt, W., and Olgemoller, B. (2007). Increased levels of HPV16 E6*I transcripts in high-grade cervical cytology and histology (CIN II+) detected by rapid real-time RT-PCR amplification. Cytopathology 18, 290-299. Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Barr, E., Alvarez, F.B., Chiacchierini, L.M., and Jansen, K.U. (2002). A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347, 1645-1651. Koutsky, L.A., Galloway, D.A., and Holmes, K.K. (1988). Epidemiology of genital human papillomavirus infection. Epidemiol Rev 10, 122-163. Kraus, I., Molden, T., Holm, R., Lie, A.K., Karlsen, F., Kristensen, G.B., and Skomedal, H. (2006). Presence of E6 and E7 mRNA from human papillomavirus types 16, 18, 31, 33, and 45 in the majority of cervical carcinomas. J Clin Microbiol 44, 1310-1317. Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., et al. (2006). The real-time polymerase chain reaction. Mol Aspects Med 27, 95125. Kulasingam, S.L., and Myers, E.R. (2003). Potential health and economic impact of adding a human papillomavirus vaccine to screening programs. JAMA 290, 781-789. Kulmala, S.M., Shabalova, I.P., Petrovitchev, N., Syrjanen, K.J., Gyllensten, U.B., Johansson, B.C., and Syrjanen, S.M. (2007). Type-specific persistence of high-risk human papillomavirus infections in the New Independent States of the former Soviet Union Cohort Study. Cancer Epidemiol Biomarkers Prev 16, 17-22. Kumar, V.M., and Whynes, D.K. (2011). Explaining variation in the uptake of HPV vaccination in England. BMC Public Health 11, 172. Kusumoto-Matsuo, R., Kanda, T., and Kukimoto, I. (2011). Rolling circle replication of human papillomavirus type 16 DNA in epithelial cell extracts. Genes Cells 16, 23-33. Lacour, D.E., and Trimble, C. (2012). Human papillomavirus in infants: transmission, prevalence, and persistence. J Pediatr Adolesc Gynecol 25, 93-97. Laing, C.M., and Rankin, J.A. (2011). Odds ratios and confidence intervals: a review for the pediatric oncology clinician. J Pediatr Oncol Nurs 28, 363-367. Lancaster, W.D., and Meinke, W. (1975). Persistence of viral DNA in human cell cultures infected with human papilloma virus. Nature 256, 434-436. Lancaster, W.D., and Olson, C. (1982). Animal papillomaviruses. Microbiol Rev 46, 191-207. Lange, C.E., Favrot, C., Ackermann, M., Gull, J., Vetsch, E., and Tobler, K. (2011). Novel snake papillomavirus does not cluster with other non-mammalian papillomaviruses. Virol J 8, 436. Lanham, S., Herbert, A., and Watt, P. (2001). HPV detection and measurement of HPV-16, telomerase, and survivin transcripts in colposcopy clinic patients. J Clin Pathol 54, 304-308. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948. Larsen, P.M., Vetner, M., Hansen, K., and Fey, S.J. (1988). Future trends in cervical cancer. Cancer Lett 41, 123-137. Lazo, P.A. (1987). Structure, DNaseI hypersensitivity and expression of integrated papilloma virus in the genome of HeLa cells. Eur J Biochem 165, 393-401. Lee, C.W., Bae, J.H., Lee, S.J., Ho, E.M., Lee, I.H., Park, Y.G., and Park, J.S. (2011). Distribution of human papillomavirus type 16 E6 and E7 gene variants in the progression of cervical dysplasia in Korean women. J Obstet Gynaecol Res 37, 1320-1326. Li, N., Franceschi, S., Howell-Jones, R., Snijders, P.J., and Clifford, G.M. (2011). Human papillomavirus type l

m

n

o

p

q

p

r

p

s

t

p

u

distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. Int J Cancer 128, 927-935. Liao, S.Y., and Manetta, A. (1993). Benign and malignant pathology of the cervix, including screening. Curr Opin Obstet Gynecol 5, 497-503. Lie, A.K., Risberg, B., Borge, B., Sandstad, B., Delabie, J., Rimala, R., Onsrud, M., and Thoresen, S. (2005). DNA- versus RNA-based methods for human papillomavirus detection in cervical neoplasia. Gynecol Oncol 97, 908-915. Lim, Y.P., Lim, T.T., Chan, Y.L., Song, A.C., Yeo, B.H., Vojtesek, B., Coomber, D., Rajagopal, G., and Lane, D. (2007). The p53 knowledgebase: an integrated information resource for p53 research. Oncogene 26, 1517-1521. Lindh, M., Gorander, S., Andersson, E., Horal, P., Mattsby-Balzer, I., and Ryd, W. (2007). Real-time Taqman PCR targeting 14 human papilloma virus types. J Clin Virol 40, 321-324. Lipman, D.J., and Pearson, W.R. (1985). Rapid and sensitive protein similarity searches. Science 227, 14351441. Llewellyn, H. (2000). Observer variation, dysplasia grading, and HPV typing: a review. Am J Clin Pathol 114 Suppl, S21-35. Lombard, H.L., and Potter, E.A. (1950). Epidemiological aspects of cancer of the cervix. II. Hereditary and environmental factors. Cancer 3, 960-968. Londesborough, P., Ho, L., Terry, G., Cuzick, J., Wheeler, C., and Singer, A. (1996). Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities. Int J Cancer 69, 364-368. Lorenzato, M., Caudroy, S., Bronner, C., Evrard, G., Simon, M., Durlach, A., Birembaut, P., and Clavel, C. (2005). Cell cycle and/or proliferation markers: what is the best method to discriminate cervical high-grade lesions? Hum Pathol 36, 1101-1107. Lowy, D.R., and Schiller, J.T. (2012). Reducing HPV-associated cancer globally. Cancer Prev Res (Phila) 5, 18-23. Luft, F., Klaes, R., Nees, M., Durst, M., Heilmann, V., Melsheimer, P., and von Knebel Doeberitz, M. (2001). Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells. Int J Cancer 92, 9-17. Lukaszuk, K., Liss, J., Wozniak, I., Emerich, J., and Wojcikowski, C. (2003). Human papillomavirus type 16 status in cervical carcinoma cell DNA assayed by multiplex PCR. J Clin Microbiol 41, 608-612. Ma, B., Maraj, B., Tran, N.P., Knoff, J., Chen, A., Alvarez, R.D., Hung, C.F., and Wu, T.C. (2012). Emerging human papillomavirus vaccines. Expert Opin Emerg Drugs 17, 469-492. Maglennon, G.A., and Doorbar, J. (2012). The biology of papillomavirus latency. Open Virol J 6, 190-197. Maki, H., Fujikawa-Adachi, K., and Yoshie, O. (1996). Evidence for a promoter-like activity in the short noncoding region of human papillomaviruses. J Gen Virol 77 ( Pt 3), 453-458. Mao, C., Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Wiley, D.J., Alvarez, F.B., Bautista, O.M., Jansen, K.U., and Barr, E. (2006). Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 107, 18-27. Marks, M., Gravitt, P.E., Utaipat, U., Gupta, S.B., Liaw, K., Kim, E., Tadesse, A., Phongnarisorn, C., Wootipoom, V., Yuenyao, P., et al. (2011). Kinetics of DNA load predict HPV 16 viral clearance. J Clin Virol 51, 44-49. May, M., Dong, X.P., Beyer-Finkler, E., Stubenrauch, F., Fuchs, P.G., and Pfister, H. (1994). The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. Embo J 13, 1460-1466. Mazumder Indra, D., Singh, R.K., Mitra, S., Dutta, S., Chakraborty, C., Basu, P.S., Mondal, R.K., Roychoudhury, S., and Panda, C.K. (2011). Genetic and epigenetic changes of HPV16 in cervical cancer differentially v

