In situ observation of heat-induced degradation of perovskite ... - Nature
Recommend Documents
Degradation mechanism of CH3NH3PbI3 perovskite materials upon ... smooth CH3NH3PbI3 layers prepared by a laser evaporation technique is studied.
temperatures. b Integrated profiles of diffraction patterns of the same area. c ADF image and corresponding elemental distributions using EELS mapping of.
In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium. Electrode. Yuhki Yui. 1,2. , Masahiko Hayashi. 1. , Jiro Nakamura. 1,2. 1.
Sep 10, 2013 - The elastic strain sustainable in crystal lattices is usually limited by the onset ..... different from the observed BCC phase transitions in epitaxial.
tion of LDB and the lattice-level data from macroscopic and microscopic ... onset of the first LDB, and it is linearly fitted with respect to temperature in Fig. 2(b).
Jan 16, 2014 - mechanical and electronic properties of rGO nanosheets. It is still not fully ..... (12) Zhang, L. Q.; Liu, X. H.; Liu, Y.; Huang, S.; Zhu, T.; Gui, L. J.;.
mers consisting of ultra low molecular weight (ULMW). PLGA and PEO blocks linked by unsaturated fUmarate units [1]. Hydrophobic solid, amphiphilic rubber, or.
Nov 18, 2014 - Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China. In this work .... oxygen vacancies on the surface of solid-oxide materials provide ...... Supplementary information accompanies this paper at http://www.nature.com/.
Oct 12, 2010 - We observed the phase transitions of these Ag2Te NWs via in situ transmission electron microscopy (TEM) after covering them with Pt layers.
GEORGE A. ISAAC. Cloud Physics ... kuratov 1952; Johnson and Hallett 1968; Takahashi. 1975 ..... Freezing Drizzle Experiment 3 (CFDE3; Isaac et al. 2001).
Oct 15, 2017 - Tribology Online. Japanese Society of Tribologists http://www.tribology.jp/trol/. Vol. 12, No. 5 (2017) 229-237. ISSN 1881-2198.
In situ observation of heat-induced degradation of perovskite ... - Nature
ort-Circuit Current. Temperature (°C). FORWARD. 10. 20. 30. 40. 50. 60 .... 12. 14 Type A - vacuum. Counts. Short-Circuit Current [mA/cm2]. 0.7. 0.8. 0.9. 1.0. 1.1.
SUPPLEMENTARY INFORMATION ARTICLE NUMBER: 15012 | DOI: 10.1038/NENERGY.2015.12
In situ observation ofofheat-induced degradation of In situ observation heat-induced degradation of perovskite solar cells perovskite solar cells G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo and C. Ducati
Supplementary Information
HAADF intensity
Au Spiro 200 nm
MAPbI3
0
Heating
10
Sample A
Cooling
8 6 4
20
25
30
35
40
45
50
45
40
35
30
25
Mean PCE (%)
Mean PCE (%)
Supplementary Figure 1 – HAADF image with enhanced brightness and contrast, showing the voids in the HTM layer, here visible as dark blue circles with sizes up to 50 nm. Sample B
12 11 10 Heating
9 20
20
25
Cooling 30
Mean PCE (%)
Mean PCE (%)
10 8 6 20
30
40
50
60
70
60
50
40
30
Mean PCE (%)
Mean PCE (%) 50
60
70
80
90
80
70
60
50
40
30
30
40
Cooling 35
40
45
50
45
40
35
30
25
70
60
50
40
30
20
9 30
40
50
60
70
80
90
80
70
60
50
40
30
20
Sample D
Cooling
Heating
7 6 5 4 3
20
20
25
30
35
40
45
50
45
40
35
30
25
20
#1_Thermal Cycle (20°C/50°C/20°C) 6
12
Mean PCE (%)
Mean PCE (%)
60
10
#1_Thermal Cycle (20°C/50°C/20°C)
11 10 9 20
30
40
50
60
70
60
50
40
30
5 4 3 2 1
20
20
30
40
#2_Thermal Cycle (20°C/70°C/20°C)
50
60
70
60
50
40
30
20
#2_Thermal Cycle (20°C/70°C/20°C) 6
12
Mean PCE (%)
