where P(u) = 2,.
proceedings of the american mathematical
society
Volume 82, Number 4, August 1981
AN ABEL-TAUBERTHEOREM FOR PARTITIONS J. L. GELUK Abstract. Suppose A = {X,, X2, .. . } is a given set of real numbers such that 0 < X, < X2 < ... . Let n(u) = 2^ 0.
Introduction. Suppose A = {A,, A2, . .. } is a given set of real numbers such that 0 < A! < A2 < . . . . Let 0 = v0 < j», < . . . be the elements of the additive semigroup generated by A. Consider the weighted partition the generating function
function p(vm) defined by
OO
II (1 - *-*T* = C e— dP(u):= P(s), r=\
J0
where P(u) = 2,. 0. Letting n(u) = S{t;^. oo)/or all x > 0. (ii) There exists a nondecreasing function a(t) on (0, oo) with lim(_,w a(t) = c such
that for all x > 0 x
I no /
(f-»oo).
If c < oo iAen
fXLLÍ!ldt -log P(x)^ log T(\ + c)
-'0
t
(x^oo).
If c = oo /Ae« "* «(/) log P(7) = C ^p-dt Jn •'o
I
+ n(x) + o(n(x)),
wAere x, y —*oo ane/ v — x/i(jc) — xa(y). If c = oo a/u/ /Ae function n satisfies the relation n(xn(x)) — n(x) then n(x) — a(x) and jx(n(s)/s) ds — log P(x) — n(x) log n(x) (x -* oo).
Received by the editors August 8, 1979.
AMS (MOS) subjectclassifications(1970). Primary 40E05, 26A12. Key words and phrases. Abel-Tauber
theorems, regular variation, partition function. © 1981 American
Mathematical
0002-99 39/81 /0000-0362/$02.25
571 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Society
572
J. L. GELUK
In order to prove the Main Theorem we use the Lambert transform A of « which
is defined by »(*)-/
Jo
-rs-]-n(u)du, e
—i
supposing the integral exists. This transform arises naturally since
log P(s) = - 2
^(r)log(l - e-*>°) = - f
r-l
J0
log(l - e"») x0, and (ii) for some real s, xg'(x)(log xf is nondecreasing for x > xx, imply that xg'(x) is slowly varying and so g(x) G n with auxiliary function xg'(x). Remark 2. If L(x) ~ M(x) (x -» oo) where M(x) is nondecreasing, then the
condition sup^^ L(y) = 0(L(x)) holds. This is trivial, since L(y)/L(x) < max(^4, (1 + e)M(x))/L(x) < c for allj> < x, where L(x) < (1 + e)M(x) (x > x0), A = supJt 0 and and asymptotic fxx(L(u)/u) du
and n(x)/x is integrable on (0, R) for R > 0, ñ(l/x) = }* (L(u)/u) du + o(L(x)) (x —>oo), to a nondecreasing function. Then n(x) — L(x) + o(L(x))
(x -► oo).
Proof. Since ~Zm 0 (t -►oo), by
Theorem 15 in [2] (in this case L ~ n). This stronger result is not very useful however, since log P is expressed in terms of A and not in terms of n.
References 1. A. A. Balkema, Monotone transformations and limit laws, Math. Centre Tracts 45, North-Holland,
Amsterdam, 1973. 2. A. A. Balkema, J. L. Geluk and L. de Haan, An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. (2) 30 (1979), 385-416. 3. N. G. de Bruyn, Pairs of slowly oscillating functions occurring in asymptotic problems concerning the
Laplace transform, Nieuw Arch. Wisk. (3) 7 (1959), 20-26. 4. _, On Mahler's partition problem, Nederl. Akad. Wetensch. Indag. Math. 10 (1948),
210-220. 5. J. L. Geluk, On convolutions with the Möbius function, Proc. Amer. Math. Soc. 77 (1979), 201-210. .6. L. de Haan, On regular variation and its application to the weak convergence of sample extremes,
Math. Centre Tracts 32, North-Holland, Amsterdam, 1970. 7. K. A. Jukes, Tauberian theorems of Landau-Ingham
type, J. London Math. Soc. (2) 8 (1974),
570-576. 8. E. E. Kohlbecker,
Weak asymptotic properties of partitions, Trans. Amer. Math. Soc. 88 (1958),
346-365. 9. E. G. H. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig-Berlin,
1909; reprint, Chelsea, New York, 1953. 10. K. Mahler, On a special functional equation, J. London Math. Soc. (1) 15 (1940), 115-123. 11. S. Parameswaran,
Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math.
Soc. 100 (1961),217-240. 12. S. L. Segal, On convolutions with the Möbius function, Proc. Amer. Math. Soc. 34 (1972), 365-372. 13._, A general Tauberian theorem of Landau-Ingham type, Math. Z. Ill (1969), 159-167. 14. _,
Addendum to Jukes' paper on Tauberian theorems of Landau-Ingham
type, J. London
Math. Soc. (2) 9 (1974),360-362. 15. E. Seneta, Regularly varying functions, Lecture Notes in Math., vol. 508, Springer-Verlag,
Department
of Mathematics,
Erasmus University
of Rotterdam,
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Rotterdam,
Holland
1976.