w

x

y

z

y

{

y

|

}

y

~



regulate E6/E7 expression and associate with disease progression. Gynecol Oncol 123, 597-604. McBride, A.A. (2008). Replication and partitioning of papillomavirus genomes. Adv Virus Res 72, 155-205. McLaughlin-Drubin, M.E., Meyers, J., and Munger, K. (2012). Cancer associated human papillomaviruses. Curr Opin Virol 2, 459-466. Meisels, A., Casas-Cordero, M., and Morin, C. (1985). Cervical condyloma planum. Clin Dermatol 3, 114123. Melendy, T., Sedman, J., and Stenlund, A. (1995). Cellular factors required for papillomavirus DNA replication. J Virol 69, 7857-7867. Meschede, W., Zumbach, K., Braspenning, J., Scheffner, M., Benitez-Bribiesca, L., Luande, J., Gissmann, L., and Pawlita, M. (1998). Antibodies against early proteins of human papillomaviruses as diagnostic markers for invasive cervical cancer. J Clin Microbiol 36, 475-480. Mesher, D., Szarewski, A., Cadman, L., Austin, J., Ashdown-Barr, L., Ho, L., Terry, G., Young, M., Stoler, M., Bergeron, C., et al. (2013). Comparison of human papillomavirus testing strategies for triage of women referred with low-grade cytological abnormalities. Eur J Cancer 49, 2179-2186. Mesplede, T., Gagnon, D., Bergeron-Labrecque, F., Azar, I., Senechal, H., Coutlee, F., and Archambault, J. (2012). p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol 86, 94-107. Mirabello, L., Schiffman, M., Ghosh, A., Rodriguez, A.C., Vasiljevic, N., Wentzensen, N., Herrero, R., Hildesheim, A., Wacholder, S., Scibior-Bentkowska, D., et al. (2013). Elevated methylation of HPV16 DNA is associated with the development of high grade cervical intraepithelial neoplasia. Int J Cancer 132, 14121422. Mirabello, L., Sun, C., Ghosh, A., Rodriguez, A.C., Schiffman, M., Wentzensen, N., Hildesheim, A., Herrero, R., Wacholder, S., Lorincz, A., et al. (2012). Methylation of human papillomavirus type 16 genome and risk of cervical precancer in a Costa Rican population. J Natl Cancer Inst 104, 556-565. Moberg, M., Gustavsson, I., and Gyllensten, U. (2004). Type-specific associations of human papillomavirus load with risk of developing cervical carcinoma in situ. Int J Cancer 112, 854-859. Moberg, M., Gustavsson, I., Wilander, E., and Gyllensten, U. (2005). High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. Br J Cancer 92, 891-894. Molden, T., Kraus, I., Karlsen, F., Skomedal, H., Nygard, J.F., and Hagmar, B. (2005). Comparison of human papillomavirus messenger RNA and DNA detection: a cross-sectional study of 4,136 women >30 years of age with a 2-year follow-up of high-grade squamous intraepithelial lesion. Cancer Epidemiol Biomarkers Prev 14, 367-372. Monnier-Benoit, S., Dalstein, V., Riethmuller, D., Lalaoui, N., Mougin, C., and Pretet, J.L. (2006). Dynamics of HPV16 DNA load reflect the natural history of cervical HPV-associated lesions. J Clin Virol 35, 270-277. Monsonego, J., Bohbot, J.M., Pollini, G., Krawec, C., Vincent, C., Merignargues, I., Haroun, F., Sednaoui, P., Monfort, L., Dachez, R., et al. (2005). Performance of the Roche AMPLICOR human papillomavirus (HPV) test in prediction of cervical intraepithelial neoplasia (CIN) in women with abnormal PAP smear. Gynecol Oncol 99, 160-168. Moody, C.A., and Laimins, L.A. (2010). Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10, 550-560. Mori, S., Nakao, S., Kukimoto, I., Kusumoto-Matsuo, R., Kondo, K., and Kanda, T. (2011). Biased amplification of human papillomavirus DNA in specimens containing multiple human papillomavirus types by PCR with consensus primers. Cancer Sci 102, 1223-1227. Moser, K., Patnick, J., and Beral, V. (2009). Inequalities in reported use of breast and cervical screening in Great Britain: analysis of cross sectional survey data. BMJ 338, b2025. Muir, P., Nicholson, F., Jhetam, M., Neogi, S., and Banatvala, J.E. (1993). Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. J Clin Microbiol 31, 31-38. €



