Hybrid Renewable Energy Systems.

40 downloads 787 Views 7MB Size Report
RESYSproDESAL project: 2004-2007 www.resyspro.net. RESYSproDESAL=Renewable Energy SYStems for DESALination. 2. OPEN-GAIN project: 2007-2010 ...
Hybrid Renewable Energy Systems. Kamal MOHAMMEDI MESOnexusteam/M. Bougara University, Boumerdèss (Algeria) Email: [email protected]

ICPEA 2015/ICAAID2015 Joint International Conferences

SPECIMENS Project: Sustainability for Profitability and Efficiency Initiative in Cement Industry. Contribution to CO2 emissions reduction. (Funded by DGRSDT, Algerian research agency)

Specimens Project ZIAD Project: Improving efficiency, reducing Greenhouse gases (GHGs) e issio s a d aste p odu tio i i dust ial pa ks ‘PRU

ECOVERDE Project: Zero Waste-Zero Emissions Municipalities TASC Project: Tramways in Algeria for Sustainable Cities

The MESOteam was involved in FP6 EU projects in Hybrid Renewable Energy Systems for Desalination 1. RESYSproDESAL project: 2004-2007

www.resyspro.net

RESYSproDESAL=Renewable Energy SYStems for DESALination

2. OPEN-GAIN project: 2007-2010

www.open-gain.org

people not connected to grids,

National

most of them living in remote sunny arid areas (Pb of water)in Third World Countries.

overconsumption of electricity in developed countries ……Peak load shaving, CO2 mitigation, ……..

Water- Energy Nexus Energy used by Water Plants

World to have 40% less water by 2030 – UN

(Gulf News newspaper March 22, 2015)

Waste and Wastwater 3%

Residential and Commercial Buildings 8% Energy supply 26%

Forestry 17%

Agriculture 15%

Transport 13% Industry 19%

CO2 emissions

Things are not always what you see…

or what they seem to be….

Reality is….

Waste everywhere



Who is responsible?....

HRES General Architecture

PV-Wind Turbine-Diesel Genset-Batteries Hybrid system SMA Germany

DC bus Configuration

AC bus Configuration

AC-DC buses Configuration

Nature Inspired Power-2-Gas Concept

IPSEpro System Analysis Environment

Process Simulation Environment IPSEpro-PSE Icônes représentant les composants dans la bibliothèque modèle

Le rédacteur d'organigramme pour le procédé d'établissement modèle graphiques Solutionneurs pour des équations algébriques, optimisation, RESYSproDESAL FP6 Workshop, 26th March 2006, BOUMERDES, ALGERIA validation

IPSEpro: Design, Analysis, Optimisation

1.2

water power

1.0

2.0

0.8 1.5 0.6 1.0

power [kW]

2.5

water [m³/h]

PSExcel:

1.4

3.0

Day, Month, Year Balances Fractions of RES Emissions

0.4 Investment

0.5

0.5% 13.9%

0.2

0.0

3.1%

0.0 1

3

5

7

9

11

13

15

17

19

21

0.0%

CW

23

1.3%

solar hour of day in July [h] 6.0% 46.0%

PSEconomy: Life Cycle Cost Present Value of Project Levelised Costs of Power and Water Cost of CO2-Avoidance

BWED PV 29.2%

RESYSproDESAL Environment

– Advantages:

• Focus on Modelling and not on Programming • Reusable models – Concerns:

• Develop Libraries

Model Libraries • • • •

APP.lib : Power Plant Library GT.lib : Gas Turbine Library Frigo.lib : Refrigeration Processes Library DESAL.lib : Desalination Processes Library Desal.lib Library:

• • • • • •

MSF, Multi-Stage Flash MED, Multi- Effect Distillation MVC, Mechanical Vapor Compression TVC, Thermal Vapor Compression RO, Reverse Osmosis RE components (PV, WEC, CSP PTC,…..) 30

Model Developpment Kit(MDK)

31

BWRO(PV+Diesel) 5

BWRO (PV+Diesel) 5

RE to Village 4

RE to Village

from Diesel

4

from Diesel

from PV

3

from PV

power [kW]

3 2

1

0

2

1

0 1

3

5

7

9

11

13

-1

solar time of day in July

15

17

19

21

23

1

3

5

7

9

11

13

-1

solar time of day in January

15

17

19

21

23

Screen Shot from www.resyspro.net (tables)

35

General System Configuration  Energy Consumptions  RO: Reverse Osmosis Desalination Unit  LOAD: External Electricity Load

