INFERENTIAL PROCEDURES FOR ... - Open Collections

12 downloads 0 Views 5MB Size Report
Marsha Lynn Schroeder, 1986 .... I am also indebted to Todd Rogers for introducing me to ... thank Todd for his careful reading of and thoughtful comments on ...
INFERENTIAL PROCEDURES FOR MULTIFACETED COEFFICIENTS OF GENERALIZABILITY by MARSHA LYNN A.,

The U n i v e r s i t y

SCHROEDER

of B r i t i s h

Columbia,

1982

THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in

THE

FACULTY OF GRADUATE STUDIES Department

We a c c e p t to

THE

this

of Psychology

thesis

the required

as conforming standard

UNIVERSITY OF BRITISH COLUMBIA September

1986

© M a r s h a Lynn S c h r o e d e r ,

1986

In p r e s e n t i n g

this thesis

i n partial

fulfilment of the

r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y of B r i t i s h it

Columbia, I agree that

freely available

agree that

f o rreference

permission

the Library

shall

and study.

I

make

further

f o r extensive copying o f t h i s

thesis

f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . understood that for

copying or p u b l i c a t i o n

f i n a n c i a l gain

PSYCHOLOGY

The U n i v e r s i t y o f B r i t i s h 1956 Main Mall V a n c o u v e r , Canada V6T 1Y3 Date

DE-6

C3/81)

S

E

P

T

«

2 9

>

1

9

8

thesis

s h a l l n o t be a l l o w e d w i t h o u t my

permission.

Department o f

of this

It is

6

Columbia

written

INFERENTIAL PROCEDURES FOR MULTIFACETED COEFFICIENTS OF GENERALIZABILITY

ABSTRACT G e n e r a l i z a b i l i t y t h e o r y was d e v e l o p e d by Cronbach as an a l t e r n a t i v e to c l a s s i c a l t e s t score r e l i a b i l i t y theory. G e n e r a l i z a b i l i t y uses an e x p e r i m e n t a l d e s i g n a p p r o a c h t o r e l i a b i l i t y t h a t p e r m i t s t h e systematic e v a l u a t i o n o f s e v e r a l sources o f e r r o r s i m u l t a n e o u s l y . The c o e f f i c i e n t o f g e n e r a l i z a b i l i t y (CG) i s a s i n g l e number summarizing t h e d e p e n d a b i l i t y o f t h e measurement p r o c e s s . In t h e p r e s e n t s t u d y a n o r m a l i z i n g t r a n s f o r m a t i o n was f i r s t a p p l i e d t o a f u n c t i o n o f t h e CG. The d e l t a method was a p p l i e d t o t h e t r a n s f o r m e d CGs f o r f o u r d i f f e r e n t t w o - f a c e t e x p e r i m e n t a l d e s i g n models t o d e v e l o p a s y m p t o t i c v a r i a n c e e x p r e s s i o n s f o r t h e CGs. The a c c u r a c y o f t h e v a r i a n c e e x p r e s s i o n s was t e s t e d v i a Monte C a r l o simulations. I n .these s i m u l a t i o n s t h e Type I e r r o r c o n t r o l was investigated. The m a j o r i t y o f t h e s i m u l a t i o n s were c o n d u c t e d u s i n g a t w o - f a c e t f u l l y random e x p e r i m e n t a l d e s i g n , c o r r e s p o n d i n g t o a three-way random e f f e c t s a n a l y s i s o f v a r i a n c e . A t o t a l o f 81 c o m b i n a t i o n s o f sample s i z e , f a c e t c o n d i t i o n s , and p o p u l a t i o n CG v a l u e s were i n v e s t i g a t e d . The r e s u l t s s u g g e s t e d t h a t the p r o c e d u r e g e n e r a l l y was p r e c i s e i n i t s c o n t r o l o f Type I e r r o r . The r e s u l t s w e r e so^twhat l e s s p r e c i s e when o n l y two f a c e t c o n d i t i o n s were sampled. F i v e o t h e r s i d e s t u d i e s were c o n d u c t e d . T h r e e o f t h e s e used o t h e r t w o - f a c e t models: a d e s i g n w i t h one f i x e d f a c e t , a d e s i g n w i t h a f i n i t e f a c e t , and a d e s i g n w i t h a n e s t e d f a c e t . The r e s u l t s o f t h e s e s t u d i e s were s i m i l a r t o those found i n t h e l a r g e r s t u d y ; g e n e r a l l y good Type I e r r o r c o n t r o l was r e a l i z e d . An a d d i t i o n a l s t u d y l o o k e d a t t h e performance o f t h e v a r i a n c e e x p r e s s i o n i n t h e p r e s e n c e o f n e g a t i v e v a r i a n c e component e s t i m a t e s . Results i n t h i s s e c t i o n o f t h e s t u d y s u g g e s t e d t h a t s u c h n e g a t i v e component e s t i m a t e s d i d n o t a d v e r s e l y a f f e c t Type I e r r o r c o n t r o l . The f i n a l study i n v e s t i g a t e d the performance of the v a r i a n c e e x p r e s s i o n with dichotomous d a t a . The r e s u l t s i n d i c a t e d t h a t Type I e r r o r c o n t r o l was n o t as p r e c i s e w i t h two f a c e t c o n d i t i o n s as i t was w i t h f i v e o r e i g h t c o n d i t i o n s . In t h e s e l a t t e r c a s e s good e r r o r c o n t r o l was realized.

iv Table

of

Contents Page

Abstract

i i

List

of T a b l e s

vi

List

of F i g u r e s

ix

Acknowledgements

x

Chapter

1

1 - Introduction

The O b j e c t

3

o f Measurement

Universes

3

Components o f V a r i a n c e

4

G and D S t u d i e s

6

Two

Kinds

of D e c i s i o n s ; Two

The C o e f f i c i e n t Estimating

Chapter

of E r r o r

Variance

of G e n e r a l i z a b i l i t y

12

Research

of t h e P r e s e n t

2 - Mathematical

7 9

the C G

Generalizability Purpose

Kinds

13

and A p p l i c a t i o n

18

Study

Development

The A p p r o x i m a t e D i s t r i b u t i o n

20

of t h e CG

The N o r m a l i z a t i o n of a F u n c t i o n

20

of t h e CG

25

The D e r i v a t i o n of an Asymptotic Variance for

Variance

Expression

f o r t h e CG

26

Expressions CGs A r i s i n g

from

Other

Experimental

Designs

29

Chapter

3 - Method

36

Data G e n e r a t i o n Overview

36

of t h e S t u d y

for Design Three Other

VII with

B o t h F a c e t s Random

Models

39

A Special

Condition:

