Identification of time step dependent Identification of time-step ...

2 downloads 86 Views 1MB Size Report
hydrological model parameters based ... 1Technische Universität Darmstadt, Germany, ... physically oriented hydrological models and the simulation time step .
Identification of time time-step step dependent hydrological model parameters based on data from the Poellau experimental basin Ostrowski, M.1, Gamerith, V.2, Bach, M.1, DeSimone,S.1 1Technische Universität Darmstadt, Germany, 2Graz University of Technology, Austria

INTRODUCTION

The estimation of parameters in deterministic hydrological models is highly disturbed by multiple, partly unkown error impacts. While some parameter variations are stochastic in nature, others are deterministic, of which some are induced by the application of different time steps. The data resolution is critical both for f climatic model forcing as well as for measurements used for parameter estimation. i i

H Hypothesis th i & Methodology M th d l Hypotheses: H th ƒ There are functional relationships between sensitive parameters of physically oriented hydrological models and the simulation time step ƒIdentification of optimum physically based model structures must not rely on daily values Methodology: ƒ A physically oriented model is applied to two neighbouring experimental catchments with varying time steps steps. ƒ Optimum parameter sets are estimated with evolutionary search algorithms using a two criteria objective function (Nash & Sutcliffe 1- NSC, Mass Balance Error MBE) ƒ Optimum empirical relationships are identified ƒ Proposals for solutions are presented

E Empirical i i l relationships l ti hi 35

tc=time of concentration (h) tstep = recomm. time step (h) potential function tstep = f (A) potential function tc = f(A)

30

time e (h)

25

tc = 0.51A

0.6

20

15

tstep p = 0.2A

10

0.54

5

0 0

100

200

300

400

500

600

700

800

catchment area A (km2)

This is a very old requirement (see Maniak 1997)

900

1000

Th modelling The d lli problem bl Unmeasured input

Measured output

Reality

Σgoodness of fit

Measured input

y

Model

x Computed output

Local or global?

Parameter estimation

OF

p From Bruce Beck, 1982

Th modelling The d lli problem bl

D t E Data Errors Syst. Syst Errors

Random Errors

Parameter E ti ti Estimation Errors Meth. Meth Errors

M d lli Errors Modelling E

Appl. Appl Errors

Struct. Struct Errors

Appl. Appl Errors

+- Superposition of single g errors and uncertainties with little chance of identification of single impacts F From Ostrowski&Wolf, O t ki&W lf 1984

Th parameter The t estimation ti ti problem bl

Model drivers (precipitation, temperature etc) temperature,

Hydro-meteorological time series with changing temporal resolution l ti Δt

Data for parameter estimation (runoff)

Determination of functional relationships between time step Δt and parameter vector p Foreward propagation by model drivers, backward propagation during model inversion Remark: I try to avoid calibration, which would pretend non existing accuracy

C t h Catchments t and d climate li t time ti series i Gauge R Runoff ff Saifenbach S if b h Runoff Oelmuehle Runoff Praetisbach Runoff Duerre Saifen Streams Catchment Rainfall stations

Th model The d l sett up (BlueM) (Bl M) Sub catchment River reach Reservoir

WHR

DS

The p problem: The step p from differential towards difference equation SN = precipitation mass curve tan α = momentaneous intensity, tan β intensity for discrete Δt = t – t0

=Δt

If Δt is too large, you cannot describe physical processes

Mean rainfall intensities: decreasing g intensities with increasing time step (model driver)

Types yp of flow discretisation-mean flow ((true in volume) versus linear (true at moment)

Movement of p peak values with time step p reduction 5 60

360 720 1440

Effect of the use of constant p parameters for different time steps

Volume error direct runoff due to use of constant parameter (60 min)

accumula ated effect. precipitation n [mm]

16

Optimum 60 minutes Optimum 15 minutes

14

Optimum 360 minutes 15 minutes 60 minutes parameters

12

Over estimation

360 minutes 60 minutes parameters 10 8 6

Under estimation

4 2 0 0

20

40

60

80

100

120

140

160

precipitation p [[mm]] accumulated p

Result: Use of parameter function leads to error compensation

Maximum rainfall intensity y as a function of time step 120 00 120.00 rain gage 2 Rainfall intens sity (mm/h)

100.00

rain gage 3 rain gage 5 rain gage 6

80.00

rain gage 7 0 74 2 rain i gage 3 imax = 403 tstep-0.74 ,R = 0.99 -0.63 2 rain gage 7 imax = 178 tstep ,R = 0.99

60.00

rain gage 5 imax = 211 tstep-0.64,R2 = 0.99 2 rain gage 6 imax = 296 tstep-0.71,R R = 0.96 0 96