‚

ƒ

„

…

„

†

„

‡

ˆ

„

‰

Muller, M., and Demeret, C. (2012). The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 6, 173-189. Muller, M., Viscidi, R.P., Sun, Y., Guerrero, E., Hill, P.M., Shah, F., Bosch, F.X., Munoz, N., Gissmann, L., and Shah, K.V. (1992). Antibodies to HPV-16 E6 and E7 proteins as markers for HPV-16-associated invasive cervical cancer. Virology 187, 508-514. Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., and Meijer, C.J. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518-527. Munoz, N., Franceschi, S., Bosetti, C., Moreno, V., Herrero, R., Smith, J.S., Shah, K.V., Meijer, C.J., and Bosch, F.X. (2002). Role of parity and human papillomavirus in cervical cancer: the IARC multicentric casecontrol study. Lancet 359, 1093-1101. Nagao, S., Yoshinouchi, M., Miyagi, Y., Hongo, A., Kodama, J., Itoh, S., and Kudo, T. (2002). Rapid and sensitive detection of physical status of human papillomavirus type 16 DNA by quantitative real-time PCR. J Clin Microbiol 40, 863-867. Nahmias, A.J., Josey, W.E., Naib, Z.M., Luce, C.F., and Guest, B.A. (1970). Antibodies to Herpesvirus hominis types 1 and 2 in humans. II. Women with cervical cancer. Am J Epidemiol 91, 547-552. Nath, R., Mant, C., Luxton, J., Hughes, G., Raju, K.S., Shepherd, P., and Cason, J. (2007). High risk of human papillomavirus type 16 infections and of development of cervical squamous intraepithelial lesions in systemic lupus erythematosus patients. Arthritis Rheum 57, 619-625. Nazeer, S., and Shafi, M.I. (2011). Objective perspective in colposcopy. Best Pract Res Clin Obstet Gynaecol 25, 631-640. Nishino, H.T., Tambouret, R.H., and Wilbur, D.C. (2011). Testing for human papillomavirus in cervical cancer screening: a review of indications and methodology. Cancer Cytopathol 119, 219-227. Ogilvie, G.S., Krajden, M., van Niekerk, D.J., Martin, R.E., Ehlen, T.G., Ceballos, K., Smith, L.W., Kan, L., Cook, D.A., Peacock, S., et al. (2012). Primary cervical cancer screening with HPV testing compared with liquid-based cytology: results of round 1 of a randomised controlled trial -- the HPV FOCAL Study. Br J Cancer 107, 1917-1924. Ogilvie, M.M. (1970). Serological studies with human papova (wart) virus. J Hyg (Lond) 68, 479-490. Oka, N., Kajita, M., Nishimura, R., Ohbayashi, C., and Sudo, T. (2013). L1 gene methylation in high-risk human papillomaviruses for the prognosis of cervical intraepithelial neoplasia. Int J Gynecol Cancer 23, 235-243. Okuwaki, M., and Verreault, A. (2004). Maintenance DNA methylation of nucleosome core particles. J Biol Chem 279, 2904-2912. Olive, P.L. (2011). Retention of gammaH2AX foci as an indication of lethal DNA damage. Radiother Oncol 101, 18-23. Ong, C.K., Chan, S.Y., Campo, M.S., Fujinaga, K., Mavromara-Nazos, P., Labropoulou, V., Pfister, H., Tay, S.K., ter Meulen, J., Villa, L.L., et al. (1993). Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol 67, 6424-6431. Paavonen, J. (1985). Colposcopic findings associated with human papillomavirus infection of the vagina and the cervix. Obstet Gynecol Surv 40, 185-189. Paavonen, J., Naud, P., Salmeron, J., Wheeler, C.M., Chow, S.N., Apter, D., Kitchener, H., Castellsague, X., Teixeira, J.C., Skinner, S.R., et al. (2009). Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374, 301-314. Pakarian, F., Kaye, J., Cason, J., Kell, B., Jewers, R., Derias, N.W., Raju, K.S., and Best, J.M. (1994). Cancer associated human papillomaviruses: perinatal transmission and persistence. Br J Obstet Gynaecol 101, 514517.

Š

‹

Œ



Ž









‘



’

“

Palefsky, J. (2006). Biology of HPV in HIV infection. Adv Dent Res 19, 99-105. Palefsky, J.M., and Holly, E.A. (2003). Chapter 6: Immunosuppression and co-infection with HIV. J Natl Cancer Inst Monogr, 41-46. Pao, C.C., Tsai, P.L., Chang, Y.L., Hsieh, T.T., and Jin, J.Y. (1993). Possible non-sexual transmission of genital human papillomavirus infections in young women. Eur J Clin Microbiol Infect Dis 12, 221-222. Papanicolaou, G.N. (1933). The sexual cycle in the human female as revealed by vaginal smears. Am J Anat 52, 519-637. Park, T.W., Richart, R.M., Sun, X.W., and Wright, T.C., Jr. (1996). Association between human papillomavirus type and clonal status of cervical squamous intraepithelial lesions. J Natl Cancer Inst 88, 355-358. Patel, A., Galaal, K., Burnley, C., Faulkner, K., Martin-Hirsch, P., Bland, M.J., Leeson, S., Beer, H., Paranjothy, S., Sasieni, P., et al. (2012). Cervical cancer incidence in young women: a historical and geographic controlled UK regional population study. Br J Cancer 106, 1753-1759. Payan, C., Ducancelle, A., Aboubaker, M.H., Caer, J., Tapia, M., Chauvin, A., Peyronnet, D., Le Hen, E., Arab, Z., Legrand, M.C., et al. (2007). Human papillomavirus quantification in urine and cervical samples by using the Mx4000 and LightCycler general real-time PCR systems. J Clin Microbiol 45, 897-901. Peitsaro, P., Johansson, B., and Syrjanen, S. (2002). Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol 40, 886-891. Pereira, R., Hitzeroth, II, and Rybicki, E.P. (2009). Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch Virol 154, 187-197. Perrons, C., Kleter, B., Jelley, R., Jalal, H., Quint, W., and Tedder, R. (2002). Detection and genotyping of human papillomavirus DNA by SPF10 and MY09/11 primers in cervical cells taken from women attending a colposcopy clinic. J Med Virol 67, 246-252. Peter, M., Stransky, N., Couturier, J., Hupe, P., Barillot, E., de Cremoux, P., Cottu, P., Radvanyi, F., and Sastre-Garau, X. (2010). Frequent genomic structural alterations at HPV insertion sites in cervical carcinoma. J Pathol 221, 320-330. Pett, M., and Coleman, N. (2007). Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212, 356-367. Peyton, C.L., Schiffman, M., Lorincz, A.T., Hunt, W.C., Mielzynska, I., Bratti, C., Eaton, S., Hildesheim, A., Morera, L.A., Rodriguez, A.C., et al. (1998). Comparison of PCR- and hybrid capture-based human papillomavirus detection systems using multiple cervical specimen collection strategies. J Clin Microbiol 36, 3248-3254. Pientong, C., Wongwarissara, P., Ekalaksananan, T., Swangphon, P., Kleebkaow, P., Kongyingyoes, B., Siriaunkgul, S., Tungsinmunkong, K., and Suthipintawong, C. (2013). Association of human papillomavirus type 16 long control region mutation and cervical cancer. Virol J 10, 30. Pim, D., Massimi, P., and Banks, L. (1997). Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene 15, 257-264. Pittayakhajonwut, D., and Angeletti, P.C. (2010). Viral trans-factor independent replication of human papillomavirus genomes. Virol J 7, 123. Piyathilake, C.J., Macaluso, M., Alvarez, R.D., Chen, M., Badiga, S., Edberg, J.C., Partridge, E.E., and Johanning, G.L. (2011). A higher degree of methylation of the HPV 16 E6 gene is associated with a lower likelihood of being diagnosed with cervical intraepithelial neoplasia. Cancer 117, 957-963. Plaut, A., and Kohn-Speyer, A.C. (1947). The Carcinogenic Action of Smegma. Science 105, 391-392. Poljak, M., Marin, I.J., Seme, K., and Vince, A. (2002). Hybrid Capture II HPV Test detects at least 15 human papillomavirus genotypes not included in its current high-risk probe cocktail. J Clin Virol 25 Suppl 3, S89-97. Poreba, E., Broniarczyk, J.K., and Gozdzicka-Jozefiak, A. (2011). Epigenetic mechanisms in virus-induced ”