Mean PCE (%)
50
8 Mean PCE (%)
Mean PCE (%)
10
30
20
11
20
Sample C
25
25
#3_Thermal Cycle (20°C/90°C/20°C)
11
20
30
12
20
12
Heating
35
9
#3_Thermal Cycle (20°C/90°C/20°C)
9
40
#2_Thermal Cycle (20°C/70°C/20°C)
6 40
45
10
20
8
30
50
11
20
10
20
45
12
#2_Thermal Cycle (20°C/70°C/20°C)
4
40
#1_Thermal Cycle (20°C/50°C/20°C)
#1_Thermal Cycle (20°C/50°C/20°C)
4
35
11 10 9 20
30
40
50
60
70
80
90
80
70
#3_Thermal Cycle (20°C/90°C/20°C)
60
50
40
30
20
5 4 3 2 1
20
30
40
50
60
70
80
90
80
70
60
50
40
30
20
#3_Thermal Cycle (20°C/90°C/20°C)
Supplementary Figure 2 – PCE for all devices upon heating (4 samples per batch). NATURE ENERGY | www.nature.com/natureenergy
1
0.9 0.8 0.7
Sample A Sample B Sample C Sample D
0.6 0.5 10
FORWARD 20
30
40
50
60
70
80
90 100
Normalized Power Conversion Efficiency
1.0
DOI: 10.1038/NENERGY.2015.12
1.0 0.9 0.8 0.7
Sample A Sample B Sample C Sample D
0.6 10
20
30
1.0
FORWARD
0.9 0.8 Sample A Sample B Sample C Sample D
0.7 0.6 10
20
30
40
50
60
70
80
90 100
Sample A Sample B Sample C Sample D 40
50
60
70
80
90 100
0.6 10
REVERSE 20
30
40
50
60
70
80
90 100
1.0 0.9 0.8
Sample A Sample B Sample C Sample D
0.7 0.6 10
20
30
40
REVERSE 50
60
70
80
90 100
Temperature (°C)
1.0
1.0
0.9
0.8 FORWARD 0.7 10 20 30 40
Sample A Sample B Sample C Sample D 50
60
70
Temperature (°C)
80
90 100
Normalized Fill Factor
Normalized Fill Factor
Sample A Sample B Sample C Sample D
0.7
Temperature (°C)
FF
90 100
0.8
Normalized Open-Circuit Voltage
Normalized Open-Circuit Voltage
VOC
0.8
30
80
1.1
0.9
20
70
Temperature (°C)
1.0
0.6 10
60
0.9
FORWARD
0.7
50
1.0
Temperature (°C)
1.1
40
Temperature (°C)
Temperature (°C)
Normalized Short-Circuit Current
Normalized Power Conversion Efficiency
Normalized Short-Circuit Current
JSC
PCE
SUPPLEMENTARY INFORMATION
0.9 0.8 Sample A Sample B Sample C Sample D
0.7 0.6 10
20
30
40
REVERSE 50
60
70
80
90 100
Temperature (°C)
Supplementary Figure 3 – Photovoltaic characterisation of the devices (8 cells per type).
2
NATURE ENERGY | www.nature.com/natureenergy
Normalized Series Resistance
1.0
FORWARD
0.9 0.8 0.7 0.6 0.5
Sample A Sample B Sample C Sample D
0.4 0.3 0.2 10
20
30
40
50
60
70
80
Normalized Series Resistance
SUPPLEMENTARY INFORMATION
DOI: 10.1038/NENERGY.2015.12
90 100
0.8 0.6 0.4 0.2 0.0 10
20
30
0.8
Normalized Parallel Resistance
Normalized Parallel Resistance
FORWARD
Sample A Sample B Sample C Sample D
0.6 0.4 0.2 0.0 10
20
30
40
50
60
70
Temperature (°C)
40
50
60
70
80
90 100
Temperature (°C)
Temperature (°C)
1.0
REVERSE
Sample A Sample B Sample C Sample D
1.0
80
90 100
1.2 REVERSE
Sample A Sample B Sample C Sample D
1.0 0.8 0.6 0.4 0.2 0.0 10
20
30
40
50
60
70
80
90 100
Temperature (°C)
Supplementary Figure 4 – Series (top) and parallel (bottom) resistance for the different devices at temperatures up to 90°C
Supplementary Figure 5 – Heating ramp for the in situ experiments. After each heating step, the sample was rapidly cooled down to 50°C for 20-30 minutes while the EDX maps were acquired.
NATURE ENERGY | www.nature.com/natureenergy
3
SUPPLEMENTARY INFORMATION
DOI: 10.1038/NENERGY.2015.12
2 months in air
100°C – 30’
200°C – 15’
125°C – 30’
200°C – 30’
150°C – 30’
225°C – 15’
175°C – 30’
250°C – 15’
500 nm
Supplementary Figure 6 – Comparison of a specimen prepared after 2 months of air exposure (from sample C) with the fresh specimen at different stages of the heating ramp.
