In situ observation of heat-induced degradation of perovskite ... - Nature

0 downloads 0 Views 862KB Size Report
ort-Circuit Current. Temperature (°C). FORWARD. 10. 20. 30. 40. 50. 60 .... 12. 14 Type A - vacuum. Counts. Short-Circuit Current [mA/cm2]. 0.7. 0.8. 0.9. 1.0. 1.1.
SUPPLEMENTARY INFORMATION ARTICLE NUMBER: 15012 | DOI: 10.1038/NENERGY.2015.12

In situ observation ofofheat-induced degradation of In situ observation heat-induced degradation of perovskite solar cells perovskite solar cells G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo and C. Ducati

Supplementary Information

HAADF intensity

Au Spiro 200 nm

MAPbI3

0

Heating

10

Sample A

Cooling

8 6 4

20

25

30

35

40

45

50

45

40

35

30

25

Mean PCE (%)

Mean PCE (%)

Supplementary Figure 1 – HAADF image with enhanced brightness and contrast, showing the voids in the HTM layer, here visible as dark blue circles with sizes up to 50 nm. Sample B

12 11 10 Heating

9 20

20

25

Cooling 30

Mean PCE (%)

Mean PCE (%)

10 8 6 20

30

40

50

60

70

60

50

40

30

Mean PCE (%)

Mean PCE (%) 50

60

70

80

90

80

70

60

50

40

30

30

40

Cooling 35

40

45

50

45

40

35

30

25

70

60

50

40

30

20

9 30

40

50

60

70

80

90

80

70

60

50

40

30

20

Sample D

Cooling

Heating

7 6 5 4 3

20

20

25

30

35

40

45

50

45

40

35

30

25

20

#1_Thermal Cycle (20°C/50°C/20°C) 6

12

Mean PCE (%)

Mean PCE (%)

60

10

#1_Thermal Cycle (20°C/50°C/20°C)

11 10 9 20

30

40

50

60

70

60

50

40

30

5 4 3 2 1

20

20

30

40

#2_Thermal Cycle (20°C/70°C/20°C)

50

60

70

60

50

40

30

20

#2_Thermal Cycle (20°C/70°C/20°C) 6

12

Mean PCE (%)

Mean PCE (%)

50

8 Mean PCE (%)

Mean PCE (%)

10

30

20

11

20

Sample C

25

25

#3_Thermal Cycle (20°C/90°C/20°C)

11

20

30

12

20

12

Heating

35

9

#3_Thermal Cycle (20°C/90°C/20°C)

9

40

#2_Thermal Cycle (20°C/70°C/20°C)

6 40

45

10

20

8

30

50

11

20

10

20

45

12

#2_Thermal Cycle (20°C/70°C/20°C)

4

40

#1_Thermal Cycle (20°C/50°C/20°C)

#1_Thermal Cycle (20°C/50°C/20°C)

4

35

11 10 9 20

30

40

50

60

70

80

90

80

70

#3_Thermal Cycle (20°C/90°C/20°C)

60

50

40

30

20

5 4 3 2 1

20

30

40

50

60

70

80

90

80

70

60

50

40

30

20

#3_Thermal Cycle (20°C/90°C/20°C)

Supplementary Figure 2 – PCE for all devices upon heating (4 samples per batch). NATURE ENERGY | www.nature.com/natureenergy

1

0.9 0.8 0.7

Sample A Sample B Sample C Sample D

0.6 0.5 10

FORWARD 20

30

40

50

60

70

80

90 100

Normalized Power Conversion Efficiency

1.0

DOI: 10.1038/NENERGY.2015.12

1.0 0.9 0.8 0.7

Sample A Sample B Sample C Sample D

0.6 10

20

30

1.0

FORWARD

0.9 0.8 Sample A Sample B Sample C Sample D

0.7 0.6 10

20

30

40

50

60

70

80

90 100

Sample A Sample B Sample C Sample D 40

50

60

70

80

90 100

0.6 10

REVERSE 20

30

40

50

60

70

80

90 100

1.0 0.9 0.8

Sample A Sample B Sample C Sample D

0.7 0.6 10

20

30

40

REVERSE 50

60

70

80

90 100

Temperature (°C)