•

–

—

˜

™

˜

š

˜

›

œ

˜



tumorigenesis. Clin Epigenetics 2, 233-247. Qiao, Y.L., Sellors, J.W., Eder, P.S., Bao, Y.P., Lim, J.M., Zhao, F.H., Weigl, B., Zhang, W.H., Peck, R.B., Li, L., et al. (2008). A new HPV-DNA test for cervical-cancer screening in developing regions: a cross-sectional study of clinical accuracy in rural China. Lancet Oncol 9, 929-936. Quint, W., Jenkins, D., Molijn, A., Struijk, L., van de Sandt, M., Doorbar, J., Mols, J., Van Hoof, C., Hardt, K., Struyf, F., et al. (2012). One virus, one lesion--individual components of CIN lesions contain a specific HPV type. J Pathol 227, 62-71. Rajeevan, M.S., Swan, D.C., Duncan, K., Lee, D.R., Limor, J.R., and Unger, E.R. (2006). Quantitation of sitespecific HPV 16 DNA methylation by pyrosequencing. J Virol Methods 138, 170-176. Ramanakumar, A.V., Goncalves, O., Richardson, H., Tellier, P., Ferenczy, A., Coutlee, F., and Franco, E.L. (2010). Human papillomavirus (HPV) types 16, 18, 31, 45 DNA loads and HPV-16 integration in persistent and transient infections in young women. BMC Infect Dis 10, 326. Rawls, W.E., Tompkins, W.A., Figueroa, M.E., and Melnick, J.L. (1968). Herpesvirus type 2: association with carcinoma of the cervix. Science 161, 1255-1256. Rebolj, M., Bonde, J., Njor, S.H., and Lynge, E. (2011a). Human papillomavirus testing in primary cervical screening and the cut-off level for hybrid capture 2 tests: systematic review. BMJ 342, d2757. Rebolj, M., Lynge, E., and Bonde, J. (2011b). Human papillomavirus testing and genotyping in cervical screening. Expert Rev Anticancer Ther 11, 1023-1031. Rebolj, M., Pribac, I., and Lynge, E. (2011c). False-positive Human Papillomavirus DNA tests in cervical screening: it is all in a definition. Eur J Cancer 47, 255-261. Richart, R.M., and Wright, T.C., Jr. (1991). Pathology of the cervix. Curr Opin Obstet Gynecol 3, 561-567. Rigoni-Stern, D. (1842). Fatti statistici relativi alle malattie cancerose Giornale per servire ai progressi della patologia e della terapeutica 2, 507-517. Roden, R.B., Lowy, D.R., and Schiller, J.T. (1997). Papillomavirus is resistant to desiccation. J Infect Dis 176, 1076-1079. Rodriguez, E.F., Reynolds, J.P., Jenkins, S.M., Winter, S.M., Henry, M.R., and Nassar, A. (2012). Atypical squamous cells of undetermined significance in patients with HPV positive DNA testing and correlation with disease progression by age group: an institutional experience. Int J Clin Exp Pathol 5, 428-435. Rogers, A., Waltke, M., and Angeletti, P.C. (2011). Evolutionary variation of papillomavirus E2 protein and E2 binding sites. Virol J 8, 379. Romanczuk, H., Thierry, F., and Howley, P.M. (1990). Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol 64, 2849-2859. Romanowski, B., de Borba, P.C., Naud, P.S., Roteli-Martins, C.M., De Carvalho, N.S., Teixeira, J.C., Aoki, F., Ramjattan, B., Shier, R.M., Somani, R., et al. (2009). Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet 374, 1975-1985. Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M., and Nyren, P. (1996). Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242, 84-89. Ronco, G., Giorgi-Rossi, P., Carozzi, F., Confortini, M., Dalla Palma, P., Del Mistro, A., Ghiringhello, B., Girlando, S., Gillio-Tos, A., De Marco, L., et al. (2010). Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol 11, 249-257. Roteli-Martins, C.M., Naud, P., De Borba, P., Teixeira, J.C., De Carvalho, N.S., Zahaf, T., Sanchez, N., Geeraerts, B., and Descamps, D. (2012). Sustained immunogenicity and efficacy of the HPV-16/18 AS04adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immunother 8, 390-397. Rotkin, I.D. (1967a). Adolescent coitus and cervical cancer: associations of related events with increased risk. Cancer Res 27, 603-617. ž

Ÿ

 