40.00

rain gage 2 imax = 215 tstep-0.65,R2 = 1.00 20.00

0.00 0

200

400

600

800

1000

1200

Time step p ((min))

The parameter is partly determined by the maximum rainfall intensity

1400

M i Maximum Runoff R ff as function f ti off time ti step t 7.00

mea an maximum m flow [m3/s s]

6.00 Runoff Peaks DS Runoff Peaks WHR logarithmic DS logarithmic WHR

5.00 4.00 3.00

2

2 00 2.00

R =0 0.95 95

1.00

R = 0.97

2

0.00 0

200

400

600 800 time step [min]

1000

The parameter is partly determined by the maximum runoff

1200

1400

Th model The d l structure t t (BlueM) (Bl M)

Hydrological response unit scale soil parameters Infmax Rd

kf, Θs, Θfc, Θwp

I(t)

Subbasin scale retention parameters ß, Ro,f o f,Ro, o

Infiltration zone

s

Root zone Transient zone Groundwater

Ri

Rb

S il moisture Soil i t module d l – The Th roott zone

Ep(t)

I(t) Ieff(t) Infp(Θ) Infa(t)

Ea(t)

Infmax Pv(Θ)

Θ(t) Pl(t)

kf

Ea(Θ) Pl(Θ)

Pv(t)

0

Θr

Θwp

Θfc

dΘ = Inf a (t ) − Pv (t ) − Pl (t ) − E a (t ) dt

Θs

Solution: Modified analytic y Euler integrator g with most efficient computational performance

V(t) I1(t) Q1(t) I2(t)

Q3(t)

V(t)

Q2(t)

Q1(t)

Q2(t) I3((t)) Q3(t) Qj(t) developed by Ostrowski, 1992

Sub surface retention constants versus time step 240 1000 h

Inter flow retention DS Inter flow retention WHR Base flow retention DS Base flow retention WHR Linear (Base flow retention DS) Linear (Base flow retention WHR)

900

retention con nstants [h]

800 700

2

Rb (DS) = 0.38 tstep + 380, R = 0.70

600 500 2

Rb (WHR) = 0.07 tstep + 419,R = 0.77

400

Ri (DS)=constant= 320 h

300 Ri (WHR) =constant=240 h

200 100 0 0

200

400

600

800

Time step [h]

Result: real constants or linear functions

1000

1200

1400

Fast and slow direct flow retention constants versus time step 18

3

2

Rd,s WHR= -0.21Ln(tstep) + 15.2 ,R = 0.79

14

2.5

2

Rd,s (DS)= -0.63Ln(tstep) + 16.6 ,R = 0.74

12

2

2

Rd,f (WHR) = 4E-05(tstep)+ 1.68 ,R = 0.01

10 1.5

2

Rd,f (DS) = -0.28Ln(tstep) + 3.08 ,R = 0.79

8

Direct runoff slow DS Direct runoff slow WHR Direct runoff fast DS Direct runoff fast WHR logarithmic direct runoff slow WHR logarithmic slow direct runoff DS logarithmic g fast direct runoff DS linear fast direct runoff WHR

6 4 2 0 0

200

400

600 800 time step [min]

Result: Close to linear functions or constants

1 0.5 0 1000

1200

1400

fast diirect retentio on constant [h]

slow d direct retention constant[h]

16

S il storage Soil t parameters t versus time ti step t 600

Wilting point Field capacity Total pore volume potential wilting p gp point potential total pore volume

Soil storage [mm/m]

500

400

y = 502,91x-0,0272,R2 = 0,6845

300

200 0,0882

y = 87,74x

2

,R = 0,738

100

0 0

200

400

600

800

1000

Timestep [min]

Result: Close to linear except for very small time steps

1200

1400

H d Hydraulic li conductivity d ti it versus time ti step t

8

sat. h hydr. conducttivity [mm/h]

7

hydr cond. hydr. cond DS

6

hydr. cond. WHR

5

logarithmic DS logarithmic WHR

2

4

kf(WHR) = -1,23Ln(tstep) + 9,36 ,R = 0,96

3 2 2 1 kf(DS) = -0,47Ln(x) + 4,53,R = 0,90

0 0

200

400

600

800

1000

Time step [min]

Result: Close to functional non linear relationships

1200

1400

M Max. infiltration i filt ti versus time ti step t 3000 maximum infiltration DS

max ximum infiltra ation [mm/h]

2500

maximum i iinfiltration filt ti WHR DS > 6h

2000

WHR > 6h logarithmic Duerre Saifen

2

infm (DS, (DS < 6h) = -58Ln(tstep) 58Ln(tstep) + 3400 3400,R R =0 0,9 9

1500

logarithmic Wildholzrechen logarithmic DS > 6h logarithmic WHR > 6h

1000 2

infm(WHR,

Suggest Documents