Incremental One-Class Learning with Bounded Computational

0 downloads 0 Views 804KB Size Report
complexity constant by merging a pair of components for each new ker- nel added. ... incremental one-class learning algorithm (Incremental SVDD [5]) on a va- ... entirely absent during training, but their subsequent identification is of crucial ..... rithm has bounded computational complexity, we recorded the time taken to.
  

     

                       

                                                                                                     !     !         

       "          !  ! #  

!         !                "     $     "         

           %    &'' ()*+          "  ,     

   !        

                  

         !"        

   #                                

 $         $    

    %   $       $                               

          $          %                                  %  &     %       %     %  '      %  $    

          %      (    )     

   *   

   #     

           

+,-   

" . %   $       )     (      $         %       !     /     $     %   )            

      )            %                     $  '                       0      %                                  !"" 

# $%&'(& )$% *$ +& !"" 

    -  .   "  / -    - ! 

)0

   

            $     (   '

                $ /    %            

        1 

   %        &    $  '                    )          %   

              $  '           (             %             $  

    )  2        %                       "                        0    "%         $   $      $ 0   $    3  $      $     

   %                         2                                0       +4- 5  %         (  $        ' +6- 7

         

         !     0   $                  89 8$    9$  : "   *                  !        #        $                 $   8      $          $    

      /       %           %           

      

                 )                $ %                       *         

    +;-%   $  >   =   >  >   "         $  >   +?-  =>>       )               %     $        )    "                    

             +?- '          %  =>>    

             $    =    

               $  

%  /              

 $  >  +@-" %     %                   )        $               :            $  9  +A-"         =>>           $     %            :     

     $          :   )          

12

33    3/ 4 

2                     4%           

        ,%                =>>   +;-   :              +A-" 3      



(   %   %         =>>      (           : 

 

               (             %                              

    

                         %            /     $            %

  )     

              '                     B   >   8      (              $                 0                 Σ "              % )               z %      N      X = {x1 , . . . , xN }%             / N 1  − 1 (z−xn )T Σ −1 (z−xn ) · p(z) = e 2 d 1 · (2π) 2 |Σ| 2 N n=1

1

C"

   (2π) 1|Σ|   d              "                     C           /         $ xN EW    %         X / X → X ∪ {xN EW } 4"                     $ Σ          %           $ Σ(σ) = I d · σ2 %            σ         σ           !           >   +C-                           

    D   +CE-"    (    )  

  $  :           %                      )   σ → 0       σ %      !                 d 2

1 2

    -  .   "  / -    - ! 

15

  $ xn              ∀x = xn %  / LL(σ) =

N  n=1



log

1 d

(2πσ) 2

 1 − 12 (xn −x)T (xn −x) · · ∀x=xn e 2σ N −1



,"

8                         "   ,"            σ%   σ = arg maxσ (LL(σ))         

 C"         (       %    

                 F                 $  $ 0   $   %         0            $   0   $     +4-/   $        $  

   %  

                            

3  $     $  

    N =    :           0   $             "%         )              "%          "  / 

Nmax

w1...N = N1 Σ1...N = I d · σf2 inal μ1...N = x1...N

@"

        Gi = {wi , μi, Σi}  Gj = {wj , μj , Σj }   

         ?"  $      $        N × N   $ C     #,    N (N2 −1)  #                 Nmax        

 C"       max

max

    '           $        0     .        $   )$    )               %            

      $               %                "      /

wmerge(i,j) = wi + wj wj i μmerge(i,j) = wiw+w μi + wi +w · μj j  j  wi Σmerge(i,j) = wi +wj Σi + (μi − μmerge(i,j) )(μi − μmerge(i,j) )T   wj Σj + (μj − μmerge(i,j) )(μj − μmerge(i,j) )T + wi +w j

;"

,        !  ,  !    Nmax + 1        "   ! 

16

33    3/ 4 

2                      :                 B <                  !                          8  %  ∞ p(x) log p(x) B<    KL(P ||Q) = −∞ q(x) dx ( )   $             $        Q              P       0       Gp = {μp , Σp }  Gq = {μq , Σq }%      +4-/ KL(Gp ||Gq ) =

1 2

 |Σq | + (Σq−1 Σp ) + (μp − μq )Σq−1 (μp − μq )T − d log |Σp |

G"      (           Gi  Gj   i = j "          Gmerge(i,j)               0       +4-"       B <        Gmerge(i,j)  / cost(Gi , Gj ) = wi KL(Gi ||Gmerge(i,j) ) + wj KL(Gj ||Gmerge(i,j) ) ?"     2        $ xN EW  %        GN +1 = { N 1+1 , xN EW , I d · σf2inal }    %       $               NN +1 %   Nex           $               $                 %              {Gi , Gj } = arg minG ,G (cost(Gi , Gj )) ' {Gi, Gj }    $     %   Gi       Gmerge(i,j)  Gj            1     Gj          Gi         Gmerge(i,j)      GN +1      %         $ C          (    )$     Nmax + 1    ?"        $ %      $  

      

            max

ex

ex ex

i

j

max



   

0            %               )    *                            "    $  %                  . %  (             $                                

(        

                %              

       %                 )                  

 '  $                    10%%         )   )   90%    

    -  .   "  / -    - ! 