A Special

C o n d i t i o n : Dichotomous Data

Testing Chapter

Zero V a r i a n c e

Expression

VII with F i x e d

Design

VII with F i n i t e

Design

V-B w i t h

Design

44 49

Design

Treatment

41 43

4 - Results VII with

Chapter

Components

t h e Adequacy o f t h e V a r i a n c e

Design

The

38

B o t h F a c e t s Random

49

Item F a c e t Random R a t e r

57 Facet

B o t h F a c e t s Random

of N e g a t i v e

Variance

57 60

Components

VII w i t h Dichotomous Data

61 62

5 - C o n c l u s i o n s and a Worked Example o f t h e P r o c e d u r e s

Some O b s e r v a t i o n s Implications for

about

the E m p i r i c a l

67 Results

67

of t h e Study

t h e Use o f G e n e r a l i z a b i l i t y

Limitations

of the P r e s e n t

Suggestions

f o r Future

A Worked Example U s i n g

Theory

Study

72

Research the Present

70

73 Procedure

75

References

77

Appendix

84

A

vi

List

of T a b l e s Page

Table

1

Expected both

Table

2

Mean S q u a r e s f o r D e s i g n

F a c e t s Random

3

Components

4

R e s u l t s and E s t i m a t e d f o r Psychopathy Data

Summary o f D e s i g n s a n d C o n d i t i o n s Empirical

Table

22

A n a l y s i s of V a r i a n c e Variance

Table

Proportion

o f Type

(Design V I I , both 5

I Errors for p

2

Estimates P o i n t s of

and A c t u a l

o f Type I E r r o r s f o r p

(Design V I I , both

2

52

Estimates

below S e l e c t e d P e r c e n t i l e

t h e U n i t Normal D i s t r i b u t i o n

P o i n t s of

and A c t u a l

o f Type I E r r o r s f o r p

(Design V I I , both

= .70

F a c e t s Random)

P r o p o r t i o n of the Standardized

Proportion

= .50 51

below S e l e c t e d P e r c e n t i l e

Proportion

Falling

P o i n t s of

F a c e t s Random)

t h e U n i t Normal D i s t r i b u t i o n

6

Estimates

and A c t u a l

P r o p o r t i o n of the S t a n d a r d i z e d Falling

Table

45

below S e l e c t e d P e r c e n t i l e

the U n i t Normal D i s t r i b u t i o n

23

f o r the

Investigation

P r o p o r t i o n of the S t a n d a r d i z e d Falling

Table

VII with

F a c e t s Random)

2

= .90 53

V 1 1

Table

7

Mean V a l u e s

and O v e r a l l

Parameter V a l u e s

and F a c e t

(Design V I I , both Selected

Chi-square

V a l u e s by

Conditions

F a c e t s Random) f o r

Percentile

Normal D i s t r i b u t i o n

P o i n t s of the U n i t a n d T h r e e L e v e l s of Type

I Error Table

8

54

P r o p o r t i o n of the S t a n d a r d i z e d Falling

below S e l e c t e d P e r c e n t i l e

t h e U n i t Normal D i s t r i b u t i o n

Table

9

Proportion

o f Type

Item F a c e t

Fixed)

I E r r o r s (Design V I I , 58

t h e U n i t Normal D i s t r i b u t i o n

Rater Table

10

Facet

of Type

I E r r o r s (Design V I I ,

Finite)

59

t h e U n i t Normal D i s t r i b u t i o n

both

Estimates

below S e l e c t e d P e r c e n t i l e

Proportion

P o i n t s of

and A c t u a l

P r o p o r t i o n of the S t a n d a r d i z e d Falling

Estimates

below S e l e c t e d P e r c e n t i l e

Proportion

P o i n t s of

and A c t u a l

P r o p o r t i o n of the S t a n d a r d i z e d Falling

Estimates

o f Type

F a c e t s Random)

P o i n t s of

and A c t u a l

I E r r o r s ( D e s i g n V-B, 61

vi i i Table

11

P r o p o r t i o n of the S t a n d a r d i z e d Falling

below S e l e c t e d P e r c e n t i l e

the U n i t Normal D i s t r i b u t i o n Proportion

Estimates 12

and A c t u a l

Variance

Proportion

P o i n t s of

and A c t u a l

o f Type I E r r o r s f o r D i c h o t o m i z e d

Data and Comparable C o n d i t i o n s Continuous

63

Estimates

below S e l e c t e d P e r c e n t i l e

the U n i t Normal D i s t r i b u t i o n

Random)

Component

( D e s i g n V I I , B o t h F a c e t s Random)

P r o p o r t i o n of the S t a n d a r d i z e d Falling

P o i n t s of

o f Type I E r r o r s f o r Two

Treatments of Negative

Table

Estimates

Data

with

(Design V I I , both

Facets 66

List

of

Figures Page

Figure

1

Layout

of

Variance

Data

for

Design

VII

Analysis

of 37

x

\

Acknowledgements

I would support project.

like

and encouragement I would

consenting

thank Todd

me

like

committee. instrumental would text

like

I also

reading

drafts

wish t o express

f o r h i s many h e l p f u l

indebted

for his careful

t o thank

t o Todd

o f and

of t h i s t h e s i s .

assistance

comments

Rogers f o r I also

wish t o

thoughtful I especially

Ralph Hakstian f o r c h a i r i n g

His patient

for their

Papageorgis f o r

to G e n e r a l i z a b i l i t y theory;

my

and encouragement

were

t o the c o m p l e t i o n of t h i s t h e s i s . F i n a l l y , I t o thank

preparation;

considerable

t o thank D e m e t r i

I am a l s o

comments on p r e v i o u s would

committee

throughout t h e c o u r s e of t h i s

to Jim Steiger

suggestions.

introducing

like

thesis

t o s e r v e on my c o m m i t t e e .

my a p p r e c i a t i o n and

t o thank my

Klaus Schroeder f o r h i s a s s i s t a n c e

I would

also

like

support throughout t h i s

with

t o thank K l a u s f o r h i s project.

1 Chapter

1

Introduction Generalizability (Cronbach,

theory

1963;

Rajaratnam, Cronbach, & G l e s e r , of c l a s s i c a l t e s t

Classical

score

parallel this

test

by

1972;

theory

1965)

score

as

i s b a s e d on

i s regarded

generalizability

theory

as an

Rajaratnam, a theory.

the a s s u m p t i o n theory

r e s t r i c t i v e a s s u m p t i o n . Measurement model

Cronbach,

reliability

measurements; g e n e r a l i z a b i l i t y

classical

Cronbach

G l e s e r , Cronbach, &

liberalization

on

proposed

G l e s e r , Nanda, & R a j a r a t n a m ,

Rajaratnam, & G l e s e r , 1965;

was

of

does not

rely

error within

the

amorphous q u a n t i t y ; i n

measurement e r r o r i s examined

systematically.