1.0

1.0

0.9

0.8 FORWARD 0.7 10 20 30 40

Sample A Sample B Sample C Sample D 50

60

70

Temperature (°C)

80

90 100

Normalized Fill Factor

Normalized Fill Factor

Sample A Sample B Sample C Sample D

0.7

Temperature (°C)

FF

90 100

0.8

Normalized Open-Circuit Voltage

Normalized Open-Circuit Voltage

VOC

0.8

30

80

1.1

0.9

20

70

Temperature (°C)

1.0

0.6 10

60

0.9

FORWARD

0.7

50

1.0

Temperature (°C)

1.1

40

Temperature (°C)

Temperature (°C)

Normalized Short-Circuit Current

Normalized Power Conversion Efficiency

Normalized Short-Circuit Current

JSC

PCE

SUPPLEMENTARY INFORMATION

0.9 0.8 Sample A Sample B Sample C Sample D

0.7 0.6 10

20

30

40

REVERSE 50

60

70

80

90 100

Temperature (°C)

Supplementary Figure 3 – Photovoltaic characterisation of the devices (8 cells per type).

2

NATURE ENERGY | www.nature.com/natureenergy

Normalized Series Resistance

1.0

FORWARD

0.9 0.8 0.7 0.6 0.5

Sample A Sample B Sample C Sample D

0.4 0.3 0.2 10

20

30

40

50

60

70

80

Normalized Series Resistance

SUPPLEMENTARY INFORMATION

DOI: 10.1038/NENERGY.2015.12

90 100

0.8 0.6 0.4 0.2 0.0 10

20

30

0.8

Normalized Parallel Resistance

Normalized Parallel Resistance

FORWARD

Sample A Sample B Sample C Sample D

0.6 0.4 0.2 0.0 10

20

30

40

50

60

70

Temperature (°C)

40

50

60

70

80

90 100

Temperature (°C)

Temperature (°C)

1.0

REVERSE

Sample A Sample B Sample C Sample D

1.0

80

90 100

1.2 REVERSE

Sample A Sample B Sample C Sample D

1.0 0.8 0.6 0.4 0.2 0.0 10

20

30

40

50

60

70

80

90 100

Temperature (°C)

Supplementary Figure 4 – Series (top) and parallel (bottom) resistance for the different devices at temperatures up to 90°C

Supplementary Figure 5 – Heating ramp for the in situ experiments. After each heating step, the sample was rapidly cooled down to 50°C for 20-30 minutes while the EDX maps were acquired.

NATURE ENERGY | www.nature.com/natureenergy

3

SUPPLEMENTARY INFORMATION

DOI: 10.1038/NENERGY.2015.12

2 months in air

100°C – 30’

200°C – 15’

125°C – 30’

200°C – 30’

150°C – 30’

225°C – 15’

175°C – 30’

250°C – 15’

500 nm

Supplementary Figure 6 – Comparison of a specimen prepared after 2 months of air exposure (from sample C) with the fresh specimen at different stages of the heating ramp.

4

NATURE ENERGY | www.nature.com/natureenergy

SUPPLEMENTARY INFORMATION

DOI: 10.1038/NENERGY.2015.12

Voltage [V] 0.4 0.6

0.2

1.0

REVERSE FORWARD

SAMPLE A

Current [mA/cm2]

0.8

-4

0.0 0

Current [mA/cm2]

0.0 0

-8 -12 -16

-4

0.2

Voltage [V] 0.4 0.6 0.8

1.0

REVERSE FORWARD

SAMPLE B

-8 -12 -16 -20

-4

Voltage [V] 0.4 0.6

0.2

SAMPLE C

0.8

0.0 0

1.0

0.2

Voltage [V] 0.4 0.6

-8 -12 -16

0.8

REVERSE FORWARD

SAMPLE D

REVERSE FORWARD

Current [mA/cm2]

Current [mA/cm2]

0.0 0

-5 -10 -15

-20

Sample A Sample B Sample C Sample D

PCE (REV)

PCE (FOR)

PCEREV/PCEFOR

9.7 13.3 11.9 7.4

8.9 11.1 10.9 7.3

1.09 1.20 1.09 1.01

Supplementary Figure 7 – PV characterisation of the 4 cells, including forward (green) and reverse (red) scans. The table shows the difference in the forward and reverse scans for the cells under analysis.