¡

¢

¡

£

¡

¤

¥

¡

¦

§

Rotkin, I.D. (1967b). Epidemiology of cancer of the cervix. 3. Sexual characteristics of a cervical cancer population. Am J Public Health Nations Health 57, 815-829. Rotkin, I.D. (1973). A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Res 33, 1353-1367. Rous, P., and Beard, J.W. (1935). The Progression to Carcinoma of Virus-Induced Rabbit Papillomas (Shope). J Exp Med 62, 523-548. Routh, H.B., Bhowmik, K.R., and Parish, L.C. (1997). Myths, fables and even truths about warts and human papillomavirus. Clin Dermatol 15, 305-307. Roy, M., Meisels, A., Fortier, M., Morin, C., and Casas-Cordero, M. (1981). Vaginal condylomata: a human papillomavirus infection. Clin Obstet Gynecol 24, 461-483. Royston, I., and Aurelian, L. (1970). The association of genital herpesvirus with cervical atypia and carcinoma in situ. Am J Epidemiol 91, 531-538. Sahasrabuddhe, V.V., Parham, G.P., Mwanahamuntu, M.H., and Vermund, S.H. (2012). Cervical cancer prevention in low- and middle-income countries: feasible, affordable, essential. Cancer Prev Res (Phila) 5, 11-17. Sandri, M.T., Lentati, P., Benini, E., Dell’Orto, P., Zorzino, L., Carozzi, F.M., Maisonneuve, P., Passerini, R., Salvatici, M., Casadio, C., et al. (2006). Comparison of the Digene HC2 assay and the Roche AMPLICOR human papillomavirus (HPV) test for detection of high-risk HPV genotypes in cervical samples. J Clin Microbiol 44, 2141-2146. Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-5467. Sapp, M., and Bienkowska-Haba, M. (2009). Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. Febs J 276, 7206-7216. Sapp, M., and Day, P.M. (2009). Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384, 400-409. Sasieni, P., Adams, J., and Cuzick, J. (2003). Benefit of cervical screening at different ages: evidence from the UK audit of screening histories. Br J Cancer 89, 88-93. Saunier, M., Monnier-Benoit, S., Mauny, F., Dalstein, V., Briolat, J., Riethmuller, D., Kantelip, B., Schwarz, E., Mougin, C., and Pretet, J.L. (2008). Analysis of human papillomavirus type 16 (HPV16) DNA load and physical state for identification of HPV16-infected women with high-grade lesions or cervical carcinoma. J Clin Microbiol 46, 3678-3685. Scherer, W.F., and Hoogasian, A.F. (1954). Preservation at subzero temperatures of mouse fibroblasts (strain L) and human epithelial cells (strain HeLa). Proc Soc Exp Biol Med 87, 480-487. Schiffman, M., and Castle, P.E. (2003). Human papillomavirus: epidemiology and public health. Arch Pathol Lab Med 127, 930-934. Schiffman, M., Castle, P.E., Jeronimo, J., Rodriguez, A.C., and Wacholder, S. (2007). Human papillomavirus and cervical cancer. Lancet 370, 890-907. Schiffman, M., Herrero, R., Desalle, R., Hildesheim, A., Wacholder, S., Rodriguez, A.C., Bratti, M.C., Sherman, M.E., Morales, J., Guillen, D., et al. (2005). The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337, 76-84. Schiffman, M., Rodriguez, A.C., Chen, Z., Wacholder, S., Herrero, R., Hildesheim, A., Desalle, R., Befano, B., Yu, K., Safaeian, M., et al. (2010). A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res 70, 3159-3169. Schiffman, M., and Solomon, D. (2003). Findings to date from the ASCUS-LSIL Triage Study (ALTS). Arch Pathol Lab Med 127, 946-949. Schiffman, M., Wentzensen, N., Wacholder, S., Kinney, W., Gage, J.C., and Castle, P.E. (2011). Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst 103, 368-383. ¨

©

ª

«

¬

­

¬

®

¬

¯

°

¬

±

Schiller, J.T., and Davies, P. (2004). Delivering on the promise: HPV vaccines and cervical cancer. Nat Rev Microbiol 2, 343-347. Schiller, J.T., Day, P.M., and Kines, R.C. (2010). Current understanding of the mechanism of HPV infection. Gynecol Oncol 118, S12-17. Schiller, J.T., and Lowy, D.R. (2012). Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol 10, 681-692. Schlecht, N.F., Trevisan, A., Duarte-Franco, E., Rohan, T.E., Ferenczy, A., Villa, L.L., and Franco, E.L. (2003). Viral load as a predictor of the risk of cervical intraepithelial neoplasia. Int J Cancer 103, 519-524. Schmitt, M., Bravo, I.G., Snijders, P.J., Gissmann, L., Pawlita, M., and Waterboer, T. (2006). Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol 44, 504-512. Schmitz, M., Driesch, C., Jansen, L., Runnebaum, I.B., and Durst, M. (2012). Non-random integration of the HPV genome in cervical cancer. PLoS One 7, e39632. Schmitz, M., Scheungraber, C., Herrmann, J., Teller, K., Gajda, M., Runnebaum, I.B., and Durst, M. (2009). Quantitative multiplex PCR assay for the detection of the seven clinically most relevant high-risk HPV types. J Clin Virol 44, 302-307. Schneider, A. (1994). Natural history of genital papillomavirus infections. Intervirology 37, 201-214. Scott, M.E., Ma, Y., Kuzmich, L., and Moscicki, A.B. (2009). Diminished IFN-gamma and IL-10 and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3. Int J Cancer 124, 1379-1383. Seedorf, K., Krämmer, G., Dürst, M., Suhai, S.a., and Röwekamp, W.G. (1985). Human papillomavirus type 16 DNA sequence. Virology 145, 181-185. Serra, A. (1924). Studi sul virus della verruca, del papilloma, del condiloma acuminato (etiologia, patogenesi, fltrabilità). Giorn Ital Mal Ven Pelle 65, 1808-1814. Serraino, D., Dal Maso, L., La Vecchia, C., and Franceschi, S. (2002). Invasive cervical cancer as an AIDSdefining illness in Europe. AIDS 16, 781-786. Shafi, M.I., Petry, U., Bosch, X.F., Gissman, L., Kocken, M., Helmerhorst, T.J., Stanley, M., Nazeer, S., and European Federation for, C. (2011). European consensus statement on “HPV Vaccination and Colposcopy”. J Low Genit Tract Dis 15, 309-315. Sherman, L., and Schlegel, R. (1996). Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol 70, 3269-3279. Sherman, M.E., Wang, S.S., Wheeler, C.M., Rich, L., Gravitt, P.E., Tarone, R., and Schiffman, M. (2003). Determinants of human papillomavirus load among women with histological cervical intraepithelial neoplasia 3: dominant impact of surrounding low-grade lesions. Cancer Epidemiol Biomarkers Prev 12, 1038-1044. Shope, R.E., and Hurst, E.W. (1933). Infectious Papillomatosis of Rabbits : with a Note on the Histopathology. J Exp Med 58, 607-624. Sichero, L., and Villa, L.L. (2006). Epidemiological and functional implications of molecular variants of human papillomavirus. Braz J Med Biol Res 39, 707-717. Singer, V.L., Jones, L.J., Yue, S.T., and Haugland, R.P. (1997). Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem 249, 228-238. Smith, B., Chen, Z., Reimers, L., van Doorslaer, K., Schiffman, M., Desalle, R., Herrero, R., Yu, K., Wacholder, S., Wang, T., et al. (2011). Sequence imputation of HPV16 genomes for genetic association studies. PLoS One 6, e21375. Smith, P.G., Kinlen, L.J., White, G.C., Adelstein, A.M., and Fox, A.J. (1980). Mortality of wives of men dying with cancer of the penis. Br J Cancer 41, 422-428. Snellenberg, S., Schutze, D.M., Claassen-Kramer, D., Meijer, C.J., Snijders, P.J., and Steenbergen, R.D. (2012). Methylation status of the E2 binding sites of HPV16 in cervical lesions determined with the ²

³

´

µ



µ

·

µ

¸

¹

µ

º

»