The has

view of measurement

been q u e s t i o n e d

1947,

1970;

sources

may

not

an

(e.g.,

next

presentation,

with

e v a l u a t i o n of design

the

same form of an when p a r a l l e l

theory

this

theory

be

different arising

instrument forms of

permits

thesis

will

introduce

p e r t a i n i n g to

developed.

the

the

of e r r o r by

i n some d e t a i l . F o l l o w i n g

will

Cronbach,

t o measurement.

i n f e r e n t i a l procedures

generalizability

theory

s e v e r a l sources

approach

s e c t i o n s of

generalizability

from

e q u i v a l e n t ; f o r example, e r r o r

used. G e n e r a l i z a b i l i t y

experimental The

a number of w r i t e r s

from e r r o r a r i s i n g

are

simultaneous

be

testing

differs

instrument

amorphous q u a n t i t y

G u l l i k s e n , 1936). E r r o r s a r i s i n g

from r e p e a t e d likely

by

e r r o r as an

this

using

2 To

i n t r o d u c e the

n o t i o n of an

experimental

a p p r o a c h t o measurement, c o n s i d e r t h e taken In

from

this

a study

study

checklist

used

assessed.

The

the

by

Schroeder,

checklist

of p s y c h o p a t h y .

trained

raters

who

f o l l o w s we year.

on

will

the

be

22

f i v e years

items

by

two

with

were a s s e s s e d

calculated.

consistency

f o r each

agreement, the the means and of

the

For

ratings

rater,

significance

over

ANOVA. The

calculate

seven

the

interrater

the

(i.e.,

22

generalizability

they

theory;

sound d a t a

scores

guide

on sum

item

generalizability data

as a

three-way

(ANOVA) and

mean s q u a r e s

key

the

individual

i n m a t e s ) X Items X

the

raters

(i.e.,

s e p a r a t e v a r i a n c e component are

of

between

i t e m s ) , and

resulting

These v a r i a n c e e s t i m a t e s

design

reliability

of

of v a r i a n c e

fully-crossed

test

a coefficient

would c o n c e p t u a l i z e t h e s e

Persons

single

internal

theory,

corresponding

inmates

of

evaluated. Using

analysis

item to a

index

c o u l d be

random e f f e c t s

or more

classical

of

of d i f f e r e n c e s

was

In what

for a

indexes

statistics we

two

a number of

raters.

variances for t o t a l test given

of a

tapping

by

u s i n g the

example an

(1983).

inmates

items

the data

s c o r e m o d e l , a number of d i f f e r e n t would be

Hare

t h e a p p l i c a b i l i t y of e a c h

concerned

If r e l i a b i l i t y

22

I t i s t y p i c a l l y used

i n m a t e . In e a c h of

were e v a l u a t e d

and

in prison

i s composed of

judge

example

(reliability)

t o measure p s y c h o p a t h y

aspects

particular

following

Schroeder,

generalizability

design

conduct

the

Raters are used

estimates.

e l e m e n t s of the

researcher

c o l l e c t i o n procedures.

to

i n the

They a r e

also

3 u s e d t o compute

the value

generalizability reliability

At

( C G ) , a s i n g l e number s u m m a r i z i n g t h e

or d e p e n d a b i l i t y

this

terminology

of the c o e f f i c i e n t of

point

o f t h e measurement

some g e n e r a l i z a b i l i t y

are presented

to help

process.

theory

clarify

c o n c e p t s and

the material

that

follows. The O b j e c t

o f Measurement

The o b j e c t the

element

o f measurement

in generalizability

o f t h e s t u d y a b o u t w h i c h one w i s h e s t o make

judgments. In t h e S c h r o e d e r of measurement

were

e t a l . (1983) s t u d y

inmates. Throughout

this

objects

o f measurement

will

objects

o f measurement

in a generalizability

could

be a n y p o p u l a t i o n

evaluated. paintings

theory i s

the objects

t h e s i s the

be r e f e r r e d t o a s p e r s o n s . The study,

of organisms or o b j e c t s ,

F o r example, t h e o b j e c t s

however,

t o be

o f measurement

c o u l d be

or animals.

Universes The e m p h a s i s generalizability conditions

used

i n both c l a s s i c a l theory

i n the study

Any o b s e r v a t i o n Facets

i s placed

test

score

t h e o r y and

on g e n e r a l i z i n g b e y o n d t h e

to a larger set of c o n d i t i o n s .

i s made under a s e t o f c o n d i t i o n s .

a r e composed o f conditions

(the term

a n a l o g o u s t o t h e ANOVA

t e r m factor;

level).

c a n be c l a s s i f i e d

An o b s e r v a t i o n

facet i s

the term c o n d i t i o n t o according

t o the

4 conditions universe

of

conditions in

o f t h e f a c e t s under w h i c h admissible

consists

of a f a c e t that t h e o r e t i c a l l y The universe

a study.

conditions

observations

i t was made. The

of

generali

of t h e f a c e t over

could

universe

the universe

of a d m i s s i b l e

w h i c h one w i s h e s t o g e n e r a l i z e .

would

like

study.

Facets

When a f a c e t admissible facet

study,

f a c e t s over

which t h e

to generalize are i d e n t i f i e d . f a c e t a r e sampled

c a n be f i x e d ,

i s fixed,

for inclusion in

random, o r f i n i t e

are included

effects.

i n the study.

When a

i s random, a number o f c o n d i t i o n s a r e sampled infinite

o b s e r v a t i o n s . When a f i n i t e

universe

universe

of admissible

Related universe

facet i s included

i n a study, a

t o the concept

notion

finite

observations. of u n i v e r s e s

s c o r e . The u n i v e r s e

score

randomly

of a d m i s s i b l e

number o f c o n d i t i o n s a r e sampled a t random from a

test

Two o r

a l l c o n d i t i o n s of the u n i v e r s e of

observations

from t h e t h e o r e t i c a l l y

of the

observations.

more c o n d i t i o n s o f e a c h the

i n some

of g e n e r a l i z a t i o n i s a subset

In a g e n e r a l i z a b i l i t y researcher

be i n c l u d e d

zat i on r e p r e s e n t s a l l

These two terms may be synonymous; however, situations

of a l l

of true

score

i s t h e concept of

i s like

the c l a s s i c a l

score.