NATURE ENERGY | www.nature.com/natureenergy

5

SUPPLEMENTARY INFORMATION Sample A Sample B Sample C Sample D

3

0.0030

Sample A Sample B Sample C Sample D

0.0025 0.0020 0.0015 0.0010

2

J (A/cm2)

Absorbance (a.u.)

4

DOI: 10.1038/NENERGY.2015.12

1

0.0005 0.0000 -0.0005 -0.0010 -0.0015 -0.0020

0 400

-0.0025

500

600

700

800

-0.0030 -1.0

Wavelength [nm]

0.0

0.5

1.0

V (V)

100

Sample A Sample B Sample C Sample D

80

IPCE (%)

-0.5

60 40 20 0 300

400

500

600

700

800

Wavelength [nm]

Under 1 Sun Sample A Sample B Sample C Sample D

Voc (V) 0.87 1.00 0.96 0.78

Jsc (mA/cm2) -16.4 -18.9 -17.5 -15.2

Integrated IPCE (mA/cm2) 16.9 18.6 17.4 15.5

FF(%)

PCE(%)

68.1 70.5 71.4 63.2

9.7 13.3 11.9 7.4

Supplementary Figure 8 – PV characterisation of the 4 cell types. (Top left) UV-VIS absorption. (Top right) J-V curve in dark. (Bottom) IPCE.

6

NATURE ENERGY | www.nature.com/natureenergy

SUPPLEMENTARY INFORMATION

DOI: 10.1038/NENERGY.2015.12

20

Type A - vacuum

4

8 6

2

9

10

11

12

0 12

13

14

14

22

8 6

4

4

2

2

0 0.7

0 45

1.1

14 12 Counts

10 8 6 4 2

16 14

9

10 11 12 13 Power Conversion Efficiency (%)

14

65

70

24 Type C - air 22 20 18 16 14 12 10 8 6 4 2 0 14 16 18 20 Short-Circuit Current [mA/cm2]

18 16

Type C - air

75

10

10

Counts

12

8 6

2

2 0.95 1.00 Open-Circuit Voltage [V]

1.05

0 55

0.95 1.00 Open-Circuit Voltage [V]

1.05

0 50

14

6

5

6

7 8 9 10 11 Power Conversion Efficiency (%)

Type D - single step

8 6

0

12

6

12 Type D - single step

4

65

70

75

18

20

Type D - single step

6 4 2

2

Fill Factor (%)

10 12 14 16 Short-Circuit Current [mA/cm2]

8

6

0 0.65

8

10

8

60

75

2

2

10

70

4

4

Type C - air

65

10

8

0

60

12

10

22

55

Fill Factor (%)

12

6 4

0.90

0.90

Type D - single step

14

8

4

6

2

16

14

12

0 0.85

60

8

4

0 0.85

Counts

0

8

Fill Factor (%)

Type C - air

16

10

10

2

55

24

12

4

50

18 20 22 Short-Circuit Current [mA/cm2]

Type B - glovebox

14

6

Counts

1.0

Counts

12

6

0 16

15

16

10

8

12 13 14 Power Conversion Efficiency (%)

Type B - glovebox

18

10

0.9

11

16

20

14

0.8

2

0 10

24

12

18

Counts

20

Type A - vacuum

Open-Circuit Voltage [V]

Counts

18

12

Counts

Counts

16

16 Type A - vacuum

14

6 4

Short-Circuit Current [mA/cm2]

Power Conversion Efficiency (%)

16

8

2

Counts

8

8

Counts

7

10

4

2 6

12

Counts

0

10

6

4

Type B - glovebox

12

14 Counts

6

14

16

10 Counts

Counts

8

Type B - glovebox

18

12

Counts

14

Type A - vacuum

10

0.70

0.75 0.80 0.85 0.90 Open-Circuit Voltage [V]

0.95

1.00

0 40

45

50

55

60

65

70

75

80

Fill Factor (%)

Supplementary Figure 9 – PV characterisation of 40 cells per type, showing performance and reproducibility, for the 4 different synthesis processes.

NATURE ENERGY | www.nature.com/natureenergy

7

Suggest Documents