4
NATURE ENERGY | www.nature.com/natureenergy
SUPPLEMENTARY INFORMATION
DOI: 10.1038/NENERGY.2015.12
Voltage [V] 0.4 0.6
0.2
1.0
REVERSE FORWARD
SAMPLE A
Current [mA/cm2]
0.8
-4
0.0 0
Current [mA/cm2]
0.0 0
-8 -12 -16
-4
0.2
Voltage [V] 0.4 0.6 0.8
1.0
REVERSE FORWARD
SAMPLE B
-8 -12 -16 -20
-4
Voltage [V] 0.4 0.6
0.2
SAMPLE C
0.8
0.0 0
1.0
0.2
Voltage [V] 0.4 0.6
-8 -12 -16
0.8
REVERSE FORWARD
SAMPLE D
REVERSE FORWARD
Current [mA/cm2]
Current [mA/cm2]
0.0 0
-5 -10 -15
-20
Sample A Sample B Sample C Sample D
PCE (REV)
PCE (FOR)
PCEREV/PCEFOR
9.7 13.3 11.9 7.4
8.9 11.1 10.9 7.3
1.09 1.20 1.09 1.01
Supplementary Figure 7 – PV characterisation of the 4 cells, including forward (green) and reverse (red) scans. The table shows the difference in the forward and reverse scans for the cells under analysis.
NATURE ENERGY | www.nature.com/natureenergy
5
SUPPLEMENTARY INFORMATION Sample A Sample B Sample C Sample D
3
0.0030
Sample A Sample B Sample C Sample D
0.0025 0.0020 0.0015 0.0010
2
J (A/cm2)
Absorbance (a.u.)
4
DOI: 10.1038/NENERGY.2015.12
1
0.0005 0.0000 -0.0005 -0.0010 -0.0015 -0.0020
0 400
-0.0025
500
600
700
800
-0.0030 -1.0
Wavelength [nm]
0.0
0.5
1.0
V (V)
100
Sample A Sample B Sample C Sample D
80
IPCE (%)
-0.5
60 40 20 0 300
400
500
600
700
800
Wavelength [nm]
Under 1 Sun Sample A Sample B Sample C Sample D
Voc (V) 0.87 1.00 0.96 0.78
Jsc (mA/cm2) -16.4 -18.9 -17.5 -15.2
Integrated IPCE (mA/cm2) 16.9 18.6 17.4 15.5
FF(%)
PCE(%)
68.1 70.5 71.4 63.2
9.7 13.3 11.9 7.4
Supplementary Figure 8 – PV characterisation of the 4 cell types. (Top left) UV-VIS absorption. (Top right) J-V curve in dark. (Bottom) IPCE.
6
NATURE ENERGY | www.nature.com/natureenergy
SUPPLEMENTARY INFORMATION
DOI: 10.1038/NENERGY.2015.12
20
Type A - vacuum
4
8 6
2
9
10
11
12
0 12
13
14
14
22
8 6
4
4
2
2
0 0.7
0 45
1.1
14 12 Counts
10 8 6 4 2
16 14
9
10 11 12 13 Power Conversion Efficiency (%)
14
65
70
24 Type C - air 22 20 18 16 14 12 10 8 6 4 2 0 14 16 18 20 Short-Circuit Current [mA/cm2]
18 16
Type C - air
75
10
10
Counts
12
8 6
2
2 0.95 1.00 Open-Circuit Voltage [V]
1.05
0 55
0.95 1.00 Open-Circuit Voltage [V]
1.05
0 50
14
6
5
6
7 8 9 10 11 Power Conversion Efficiency (%)
Type D - single step
8 6
0
12
6
12 Type D - single step
4
65
70
75
18
20
Type D - single step
6 4 2
2
Fill Factor (%)
10 12 14 16 Short-Circuit Current [mA/cm2]
8
6
0 0.65
8
10
8
60
75
2
2
10
70
4
4
Type C - air
65
10
8
0
60
12
10
22
55
Fill Factor (%)
12
6 4
0.90
0.90
Type D - single step
14
8
4
6
2
16
14
12
0 0.85
60
8
4
0 0.85
Counts
0
8
Fill Factor (%)
Type C - air
16
10
10
2
55
24
12
4
50
18 20 22 Short-Circuit Current [mA/cm2]
Type B - glovebox
14
6
Counts
1.0
Counts
12
6
0 16
15
16
10
8
12 13 14 Power Conversion Efficiency (%)
Type B - glovebox
18
10
0.9
11
16
20
14
0.8
2
0 10
24
12
18
Counts
20
Type A - vacuum
Open-Circuit Voltage [V]
Counts
18
12
Counts
Counts
16
16 Type A - vacuum
14
6 4
Short-Circuit Current [mA/cm2]
Power Conversion Efficiency (%)
16
8
2
Counts
8
8
Counts
7
10
4
2 6
12
Counts
0
10
6
4
Type B - glovebox
12
14 Counts
6
14
16
10 Counts
Counts
8
Type B - glovebox
18
12
Counts
14
Type A - vacuum
10
0.70
0.75 0.80 0.85 0.90 Open-Circuit Voltage [V]
0.95
1.00
0 40
45
50
55
60
65
70
75
80
Fill Factor (%)
Supplementary Figure 9 – PV characterisation of 40 cells per type, showing performance and reproducibility, for the 4 different synthesis processes.