Components o f V a r i a n c e The

variance

generalizability containing

data

components a r e t h e b u i l d i n g b l o c k s o f theory.

Consider,

(persons'

scores

f o r example, a m a t r i x

on i t e m s ) o b t a i n e d

from t h e

5 administration

of a t e s t .

generalizability object even the

of measurement, p e r s o n s ,

corresponding

the

where e a c h p e r s o n

a

score

+ a l

2

classical items,

test

a ,

heterogeneity difficulty

Item

score

reflects

2

residual

variance

variance,

t h e o b j e c t s of score

The v a r i a n c e

variance in

associated

desirability.

which

i s composed

levels

The t e r m

of

p l u s e r r o r due t o f a c e t s o t h e r

considered

fully-crossed

f a c e t s and random

two-facet

item

item

a . pi, e 2

with

i s the

of t h e two-way P e r s o n

The S c h r o e d e r e t a l . (1983) d e s i g n raters

i s variance

d i f f e r e n c e s among t h e i t e m s ;

or s o c i a l

interaction

can be

components:

true

can i n d i c a t e d i f f e r i n g

variance

explicitly

theory.

as a

2

score

is like

on

+ a . pi,e

2

due t o d i f f e r e n c e s among r e s p o n d e n t s , this

(or i s scored,

variance

variance

2

one-facet

Items i s c o n s i d e r e d

observed

t h i s model a , t h e u n i v e r s e P

measurement;

a facet

In a b a s i c

rates him/herself

(X . ) = a pi p

2

The

i t i s i n c l u d e d as a f a c t o r i n

as t h e sum of t h r e e

(1 )

i s not c o n s i d e r e d

and where

f a c e t ) the t o t a l

expressed

(Items) d e s i g n .

a n a l y s i s of v a r i a n c e .

same s e t o f i t e m s

random

i s described in

as a o n e - f a c e t

t h o u g h , a s shown n e x t ,

design

In

theory

This design

design.

than

those

fluctuation. i s an items For t h i s

by

design

the

by

6

total

observed

s c o r e v a r i a n c e c a n be e x p r e s s e d a s :

a (X

. ) = a + a pir p 1

2

+ a

2

2

2

r

+

a.

+ a pr 2

2

pi

(2) + a?

+a . 2

ir

The v a r i a n c e components estimated

u s i n g from

t h e ANOVA e x p e c t e d

pir,e

i n equations

statistical

(1) a n d (2)

theory

estimates of the expected

substituting

the v a l u e s

for a a

2

P

2

for

i nthe

estimates of the

F o r example, t h e

i s g i v e n by = (MS

the two-facet

expressions the

P

mean s q u a r e s ,

c a n be c a l c u l a t e d .

squares

mean s q u a r e s . By

f o r t h e mean s q u a r e s

f o r the expected

v a r i a n c e components estimate

the e x p r e s s i o n s f o r

mean s q u a r e s . The o b t a i n e d mean

are unbiased

equations

are

P

- MS

random

. - MS + MS . ) Pi pr pir,e

effects

f o r the expected

facets are fixed,

mean s q u a r e s

random,

(1967) p r o v i d e d r u l e s

m o d e l . The form

or f i n i t e .

for writing

of the

d e p e n d s on w h e t h e r Millman

and G l a s s

these expressions

(also

see C r o n b a c h e t a l . , 1972, Ch. 2 ) . G and D S t u d i e s C r o n b a c h e t a l . (1972) d i s t i n g u i s h e d of

study.

conducted be u s e d

The f i r s t ,

the g e n e r a l i z a b i l i t y

between

two t y p e s

or G study, i s

t o o b t a i n e s t i m a t e s o f t h e v a r i a n c e components t o

t o p l a n the second,

purpose of the D study

the d e c i s i o n

o r D s t u d y . The

i s t o make d e c i s i o n s a b o u t

the object

7 of measurement. The D s t u d y provided

i n the G study

Cronbach e t a l . viewed distinct. be

to design

data

u s u a l l y a r e used

Two K i n d s

score

other

the D study

estimate

at

least

estimates.

f o r both

t h e G and D s t u d i e s . of E r r o r

one o f two k i n d s

Variance

of d e c i s i o n i s made. An

to a c r i t e r i o n

e t a l . (1983) s t u d y

universe

or c u t t i n g s c o r e .

i f an inmate were

a s a p s y c h o p a t h when he r e c e i v e d a mean r a t i n g of

2.8 o u t o f a maximum

no d i r e c t

o f 3, an a b s o l u t e

decision

rank o r d e r e d

according

The

standing

relative

decision i n the sense

c o m p a r i s o n s among t h e i n m a t e s t e s t e d were

made. A relative

a d e c i s i o n about Schroeder

being

however, t h e same

would have been made. The d e c i s i o n i s a b s o l u t e that

should

components

s t u d i e s . In p r a c t i c e ,

i s compared

ideally

l a r g e sample G s t u d i e s

i s made when an i n d i v i d u a l ' s

In t h e S c h r o e d e r classified

component

information

t h e G and D s t u d i e s a s b e i n g

o f D e c i s i o n ; Two K i n d s

decision

using

the r e s u l t a n t variance

used

absolute

variance

They b e l i e v e d t h a t

conducted with

In

i s planned

i s made when t h e i n d i v i d u a l s a r e to their

estimated

o f an i n d i v i d u a l

universe

i s then

her or h i s f u t u r e treatment.

e t a l . study

i f the highest

sample had been d e s i g n a t e d

score.

used

t o make

In t h e

s c o r i n g 20% o f t h e

psychopaths, a r e l a t i v e

decision

would have been made.

Just estimates universe

a s t h e two k i n d s

of d e c i s i o n d i f f e r ,

of e r r o r v a r i a n c e score

upon w h i c h

a s s o c i a t e d with

so t o o do t h e

t h e e s t i m a t e s of

the d e c i s i o n s a r e based.