Luminex(R) xMAP system. Virology 422, 357-365. Snijders, P.J., Hogewoning, C.J., Hesselink, A.T., Berkhof, J., Voorhorst, F.J., Bleeker, M.C., and Meijer, C.J. (2006). Determination of viral load thresholds in cervical scrapings to rule out CIN 3 in HPV 16, 18, 31 and 33-positive women with normal cytology. Int J Cancer 119, 1102-1107. Snijders, P.J., van den Brule, A.J., and Meijer, C.J. (2003). The clinical relevance of human papillomavirus testing: relationship between analytical and clinical sensitivity. J Pathol 201, 1-6. Solomon, D. (2003). Chapter 14: Role of triage testing in cervical cancer screening. J Natl Cancer Inst Monogr, 97-101. Song, S.H., Hong, J.H., Kwak, S.H., Lee, J.K., and Kim, M.K. (2012). Clinical performance assessment of five human papillomavirus DNA tests using liquid-based cytology samples. J Obstet Gynaecol Res 38, 408-414. Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., and Kiviat, N. (2006). Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev 15, 114-123. Stacey, S.N., Jordan, D., Williamson, A.J., Brown, M., Coote, J.H., and Arrand, J.R. (2000). Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J Virol 74, 7284-7297. Staden, R., Beal, K.F., and Bonfield, J.K. (2000). The Staden package, 1998. Methods Mol Biol 132, 115130. Stanley, M. (2010). Pathology and epidemiology of HPV infection in females. Gynecol Oncol 117, S5-10. Stanley, M., Lowy, D.R., and Frazer, I. (2006). Chapter 12: Prophylactic HPV vaccines: underlying mechanisms. Vaccine 24 Suppl 3, S3/106-113. Stanley, M.A. (2012). Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev 25, 215-222. Stellato, G., and Paavonen, J. (1995). Vulvar and vaginal colposcopic pictures of human papillomavirus infection. Eur J Gynaecol Oncol 16, 228-231. Stoler, M.H., Castle, P.E., Solomon, D., and Schiffman, M. (2007). The expanded use of HPV testing in gynecologic practice per ASCCP-guided management requires the use of well-validated assays. Am J Clin Pathol 127, 335-337. Stoler, M.H., and Schiffman, M. (2001). Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study. Jama 285, 1500-1505. Strauss, M.J., Shaw, E.W., and et al. (1949). Crystalline virus-like particles from skin papillomas characterized by intranuclear inclusion bodies. Proc Soc Exp Biol Med 72, 46-50. Stunkel, W., and Bernard, H.U. (1999). The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J Virol 73, 1918-1930. Sturegard, E., Johansson, H., Ekstrom, J., Hansson, B.G., Johnsson, A., Gustafsson, E., Dillner, J., and Forslund, O. (2013). Human papillomavirus typing in reporting of condyloma. Sex Transm Dis 40, 123-129. Sun, C., Reimers, L.L., and Burk, R.D. (2011). Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 121, 59-63. Sun, X.W., Kuhn, L., Ellerbrock, T.V., Chiasson, M.A., Bush, T.J., and Wright, T.C., Jr. (1997). Human papillomavirus infection in women infected with the human immunodeficiency virus. N Engl J Med 337, 13431349. Sundstrom, K., Ploner, A., Dahlstrom, L.A., Palmgren, J., Dillner, J., Adami, H.O., Ylitalo, N., and Sparen, P. (2013). Prospective study of HPV16 viral load and risk of in situ and invasive squamous cervical cancer. Cancer Epidemiol Biomarkers Prev 22, 150-158. Swan, D.C., Tucker, R.A., Tortolero-Luna, G., Mitchell, M.F., Wideroff, L., Unger, E.R., Nisenbaum, R.A., Reeves, W.C., and Icenogle, J.P. (1999). Human papillomavirus (HPV) DNA copy number is dependent on ¼

½

¾

¿

À

Á

À

Â

À

Ã

Ä

À

Å

grade of cervical disease and HPV type. J Clin Microbiol 37, 1030-1034. Sweeney, B.J., Haq, Z., Happel, J.F., Weinstein, B., and Schneider, D. (2006). Comparison of the effectiveness of two liquid-based Papanicolaou systems in the handling of adverse limiting factors, such as excessive blood. Cancer 108, 27-31. Szarewski, A. (2011). Ushering in a new era: human papillomavirus (HPV) testing comes to the NHS Cervical Screening Programme. J Fam Plann Reprod Health Care 37, 64-67. Szarewski, A., Ambroisine, L., Cadman, L., Austin, J., Ho, L., Terry, G., Liddle, S., Dina, R., McCarthy, J., Buckley, H., et al. (2008). Comparison of predictors for high-grade cervical intraepithelial neoplasia in women with abnormal smears. Cancer Epidemiol Biomarkers Prev 17, 3033-3042. Szarewski, A., Mesher, D., Cadman, L., Austin, J., Ashdown-Barr, L., Ho, L., Terry, G., Liddle, S., Young, M., Stoler, M., et al. (2012). Comparison of seven tests for high-grade cervical intraepithelial neoplasia in women with abnormal smears: the Predictors 2 study. J Clin Microbiol 50, 1867-1873. Tambouret, R.H. (2013). The evolution of the Papanicolaou smear. Clin Obstet Gynecol 56, 3-9. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725-2729. Tan, S.H., Bartsch, D., Schwarz, E., and Bernard, H.U. (1998). Nuclear matrix attachment regions of human papillomavirus type 16 point toward conservation of these genomic elements in all genital papillomaviruses. J Virol 72, 3610-3622. Taylor, R.S., Carroll, B.E., and Lloyd, J.W. (1959). Mortality among women in 3 Catholic religious orders with special reference to cancer. Cancer 12, 1207-1225. Thain, A., Jenkins, O., Clarke, A.R., and Gaston, K. (1996). CpG methylation directly inhibits binding of the human papillomavirus type 16 E2 protein to specific DNA sequences. J Virol 70, 7233-7235. Thierry, F. (2009). Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology 384, 375-379. Thyagarajan, B., Anderson, K.E., Kong, F., Selk, F.R., Lynch, C.F., and Gross, M.D. (2005). New approaches for genotyping paraffin wax embedded breast tissue from patients with cancer: the Iowa women’s health study. J Clin Pathol 58, 955-961. Ting, A.H., McGarvey, K.M., and Baylin, S.B. (2006). The cancer epigenome--components and functional correlates. Genes Dev 20, 3215-3231. Ting, J., Kruzikas, D.T., and Smith, J.S. (2010). A global review of age-specific and overall prevalence of cervical lesions. Int J Gynecol Cancer 20, 1244-1249. Tonon, S.A., Picconi, M.A., Bos, P.D., Zinovich, J.B., Galuppo, J., Alonio, L.V., and Teyssie, A.R. (2001). Physical status of the E2 human papilloma virus 16 viral gene in cervical preneoplastic and neoplastic lesions. J Clin Virol 21, 129-134. Tornesello, M.L., Duraturo, M.L., Salatiello, I., Buonaguro, L., Losito, S., Botti, G., Stellato, G., Greggi, S., Piccoli, R., Pilotti, S., et al. (2004). Analysis of human papillomavirus type-16 variants in Italian women with cervical intraepithelial neoplasia and cervical cancer. J Med Virol 74, 117-126. Tost, J., and Gut, I.G. (2007). DNA methylation analysis by pyrosequencing. Nat Protoc 2, 2265-2275. Tota, J.E., Chevarie-Davis, M., Richardson, L.A., Devries, M., and Franco, E.L. (2011). Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies. Prev Med 53 Suppl 1, S12-21. Tsai, H.T., Wu, C.H., Lai, H.L., Li, R.N., Tung, Y.C., Chuang, H.Y., Wu, T.N., Lin, L.J., Ho, C.K., Liu, H.W., et al. (2005). Association between quantitative high-risk human papillomavirus DNA load and cervical intraepithelial neoplasm risk. Cancer Epidemiol Biomarkers Prev 14, 2544-2549. Turan, T., Kalantari, M., Calleja-Macias, I.E., Cubie, H.A., Cuschieri, K., Villa, L.L., Skomedal, H., BarreraSaldana, H.A., and Bernard, H.U. (2006). Methylation of the human papillomavirus-18 L1 gene: a biomarker of neoplastic progression? Virology 349, 175-183. Æ