 Renewable Energy Units

DC Bus

PV = =

 PV: Photovoltaic System  WEC: Wind Energy Conversion System

 Conventional Energy Sources

DG

WEC

~

= =

 DG: Diesel Generator

 Energy Storage  BS: Battery System

AC Bus

~

RO

Static Power Pack

BS

= =

LOAD

Main Problem Volatility and Randomness of RES

Continuously Energy Demand

OPEN-GAIN DSS and Tools Actions Decision Making Phases

Feasibility Analysis Preliminary Design System Assessment Screening and Refinement Risk Assessment Evaluation

OPEN-GAIN DSS Actions

OPEN-GAIN Tools

Selection

Hybrid System Designer

Hybrid System Simulator

TradeOff Analyzer Risk Evaluato r

Multi Criteria Analyzer

OPEN-GAIN DSS Architecture User Interface OPEN-GAIN DSS Actions Database Manager

OPEN-GAIN Database

System Design

Performance Assessment

Sensitivity Analysis

Screening

Risk Analysis

Evaluation

Cases Manager

OPEN-GAIN Tools Hybrid System Designer

Hybrid System Simulator

Components Database

Trade-Off Analyzer

Risk Evaluator

Sites Database

Multi Criteria Analyzer

Configurations Library (Cases)

OPEN-GAIN DSS User Interface Main Form

Development • .NET Framework version 2 • Visual Basic.NET 2008 • AdoDB .NET • Microsoft Access 2007 • The software runs on Microsoft Windows

System Design Role: Defining the size of the units that compose the system Questions that answered Are the demands in energy and water coverable by the system? Which are the alternative configurations that cover the demand? What is the size of each unit? What is the cost of investment and operation? What is the environmental impact?

Decision Support System Données du site et de la configuration Sorties Classification croissante Selon un seul critère Cout Net Actuel (NPC)

Entrées

Caractéristiques des composants, ressources, couts, o t ai tes …

SEH 3( 41%WEC) [PV+E+GD] SEH2 (25% WEC)[PV+E+GD] SEH4 (100%WEC)[ E+GD] SEH1 (0 % WEC) [(PV+GD)]

Sortie Entrées

SEH 2( 25%WEC) [PV+E+GD] SEH 3 (41% WEC)[PV+E+GD] SEH4 (100%WEC)[ E+GD] SEH1 (0 % WEC) [(PV+GD)] Entrées SEH 2( 25%WEC) [PV+E+GD] SEH 3 (41% WEC)[PV+E+GD] SEH4 (100%WEC)[ E+GD] SEH1 (0 % WEC) [(PV+GD)]

SEH 2( 25%WEC) [PV+E+GD] SEH 3 (41% WEC)[PV+E+GD] SEH4 (100%WEC)[ E+GD] SEH1 (0 % WEC) [(PV+GD)]

Sortie Entrées

Sortie Entrées

43

9 8 7 6 5 4 3 2

00 :00 – 01 :00

01 :00 – 02 :00

05 :00 – 06 :00

07 :00 – 08 :00

08 :00 – 09 :00

09 :00 – 10 :00

17 :00 – 18 :00

18 :00 – 19 :00

20 :00 – 21 :00

21 :00 – 22 :00

22 :00 – 23 :00

16 :00 – 17 :00

14 :00 – 15 :00

19 :00 – 20 :00

4 kW RO Plant

20 kW Diesel

Mon

Wed time (days)

Thu

Estimated Water Demand

Tue

summer winter

Dump

11 kW Load

Sun

on/ off

P

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

on/ off

flow (m3/h)

SI 5048x3

EMS

23 :00 – 00 :00

Fri

Sat

Burdj-Cedria (Tunisia) Latitude: 38°.42 North Longitude: 10°.25 East, Altitude 2 m, 480 inhabitants

OPEN-GAIN IWPP Prototype in Bordj-Cedria Tunisia

13 :00 – 14 :00

SMC 5000x3

12 :00 – 13 :00

PV

11 :00 – 12 :00

WB 6000x3

06 :00 – 07 :00

Daily total load

10 :00 – 11 :00

Proven 15 kW Wind Turbine

SI 5048x3 mode 15 :00 – 16 :00

GFM 185 27×3 Vm = 36.2V Im = 5.11 A Pm = 185W

02 :00 – 03 :00

03 :00 – 04 :00

04 :00 – 05 :00

Bordj-Cedria Site. Data (2008) and results

Ambient temperature

Wind speed

HOMER prefeasibility study

Solar Irradiance

Power Production RE Fraction Wind Turbine PV Diesel Genset Total Energy production (2008) Wind Turbine PV Diesel Genset Energy consumption LEC Exces electricity