In t h e

8 case

of a b s o l u t e

sources

decisions, error variance

of v a r i a n c e

except

the source

arises

due t o t h e o b j e c t of

measurement. C r o n b a c h e t a l . (1972) l a b e l l e d variance by

expression

some s o u r c e s

e t a l . (1983) s t u d y ,

heterogeneity. across

interaction variance random,

source

a l l inmates

i s accounted

labelled other

do n o t e n t e r

due t o Items

f o r example,

of v a r i a n c e

into

reflects

i s considered

( p o s s i b l e item-inmate

f o r i n the item-person

interaction

c o m p o n e n t ) . When a l l f a c e t s of t h e d e s i g n a r e a (6) incorporates a l l variance

case

with

the object

of a d e s i g n

interaction

interactions

of measurement

between t h e o b j e c t

both

kinds

component

conditions within

of e r r o r v a r i a n c e ,

a fixed

the object

estimate

and a

finite

reflects

upon w h i c h t h e the f a c t

i s the average v a l u e

to using

length

the

that the

of t h e

t h e o b j e c t o f measurement.

i s equivalent for test

due t o

number of

of measurement

score

within

facet

each c o n s t i t u e n t

i s d i v i d e d by t h e t o t a l

universe

correction

with

error.

i s based. T h i s procedure

procedure

facet,

o f measurement

variance

observations

In c o n t r a s t , i n

t o be e r r o r v a r i a n c e . V a r i a n c e

i s considered

variance

of measurement.

incorporating a fixed

of t h e o b j e c t

not c o n s i d e r e d

For

components i n v o l v i n g

2

interaction

facet

This

error

of v a r i a n c e

f o r the e r r o r v a r i a n c e . Variance

the Schroeder

constant

this

decisions,

t h a t due t o t h e o b j e c t of measurement

item

is

of r e l a t i v e

2

the

the

In t h e c a s e

2

Cronbach e t a l . as a ( 6 ) ,

than

in

a (A).

from a l l

This

Spearman-Brown

( C r o n b a c h e t a l . , 1972, p. 8 2 ) .

9 In t h e S c h r o e d e r estimate items

et a l . study

i s the average

f o r e a c h o f two In t h e p r e s e n t

error

variance

variance error is

value

taken

r e s e a r c h , emphasis

The

to the c l a s s i c a l

than

of

i n the study

the

score

n o t i o n of

of i n d i v i d u a l d i f f e r e n c e s

a r e made. (CG)

of g e n e r a l i z a b i l i t y ,

correlation

coefficient

procedure

The i n t r a c l a s s

correlation

test

2

of G e n e r a l i z a b i l i t y

t h e measurement

decisions.

i s p l a c e d on t h e

i s the a ( A ) e r r o r v a r i a n c e . T h i s e r r o r

coefficient

intraclass

44 o b s e r v a t i o n s (22

2

a l s o of r e l e v a n c e

Coefficient

over

CG, i s an

summarizing

i n the case

correlation

t h e adequacy

of r e l a t i v e

coefficient

( C r o n b a c h e t a l . , 1972, p. 17; S h r o u t

Fleiss,

1979). A n e g a t i v e l y b i a s e d b u t c o n s i s t e n t

(Lahey,

Downey, & S a a l ,

lower

correlation

limit

measurement

1983), t h e maximum coefficient

i s zero. Although i s o f t e n used

standardized

in

value

&

statistic of the

i s one; t h e t h e o r e t i c a l

the standard

t o summarize

measurement, t h e CG p r e s e n t s

As

i s the

between e x c h a n g e a b l e measurements o b t a i n e d on

same o b j e c t

intraclass

score

raters).

where c o m p a r i s o n s among p e r s o n s The

inmate's u n i v e r s e

o ( 6 ) . T h i s c o n c e p t u a l i z a t i o n of e r r o r

i s closer

variance

each

e r r o r of

the adequacy of

the advantage of having a

metric.

an example, c o n s i d e r a g a i n

w h i c h a number o f p e r s o n s

number o f i t e m s

measuring

a simple

one-facet

are t e s t e d or evaluated

some a t t r i b u t e .

Further,

design on a

suppose

10

that

the

n.

items

theoretically (i.e.,

each

were sampled a t random from

infinitely

individual

These data

would be

ANOVA w i t h

Persons

to for

of

the

the

as t h e Between

between c l a s s

(Haggard,

[o

p.

items).

effects

i n the d e s i g n .

(here person

1958,

Haggard's treatment attention

observation

as

the

Cronbach et a l . ' s treatment

coefficient

facets;

(i.e.,

t h e CG) p

2

= a/ P 2

of a s i n g l e

coefficient, aggregated

p , 2

items.

i :p

The

i s the

variance)

4 ) . The

expression

],

to Persons, within of t h e

2

intraclass

on

focuses

here

o

and

the

i :p

i s the

Persons.

the

correlation

individual

( h i s treatment

psychometric on

item of

[o

2

P

+

scores averaged

intraclass

o

2

r e p r e s e n t s the

the

average

Cronbach et a l . ' s

reliability

of

over

correlation

/n.]. i:p i-

r e p r e s e n t s the

item while

or

applications).

is

T h u s , H a g g a r d ' s c o e f f i c i e n t , R, reliability

2

of a n a l y s i s

encompasses more t h a n

t h e c o n d i t i o n s of

P

i s focused

unit

a

+

2

2

coefficient

topic

s e t of

population value i s :

i s the v a r i a n c e due P v a r i a n c e due t o Items n e s t e d In

individual

for t h i s design

variance

2

a

factor

coefficient

R = a/ P where

f o r each

a n a l y s e d as a one-way random

t o t a l variance

the

item pool

receives a different

intraclass correlation ratio

large

a

the

11 C r o n b a c h e t a l . (1972, p. ratio

of

universe

score

variance. This value correlation score of

The

observed

2

to expected

can

O

( T ) /

2

and

be

and

as

[o (r) +

the

score

squared

universe

is a

coefficient

more g e n e r a l l y

as

2

variance

previously, error variance

the

a (6)]

2

score

as

t o the

such

expressed

CG

observed

equal

score

82),

CG

i s universe

CT (T)

defined

=

2

d e f i n e d the

i s approximately

( C r o n b a c h e t a l . , p.

P where

variance

between t h e

determination.

17)

and

a (6)

i s , as

2

a s s o c i a t e d with

relative

decisions. The

CG

i s comparable

reliability is

coefficients

i n t e r p r e t e d the

coefficient, measurement

p , 2

to c l a s s i c a l

same way.

n

the

score

( C r o n b a c h e t a l . , 1972, The

i n d i c a t e s how

(e.g.,

test

m a g n i t u d e of

reliably

p e r s o n s ) can

the be

p.

84)

and

the

object

rank

of

ordered

with

P

the

f a c e t s and

design. the

For

average

numbers of

example,

obtained

indicates

the

value

that

rating

i n the

of

p

=

2

f a c e t c o n d i t i o n s used

Schroeder .86

i n m a t e s can

be

assigned

two

by

e t a l . (1983)

( f o r a sample of reliably

ranked

r a t e r s on

the

inmates)

using 22

the

item

Following

guidelines

for r e l i a b i l i t y ,

acceptable

f o r r e s e a r c h p u r p o s e s where g r o u p a v e r a g e s

will

l o c u s of be

interest.

made a b o u t

(generalizability)

(1978, pp.