Ç

È

É

Ê

É

Ë

É

Ì

Í

É

Î

Ï

van Doorn, L.J., Kleter, B., and Quint, W.G. (2001). Molecular detection and genotyping of human papillomavirus. Expert Rev Mol Diagn 1, 394-402. van Doorn, L.J., Quint, W., Kleter, B., Molijn, A., Colau, B., Martin, M.T., Kravang, I., Torrez-Martinez, N., Peyton, C.L., and Wheeler, C.M. (2002). Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF(10) line probe assay. J Clin Microbiol 40, 979-983. van Duin, M., Snijders, P.J., Schrijnemakers, H.F., Voorhorst, F.J., Rozendaal, L., Nobbenhuis, M.A., van den Brule, A.J., Verheijen, R.H., Helmerhorst, T.J., and Meijer, C.J. (2002). Human papillomavirus 16 load in normal and abnormal cervical scrapes: an indicator of CIN II/III and viral clearance. Int J Cancer 98, 590-595. van Rosmalen, J., de Kok, I.M., and van Ballegooijen, M. (2012). Cost-effectiveness of cervical cancer screening: cytology versus human papillomavirus DNA testing. BJOG 119, 699-709. Van Tine, B.A., Kappes, J.C., Banerjee, N.S., Knops, J., Lai, L., Steenbergen, R.D., Meijer, C.L., Snijders, P.J., Chatis, P., Broker, T.R., et al. (2004). Clonal selection for transcriptionally active viral oncogenes during progression to cancer. J Virol 78, 11172-11186. Venuti, A., Paolini, F., Nasir, L., Corteggio, A., Roperto, S., Campo, M.S., and Borzacchiello, G. (2011). Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 10, 140. Veress, G., Szarka, K., Dong, X.P., Gergely, L., and Pfister, H. (1999). Functional significance of sequence variation in the E2 gene and the long control region of human papillomavirus type 16. J Gen Virol 80 ( Pt 4), 1035-1043. Viera, A.J., and Garrett, J.M. (2005). Understanding interobserver agreement: the kappa statistic. Fam Med 37, 360-363. Vinokurova, S., and von Knebel Doeberitz, M. (2011). Differential Methylation of the HPV 16 Upstream Regulatory Region during Epithelial Differentiation and Neoplastic Transformation. PLoS One 6, e24451. Vinokurova, S., Wentzensen, N., Einenkel, J., Klaes, R., Ziegert, C., Melsheimer, P., Sartor, H., Horn, L.C., Hockel, M., and von Knebel Doeberitz, M. (2005). Clonal history of papillomavirus-induced dysplasia in the female lower genital tract. J Natl Cancer Inst 97, 1816-1821. Viscidi, R.P., Sun, Y., Tsuzaki, B., Bosch, F.X., Munoz, N., and Shah, K.V. (1993). Serologic response in human papillomavirus-associated invasive cervical cancer. Int J Cancer 55, 780-784. Visser, J., Nijman, H.W., Hoogenboom, B.N., Jager, P., van Baarle, D., Schuuring, E., Abdulahad, W., Miedema, F., van der Zee, A.G., and Daemen, T. (2007). Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin Exp Immunol 150, 199-209. von Knebel Doeberitz, M. (2002). New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections. Eur J Cancer 38, 2229-2242. Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Munoz, N. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12-19. Walboomers, J.M., and Meijer, C.J. (1997). Do HPV-negative cervical carcinomas exist? J Pathol 181, 253254. Wang, X., Meyers, C., Wang, H.K., Chow, L.T., and Zheng, Z.M. (2011). Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol 85, 8080-8092. Weinstock, H., Berman, S., and Cates, W., Jr. (2004). Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspect Sex Reprod Health 36, 6-10. Welters, M.J., de Jong, A., van den Eeden, S.J., van der Hulst, J.M., Kwappenberg, K.M., Hassane, S., Franken, K.L., Drijfhout, J.W., Fleuren, G.J., Kenter, G., et al. (2003). Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Res 63, 636-641. Wentzensen, N., Bergeron, C., Cas, F., Eschenbach, D., Vinokurova, S., and von Knebel Doeberitz, M. (2005). Evaluation of a nuclear score for p16INK4a-stained cervical squamous cells in liquid-based cytology samples. Cancer 105, 461-467. Ð