17

 

'           )             

    %     )                   $       Test Data (2500 points inside spiral, 2500 outliers)

Training Data (2500 points inside spiral)

inside spiral outliers

Kernels after 100 Training Examples (pre−merging)

Mixture Model after 2500 Training Examples

= 1 s.d.

Synthetic Spiral Dataset (known class=’inside spiral’)

Comparison with incremental SVDD (mean ROC from 10 trials)

1

1

0.9

0.9

0.8

0.8 0.7

0.6

True positive rate

Performance

0.7 True positives (standard deviation) True positives (mean from 10 trials) False positives (standard deviation) False positives (mean from 10 trials)

0.5 0.4

0.6

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

500

1000 1500 Observations

2000

2500

Our model (operating point) Incremental SVDD (operating point)

0.5

0

0

  3           

0.2

0.4 0.6 False positive rate

0.8

 !    

1

18

33    3/ 4  Comparison with incremental SVDD (mean ROC from 10 trials) 1

0.9

0.95

0.8

0.9

0.7

0.85

True positive rate

Performance

Wisconsin Breast Cancer Database (known class=’benign’) 1

True positives (standard devation) True positives (mean from 10 trials) False positives (standard deviation) False positives (mean from 10 trials)

0.6 0.5 0.4 0.3

Incremental SVDD (operating point) Our model (operating point)

0.8 0.75 0.7 0.65

0.2

0.6 merging starts

0.1 0 0

50

100

150 200 250 Observations

0.55 300

350

0.5 0

400

0.02

0.04 0.06 False positive rate

0.08

0.1

0

0.1

0.2 0.3 False positive rate

0.4

0.5

0

0.02

0.04 0.06 False positive rate

0.08

0.1

1

0.9

0.9

0.8

0.8

0.7

0.7 True positive rate

Performance

Letter Image Recognition Data (known class=’A’) 1

0.6 0.5 0.4

0.6 0.5 0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

100

200

300 400 Observations

500

600

0

700

1

0.9

0.95

0.8

0.9

0.7

0.85 True positive rate

Performance

Statlog Databases: Landsat Satellite Images (known class=’red soil’) 1

0.6 0.5 0.4 0.3

0.8 0.75 0.7 0.65

0.2

0.6

0.1

0.55

0

0

200

400

600 800 Observations

1000

1200

  3       

0.5

 !    

        $         

    =>>   +;-%               

         $         2   

                =>>  % %        9*>       )  79.44%        T P = 89.69%  F P = 0.308%"%      

     !                         

11

33    3/ 4 

        

    35               C    #   T P  F P                &  "    

    ) %                 =>>                  C        CE  #              *  

    (  $         

   

 #              K5' 9  <  

 /

   

C       %      G66 6   "    %     @;A  $   4@C      4       !      4E%EEE CG   "   :   $       %   4G          2   ?A6 $      L*L       %          

 ,  "#" $%     %      G@,; ,G     "             G  #         /    C;,, $   L   L               6EH  $             %       CEH    *   (  $          CE  #                * %         $   $     CEE    %         :      =>>      )          35      4%

                    =>>  %            5             & & '  )                   $ %                           ,G                $             $

 )   : "    ,%      )$        $

 

               3          565.56 ± 0.32        C,?6 $ %    =>>        )      6.25 ± 0.34     %         :        482.53 ± 60.21   8             /      2.88±0.02      5056   $ %        =>>     2.01 ± 0.102        $   

3    -      :;;"""  ;<  ;9.3   

    -  .   "  / -    - ! 



1=

   

2                     )      

   %    

          :     >      %                  =>>  %                      :          :       +A-    )          =>>                        /  %  %

                            

       

         5 '  3>?:               > @               $  -    -6) 55=)A55=0 %50=1+ 6 #   B 3"  : C        

!     

 D    >      5= )2)A)56 %622)+ 7 C &B   B:                    3 " 66 E)A561 %6228+ 8 $ ! '9B '  3>?:   F    

@        B    9   .   3  6 5))A5=7 %6225+ ) $ ! '9B .   >:   &9   :                : >  57   DD > ?   -      >  . 

 %6227+ 1 $ ! '9B: ''   '    !  9      5)) = $ ! '9B '  3>?:         >   3   .   62 5505A5500 %5000+ E $ ! '9B 9  3:                 : >  ->3 6228  7  717A711 %6228+ 0 G     $   B ?   # 9  >:               

!   "           ' 9    " '   E 6=)A722 %6228+ 52 H  I   9 C  3B:  /        "               -      J '    )2 7220A7275 %6221+

Suggest Documents