71

a coefficient

the

study,

checklist.

the

Nunnally's

in

245-246) of a t

least

.7

is

are

In a p p l i e d s e t t i n g s , where d e c i s i o n s

individuals, should

be

as

reliability high

as p o s s i b l e .

12

Estimating In

t h e CG

practice,

t h e CG i s e s t i m a t e d

components c a l c u l a t e d gives

i n the G study.

t h e r e s e a r c h e r an e s t i m a t e

a proposed

component

relative

a d e q u a c y of a v a r i e t y

collection

prior

accomplished in

estimates

coefficients researcher of

a

that w i l l

if

of designs

conducting

constitute

i n determining facet

the study.

of f a c e t

c o n d i t i o n s used

a ( 6 ) guides the 2

2

v a r i a n c e . In t h i s

need t o be s a m p l e d . estimate

accounts

diminished

by p l a n n i n g a D s t u d y

conditions

o r s e e k i n g ways t o d i m i n i s h t h e v a l u e

the

case

only

f o r a large

of t h e e r r o r

For

i t

In c o n t r a s t ,

proportion

variance

the

within a (6) i ssmall,

to error

component

This i s

be s a m p l e d . I f t h e e s t i m a t e of

contained

of the facet

a particular

f o r data

whether more o r fewer c o n d i t i o n s

should

contribute l i t t l e

few l e v e l s

From t h e

o f t h e CG. The m a g n i t u d e o f

a v a r i a n c e component will

procedure.

by v a r y i n g t h e number

a particular

The c a l c u l a t e d CG

t h e r e s e a r c h e r can e v a l u a t e the

to actually

t h e computation

the variance

o f t h e g e n e r a l i z a b i l i t y of

D-study data c o l l e c t i o n

variance

from

v a r i a n c e , i t s impact'can

be

w i t h a l a r g e number of of the

itself.

example,

general

p

2

form

i n the Schroeder of the e s t i m a t e d

= a /[o 2

p

2

+ d ./n.

+a

2

p

pi

2

I

e t a l . (1983) example,

CG i s e x p r e s s e d a s :

/n

pr

+ a . 2

r

pir, e

/n.n ] I

r

13 If

i t i s found

that

t h e component

a

, c o r r e s p o n d i n g t o the

2

pr person

by

rater

component raters

interaction,

can be m i n i m i z e d

i n the D s t u d y .

then

s t e p s s h o u l d be

data

by

improving

decreasing

taken

In

other t e s t i n g t i m e may

facet it the

would

s h o u l d be

here

that

noted

the

interest.

included

within

be

or because

some o t h e r

of

the

thereby

t h e c h o i c e of

facets

s t u d y . The

Schroeder

t h e e q u i v a l e n c e of stability

facets

can

suggested

raters.

of measurement

In s u c h a c a s e an

several

some f a c e t s can

so d e s i g n e d

practical,

i n the g e n e r a l i z a b i l i t y

that

this

number of

the q u a l i t y

of the

f o c u s e d on

same d e s i g n . F u r t h e r , as

example, was

be

of

i s not

of

r

situations

be

a large

procedures,

depends upon t h e p u r p o s e

a l . (1983) example

impact

.

2

noted

et

over

approach

t o improve

a

the v a l u e of

the

employing

the t r a i n i n g

s h o u l d be

studied

by

If t h i s

p

It

i s large,

be

i n an

nested, e i t h e r

Occasions study. Also

included

in

earlier

because

the

facets are n a t u r a l l y

nested

f a c e t - - s u c h as C l a s s e s n e s t e d

within

study

Schools. Generalizability The

use

Theory

Research

of g e n e r a l i z a b i l i t y

by a number of a u t h o r s w i t h i n Jackson

& Paunonen,

These a u t h o r s approach classical

1980;

stressed

to r e l i a b i l i t y test

score

the

and

Application

t h e o r y has field

Mitchell,

approach.

Wiggins,

of a

e s t i m a t i o n over

advocated

of p s y c h o l o g y

1979;

the advantages

been

the

(e.g.,

1973).

multifaceted traditional

1 4 Pedagogical the

generalizability

science 1981)

literature.

and

Rentz

the a p p l i c a t i o n Brennan and concepts an

articles

a p p r o a c h have a p p e a r e d C a r d i n e t , Tourneur,

psychological

(1979) p r e s e n t e d

approach to estimate

a l s o are

Naccarato,

1984)

In

(e.g.,

& O'Dell a

Chalmers &

Wallander,

generalizability

in multifaceted theory

instrument

applications

( e . g . , G i l l m o r e , Kane, & 1977;

(e.g., Cain

1984;

1985;

the

Nussbaum,

& Green,

198,4) and

1983;

F r a s e r , Cronshaw, &

Alexander,

literature.

properties

of

been d i r e c t e d

p.

behaviour

& Barrett,

Although

the

have u s e d

Kane & B r e n n a n ,

with

in research

M a r i o t t o , Conger, C u r r a n ,

i n the e d u c a t i o n a l

1978;

organizational Doverspike

theory

studies. Generalizability

found

essential

along

science l i t e r a t u r e .

reliability

of

application.

Hansen, T i s d e l l e , 1985)

the

theory

a number of a u t h o r s

Farrell,

1979;

design

social

literature

Conger, & Conger,

development

(1976,

demonstrations

a summary of

of g e n e r a l i z a b i l i t y

i n the

1985;

Allal

t o e d u c a t i o n a l measurement.

technique

f e a t u r e s of g e n e r a l i z a b i l i t y

s e t t i n g s appear

social

of t h e

Applications

Wallander,

and

i n the

of

detailed

example of a t w o - f a c e t

& Knight,

the a p p l i c a t i o n

(1980) p r e s e n t e d

Kane

and

demonstrating

little the

r e s e a r c h has

generalizability

toward examining

v a r i a n c e component 138)

referred

the

f o c u s e d on technique, sampling

estimates. Shavelson

to these

the

components as

the

statistical

some work

has

p r o p e r t i e s of and

Webb

"Achilles

(1981, heel"

15 of

g e n e r a l i z a b i l i t y theory

properties. sampling design

Smith

(1978) e m p i r i c a l l y

e r r o r s of

variance

models. His b a s e d on

unstable.