Value 65.0 % 40.5 % 24.5 % 35.0 % 108,884 kWh/year

44,120 26,681 38,083 89,059

kWh/year kWh/year kWh/year kWh/year

0.277 $ / kWh 10.2 %

Hybridization of Diesel Power Plants in South Algeria

Arzew

M'Sila

Bnoud H. Messaoud BECHAR Béni Abbess

Talmine

Tabelbala Timimoun

Deb Deb El Golea B. O. driss

M'guiden

TINDOUF ADRAR Aoulef

Afra

Ain Belbel

ILLIZI B. El Haoues

IN SALAH

Tin alkoum DJANET Ideles

Centrale diesel TAMANRASSET

Centrale diesel + Gaz Point d'approvisionnement fuel centre de maintenance

B. B. Mokhtar

In Guezzam

Tindouf Diesel Power Plant Case study 11 diesel generator set of 1.9 MW each, Total installed capacity: 20.9 MW, with a guaranteed power generation of 16.3 MW.

Operation of the Tindouf diesel power plant constraints : -Fuel Supply from Arzew (1400 km far from the site). -Diesel Genset Transport (1600 km (M'sila) for repair or Maintenance operations). - Installed power capacity will be exceeded within 5 years

This constraints have prompted SONELGAZ company to conduct a feasibility study for Renewable energy Integration to Diesel power plants in South Algeria : •E su e st ess edu tio i ope atio ith i p o ed uality of service. •Redu e fuel o su ptio ith a i i izatio of the u e of of trucks supply frequency. •P o ote e e a le e e gy sola a d i d . •Mitigate GHGs e issio s CO2 f o po e ge e atio ..

Electricity consumption profile and Tindouf site data

5 m/s

2200 kWh/m2

HOMER HRES configuration

1st config

2nd config

3rd config

Size 4 MW 7 MW 17MW 5MW 5 MW

4 MW 15 MW 4 MW 5 MW 5 MW

4 MW 18 MW 3 MW 5MW 5MW

Components

PV Wind turbine MWT62 /Mitsubishi Diesel Power Plant Converter Inverter

Table.2 Annual electricity yield (kWh/year)

1st system Production

2nd system Fraction

Production

3rd system Frac.

Production

Frac.

Compon. (kWh/year) PV

7044975

(kWh/year)

(kWh/year)

8%

7044975

11%

7044975

11%

Wind Turbine 14213632

17%

30457744

47%

36549324

57%

Diesel plant

61741508

74%

27129334

42%

20149962

32%

Total

83000112

100%

64632056

100%

63744264

100%

1st system Pollutants

carbone dioxide

2nd system

3rd system

Emissions (kg/year)

71,909,624

24,989,072

18,483,792

177,499

61,682

45,625

unburned hydrocarbons

19,661

6,832

5,054

particules

13,381

4,65

3,439

144,407

50,182

37,119

1,583,835

550,393

407,112

carbone monoxide

sulfur dioxide Nitrogene oxides

LEC

1st configuration

2nd configuration

3rd configuration

Total present net worth

$ 245668272

$ 98492184

$ 73380312

LEC

$ 0.259/kWh

$ 0.140/kWh

$ 0.114/kWh

$ 19146866 /year

$ 7600616 /year

$ 5623387 /year

Operation costs

Integration of Renewable Energy to Tala Oulili Desalination plant: 2500 m3/ day

4000 3500 3000 2500 2000 1500 1000 500 0 Janvier Février Mars Avril Mai Juin Juillet Aout Septembre Octobre Novembre Décembre

TDS (mg/l) conductivité (μs/cm)

CONCLUSION •

The use of hybrid systems for energy production is justified on many levels: technical feasibility, economic viability and above the obvious environmental benefit offered by this alternative, especially for rough and isolated site.



Concerning the environment impact, the fraction of the energy produced by renewable resources is more than half of total production, which significantly reduces the amount of fuel use and consequently reduce emissions of polluting gases. This reduction is 61.2% for CO2 and NOx.



Economically, the specific cost of energy and the annual cost of the installation are more important in a conventional system (diesel only) than in the hybrid system. On the other hand, the use of such installation is strongly linked to the available potential of renewable energy, which justifies the presence of Diesel genset in all possible configurations, this means that Renewable energy alone does not guarantee the satisfaction of demand at any time of year, especially for autonomous systems.

Thanks for Attention

Richest 300 Persons on Earth Have More Money Than Poorest 3 Billion

Kamal Mohammedi MESOnexusteam, UMBB [email protected]