Ñ

Ò

Ó

Ô

Õ

Ô

Ö

Ô

×

Ø

Ô

Ù

Wentzensen, N., Bergeron, C., Cas, F., Vinokurova, S., and von Knebel Doeberitz, M. (2007). Triage of women with ASCUS and LSIL cytology: use of qualitative assessment of p16INK4a positive cells to identify patients with high-grade cervical intraepithelial neoplasia. Cancer 111, 58-66. Wentzensen, N., Ridder, R., Klaes, R., Vinokurova, S., Schaefer, U., and Doeberitz, M.K. (2002). Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions. Oncogene 21, 419-426. Wentzensen, N., Sun, C., Ghosh, A., Kinney, W., Mirabello, L., Wacholder, S., Shaber, R., Lamere, B., Clarke, M., Lorincz, A.T., et al. (2012). Methylation of HPV18, HPV31, and HPV45 genomes and cervical intraepithelial neoplasia grade 3. J Natl Cancer Inst 104, 1738-1749. Wentzensen, N., Vinokurova, S., and von Knebel Doeberitz, M. (2004). Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64, 3878-3884. Wentzensen, N., Walker, J., Schiffman, M., Yang, H.P., Zuna, R.E., Dunn, S.T., Allen, R.A., Zhang, R., Sherman, M., Gold, M.A., et al. (2013). Heterogeneity of high-grade cervical intraepithelial neoplasia related to HPV16: implications for natural history and management. Int J Cancer 132, 148-154. WHO Information Centre on HPV and cervical cancer (2010a). Human Papillomavirus and related cancer in Europe. HPV Information Centre. WHO Information Centre on HPV and cervical cancer (2010b). Human Papillomavirus and related cancer in the world. HPV Information Centre. Widschwendter, A., Gattringer, C., Ivarsson, L., Fiegl, H., Schneitter, A., Ramoni, A., Muller, H.M., Wiedemair, A., Jerabek, S., Muller-Holzner, E., et al. (2004). Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res 10, 3396-3400. Wilhelm, J., and Pingoud, A. (2003). Real-time polymerase chain reaction. ChemBioChem 4, 1120-1128. Winer, R.L., Lee, S.K., Hughes, J.P., Adam, D.E., Kiviat, N.B., and Koutsky, L.A. (2003). Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol 157, 218-226. Wisman, G.B., Nijhuis, E.R., Hoque, M.O., Reesink-Peters, N., Koning, A.J., Volders, H.H., Buikema, H.J., Boezen, H.M., Hollema, H., Schuuring, E., et al. (2006). Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer 119, 1908-1914. Woodman, C.B., Collins, S.I., and Young, L.S. (2007). The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7, 11-22. Wright, T.C., Jr., and Richart, R.M. (1990). Role of human papillomavirus in the pathogenesis of genital tract warts and cancer. Gynecol Oncol 37, 151-164. Wu, Y., Chen, Y., Li, L., Yu, G., He, Y., and Zhang, Y. (2006). Analysis of mutations in the E6/E7 oncogenes and L1 gene of human papillomavirus 16 cervical cancer isolates from China. J Gen Virol 87, 1181-1188. Wynder, E.L., Cornfield, J., Schroff, P.D., and Doraiswami, K.R. (1954). A study of environmental factors in carcinoma of the cervix. Am J Obstet Gynecol 68, 1016-1047; discussion, 1048-1052. Xi, L.F., Hughes, J.P., Edelstein, Z.R., Kiviat, N.B., Koutsky, L.A., Mao, C., Ho, J., and Schiffman, M. (2009). Human Papillomavirus (HPV) type 16 and type 18 DNA Loads at Baseline and Persistence of Type-Specific Infection during a 2-year follow-up. J Infect Dis 200, 1789-1797. Xi, L.F., Jiang, M., Shen, Z., Hulbert, A., Zhou, X.H., Lin, Y.Y., Kiviat, N.B., and Koutsky, L.A. (2011). Inverse association between methylation of human papillomavirus type 16 DNA and risk of cervical intraepithelial neoplasia grades 2 or 3. PLoS One 6, e23897. Xi, L.F., Koutsky, L.A., Hildesheim, A., Galloway, D.A., Wheeler, C.M., Winer, R.L., Ho, J., and Kiviat, N.B. (2007). Risk for high-grade cervical intraepithelial neoplasia associated with variants of human papillomavirus types 16 and 18. Cancer Epidemiol Biomarkers Prev 16, 4-10. Xi, L.F., Schiffman, M., Koutsky, L.A., He, Z., Winer, R.L., Hulbert, A., Lee, S.K., Ke, Y., and Kiviat, N.B. Ú

Û

Ü

Ý

Þ

Ý

ß

Ý

à

á

Ý

â

ã

(2013). Persistence of newly detected human papillomavirus type 31 infection, stratified by variant lineage. Int J Cancer 132, 549-555. Xu, Y.F., Zhang, Y.Q., Xu, X.M., and Song, G.X. (2006). Papillomavirus virus-like particles as vehicles for the delivery of epitopes or genes. Arch Virol 151, 2133-2148. Yamada, T., Manos, M.M., Peto, J., Greer, C.E., Munoz, N., Bosch, F.X., and Wheeler, C.M. (1997). Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol 71, 24632472. Yan, X., and Owens, D.M. (2008). The skin: a home to multiple classes of epithelial progenitor cells. Stem Cell Rev 4, 113-118. Ylitalo, N., Josefsson, A., Melbye, M., Sorensen, P., Frisch, M., Andersen, P.K., Sparen, P., Gustafsson, M., Magnusson, P., Ponten, J., et al. (2000). A prospective study showing long-term infection with human papillomavirus 16 before the development of cervical carcinoma in situ. Cancer Res 60, 6027-6032. Yoder, J.A., Walsh, C.P., and Bestor, T.H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13, 335-340. You, J. (2010). Papillomavirus interaction with cellular chromatin. Biochim Biophys Acta 1799, 192-199. Yugawa, T., and Kiyono, T. (2009). Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 19, 97-113. Zehbe, I., Lichtig, H., Westerback, A., Lambert, P.F., Tommasino, M., and Sherman, L. (2011). Rare human papillomavirus 16 E6 variants reveal significant oncogenic potential. Mol Cancer 10, 77. Zerbini, M., Venturoli, S., Cricca, M., Gallinella, G., De Simone, P., Costa, S., Santini, D., and Musiani, M. (2001). Distribution and viral load of type specific HPVs in different cervical lesions as detected by PCRELISA. J Clin Pathol 54, 377-380. Zheng, Z.M., and Baker, C.C. (2006). Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11, 2286-2302. Zheng, Z.M., and Wang, X. (2011). Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta 1809, 668-677. Ziegler, K., Bui, T., Frisque, R.J., Grandinetti, A., and Nerurkar, V.R. (2004). A rapid in vitro polyomavirus DNA replication assay. J Virol Methods 122, 123-127. Zuna, R.E., Moore, W.E., Shanesmith, R.P., Dunn, S.T., Wang, S.S., Schiffman, M., Blakey, G.L., and Teel, T. (2009). Association of HPV16 E6 variants with diagnostic severity in cervical cytology samples of 354 women in a US population. Int J Cancer 125, 2609-2613. zur Hausen, H. (1977). Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol 78, 1-30. zur Hausen, H. (1994). Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. Curr Top Microbiol Immunol 186, 131-156. zur Hausen, H. (1996). Papillomavirus infections--a major cause of human cancers. Biochim Biophys Acta 1288, F55-78. zur Hausen, H. (2009). Papillomaviruses in the causation of human cancers - a brief historical account. Virology 384, 260-265. zur Hausen, J., Schulte-Holthausen, H., Wolf, H., Dorries, K., and Egger, H. (1974). Attempts to detect virusspecific DNA in human tumors. II. Nucleic acid hybridizations with complementary RNA of human herpes group viruses. Int J Cancer 13, 657-664.

ä

å

æ

ç

è

é

è

ê

è

ë

ì

è

í