G studies

not

performed

linear

little

investigating neglect

relatively the

suggested provide would The then

that

large

used

sampling

of

the

Cronbach et

the

large

the

degree

were based

calculated

with

on

the

CG.

toward One

al.(l972)

coefficient;

variance

be

estimates.

they

stressed They

conducted

Such

facet

studies

from s u c h s t u d i e s

t h e s e components

are

likely

stable,

to

conditions.

g e n e r a l i z a b i l i t y of

likely

for

placed

components.

should

numbers of

reason

would

the

B e c a u s e component e s t i m a t e s b a s e d on

facet conditions

stable.

(completely

that

been d i r e c t e d

error

numbers of

the

(1966)

indicated a high

estimates

components c a l c u l a t e d

proposed design.

are

conditions

Nelson

hierarchical

component

to estimate

component

from w h i c h t o p r e d i c t

scale G studies

stable variance

variance

has

e m p h a s i s on of

two

squares.

i s that

importance

involve

be

of mean

sampling

likely

little

greater

i n the

research

the

numbers of

results also

variability

combinations

Very

this

Their

using

under

variance

s t u d i e s . Leone and

a s i m i l a r study

sampling

estimates

the

facet conditions

involving small good e s t i m a t e s

sampling

investigated

component

numbers of

subsequent D

nested) designs. of

small

provide

a d e q u a c y of

their

r e s u l t s i n d i c a t e d that

estimates

t h u s do

b e c a u s e of

the

would a l s o

CGs be

large

16 However, i n many t e s t i n g r e s o u r c e s a r e not a v a i l a b l e s t u d y . Nor, g e n e r a l l y , results available.

situations

t o conduct

are suitable

Even

i f G study

sufficient

a preliminary G

p u b l i s h e d G study r e s u l t s were

r e s e a r c h e r s would be a d v i s e d t o e x e r c i s e other

r e s e a r c h e r s ' v a r i a n c e component

e s t i m a t e s may be u n s t a b l e or

unmeasured

occasion

facets,

of t e s t i n g ,

( c f . Smith,

available,

caution i n using

e s t i m a t e s . Such 1978).

such as geographic

F u r t h e r , hidden

l o c a t i o n or

c o u l d have an impact

on t h e D s t u d y .

Most p u b l i s h e d r e s e a r c h u s i n g g e n e r a l i z a b i l i t y is

based

on a s i n g l e

data c o l l e c t i o n

D and G s t u d y . R e s e a r c h e r s t h e CG t h a n

in

reflects

of r e p o r t i n g

instrument

summarizing studies

estimates.

studies.

and v a l i d i t y

coefficients

In a d d i t i o n ,

coefficients

instrument

often

a r e needed i n

has been d e v e l o p e d f o r

purposes.

Researchers

the

reliability

t h e a d e q u a c y o f measurement

experimental

report

t e n d t o p l a c e g r e a t e r emphasis on

the long-standing psychometric

development

i n w h i c h a new

Alexander,

s e r v e s as both the

t h e y do on t h e v a r i a n c e component

This probably tradition

that

theory

(e.g., Doverspike,

Carlisi,

1983; Kane, G i l l m o r e , & C r o o k s ,

Barrett, &

1976) o f t e n

t h e e s t i m a t e d CG f o r t h e number o f c o n d i t i o n s used i n

s t u d y a s w e l l a s e s t i m a t e s f o r o t h e r numbers o f

conditions. estimated

Some a u t h o r s have t e n d e d

to treat

CGs a s i f t h e y were p a r a m e t e r

estimates. Doverspike

these

values, rather

e t a l . , f o r example,

stated

that

than

17 "...reliability raters

was

dropped

reduced

only

from

to

was

estimates

c o n s i d e r e d . To

important

to report a confidence

d o e s not

due

coefficient

study.

interval, r a n g e of

But,

by

r e s e a r c h e r s would be the

inferential studies.

would be

population

intraclass

single-sample independent

developed

confidence

crossed design

Fleiss

developed

similarly

90%

confidence

the

CG

measurement

with

the

of

likely

and

toward e x a m i n i n g for single

d e a l t with

the

facet

generalizability

and

coefficient

e q u i v a l e n t t o CGs. techniques

intervals

and

Feldt

f o r making

in generalizability

sample Shrout

and

Whalen

significance (1978; S h r o u t

approximate confidence

(1965,

for constructing

for coefficient

by H a k s t i a n

a k independent

coefficients.

estimated

i n v e s t i g a t e d t h e p r o p e r t i e s of

inferential

extended

a measure of

replication

computed

sample c o m p a r i s o n s

T h i s work was

standard

upon

provided

coefficients

of w h i c h a r e

presented

the

of an

that a

been d i r e c t e d

have

correlation

alpha—both

one-facet

they

or

parameter.

p r o p e r t i e s of CGs

se;

or

no

e r r o r i n the

indicating

found

T h e s e s t u d i e s have not per

However,

of

conclusions, i t is

A high value

reliable

number

sampling

interval

r e p o r t i n g say

Some r e s e a r c h has

1979)

such

thereby

to sampling.

i s adequately

favourable

theory,

of

n e c e s s a r i l y guarantee t h a t the

procedure

1969)

clarify

when t h e

(p. 481).

presence

f o r each c o e f f i c i e n t ,

uncertainty

the D

to the

1"

attention

error

given

10

slightly

two

alpha

(a

terminology). (1976) test &

intervals

who

for alpha

Fleiss, for six

intraclass and

Lind

correlation

coefficients.

(1982) d e r i v e d a p p r o x i m a t e v a r i a n c e and c o v a r i a n c e

expressions

for coefficient

expressions

to develop

dependent

sample a l p h a

suggested

calculated not is

inferential involving

the

more t h a n

Thus,

t h e major

focus

of i n f e r e n t i a l

The t w o - f a c e t

one f a c e t

of a

single

of the p r e s e n t

with

have

two o r more

procedures

design,

f o r CGs

developments, i t

on t h e p r e c i s i o n

o r t o make c o m p a r i s o n s among

development

estimate.

procedures

In t h e a b s e n c e o f s u c h

n o t p o s s i b l e t o comment

coefficients.

for multiple

Study

from d e s i g n s

coefficient

procedures

used the

coefficients.

above,

been d e v e l o p e d .

a l p h a . These a u t h o r s

inferential

Purpose of the Present As

More r e c e n t l y , H a k s t i a n

both

study

was

f o r t h e CG f a c e t s random,

•r

will

be u s e d

to i l l u s t r a t e ,

i n the next

developments, g r e a t e s t d e t a i l . Design

t o as

V I I ( s e e C r o n b a c h e t a l . , 1972, Ch. 2 ) , has a

broad

t o p s y c h o l o g i c a l and e d u c a t i o n a l

measurement p r o b l e m s ; involving

i t i s appropriate

multiple raters,

periods. Further, this allowing

procedure

for studies

or o b s e r v a t i o n

is relatively

of the development

without

the g e n e r a l i z a b i l i t y

crossed

observers,

design

the e x p l i c a t i o n

inferential

This design,

these

referred

range o f a p p l i c a t i o n

of

chapter,

extensive

of the

notation.

approach to designs

facets i s straightforward.

uncomplicated,

with

Extension more

1 9 The study are,

random f a c e t model was

because the author as a s s e r t e d by

notion

b e l i e v e s t h a t most

Shavelson

and

of e x c h a n g e a b i l i t y , sampled

In t h e i r other

c h o s e n as t h e

view,

i f facet

potential

treated

as

The employed

r e s e a r c h used

by H a k s t i a n

and

experimental

normalizing

Lind

the

design

t r a n s f o r m a t i o n was

sample c o e f f i c i e n t .

derive

be

facet,

a method

universe.

exchanged the

facet

similar

(1982) t o d e v e l o p

approximate variance expression

the

a larger

the

with should

be

random.

present

different

from

this

facets studied

Webb (1981) w i t h

c o n d i t i o n s can

c o n d i t i o n s of t h e

f o c u s of

for estimated

and

sampling

i n the

following chapter.

CGs

of

under a

expression for

method was

variance expressions. Details

are presented

an

models. F i r s t ,

a p p l i e d to the

Then t h e d e l t a

to that

these

used

to

procedures

Chapter Mathematical The and

development

their

Development

of the asymptotic

f o r the f u l l y - c r o s s e d

a l . ' s (1972, p . 38) D e s i g n begins

distribution

o f t h e CG and t h e n

application

coefficient

selected The

method

development two-facet

Schroeder

designs

with the

f o r other

o f t h e CG

e t a l . (1983) s t u d y

discussed previously

V I I G Study. In t h i s

case

balanced

ANOVA d e s i g n . The d a t a

analysed

as a three-way

replications

(i.e.,

f o r such

factorial

there

a

p

design

This

subjects

a design are without

i s o n l y one o b s e r v a t i o n p e r c e l l ) .

model u n d e r l y i n g t h e s e

+

each of

by e a c h o f two r a t e r s .

c a n be c h a r a c t e r i z e d a s a b e t w e e n - w i t h i n

= M

this

f o l l o w s t h e same s t e p s .

i n m a t e s was r a t e d on 22 i t e m s

X. pir

proceeds

of v a r i a n c e e x p r e s s i o n s

71

linear

random.

to obtain the variance expression.

an example of a D e s i g n

The

facets

i s a p p l i e d t o the transformed

is

layout

design--Cronbach

with a d i s c u s s i o n of the approximate

Approximate D i s t r i b u t i o n The

both

w i l l be

of a n o r m a l i z i n g t r a n s f o r m a t i o n . F o l l o w i n g

the d e l t a

The

expressions

intervals

two-facet

VII—with

This chapter

step,

variance

use i n c o n s t r u c t i n g c o n f i d e n c e

illustrated et

2

data

i s e x p r e s s e d as

+ b . + c + a b . + a c + be. + abc . , I r pi pr ir pir,e

21

where u i s t h e g r a n d

mean, a

i s the e f f e c t

due t o p e r s o n

p,

P b. 1

i s the e f f e c t

rater

r . The r e m a i n i n g

effects in

due t o i t e m

f o r the three-way

random e r r o r

formulas

ANOVA model a r e p r e s e n t e d variance

component

Throughout

these

interaction

i s confounded with

f o r the expected

this

mean s q u a r e s in Table

estimates

due t o

i n t h e model r e p r e s e n t t h e

due t o i n t e r a c t i o n s among t h e f a c t o r s .

the subscript

that

terms

i , and c i s the e f f e c t r

The e p s i l o n indicates

i n t e r a c t i o n . The

f o r the f u l l y

random

1 . The mean s q u a r e s and

are presented

i n Table 2 .

d e r i v a t i o n s i t i s c o n s i d e r e d that the

a s s u m p t i o n s o f t h e ANOVA model a r e t e n a b l e : i n d e p e n d e n c e of observations,

homogeneity

of v a r i a n c e , and u n d e r l y i n g normal

distribution. The (3) The

p

p o p u l a t i o n CG f o r t h i s

= a /[a 1 p 2

2

subscript

random model estimate

2

design i s

+ a . / n . +a -/n + a . /n.n ] . p pa l pr r pir, e l r 2

1 i s used from

for this

2

2

to distinguish

t h e CG f o r t h e f u l l y

t h e CG f o r o t h e r m o d e l s . The sample quantity, expressed

i n terms of

observed

mean s q u a r e s , i s (4)

p

First

2

1

= 1 - [(MS . + MS - MS . )/MS ] . pi pr pir,e p

c o n s i d e r the numerator of the q u a n t i t y MS

This

expression

(1 - P ) /

. + MS - MS . pi pr pir,e

i s a linear

combination

of

independent

2

Table 1 Expected

Mean S q u a r e s f o r D e s i g n E(MSp)

=

a

E(MSi)

=

a

E(MSr)

=

a

E(MSpi)

=

E(MSpr)

=

a

E(MSir)

=

a

=

a

E(MS

p i r f €

)

a

V I I w i t h b o t h F a c e t s Random

pir, e

+

n

i r ,

e

+

n

pir,

e

+

n

i

a

+

n

r

a

pir, e

+

n

i

a

pir, e

+

n

pair

P

F>ir,



2 i

r

>

e

rap>i

+

r ° p i P

r

P

i

P

r

+

n

i

r

+

n

i

n

pair

+

n

pnrpi

n

pair

+

n

pni^r

a

P

n

r

p

p

23 Table 2 A n a l y s i s o f V a r i a n c e R e s u l t s and E s t i m a t e d Components f o r P s y c h o p a t h y D a t a Source

Sum

of Squares

df

Mean

Variance

Square

o

2

Persons

363.4225

70

5.1918

.001 5

I terns

115.4882

21

5.4994

.031 1

Raters

.7686

1

.7686

.0001

P X I

1021 .9437

1 470

.6952

.2604

P X R

14.2996

70

.2043

.0014

I X R

11.9286

21

.5680

.0055

.1745

.1745

P X I X R

256.5032

1 470

variance

e s t i m a t e s . The e x a c t

such a combination utility

a linear

of the d i s t r i b u t i o n

of

i s t o o c o m p l i c a t e d t o be of p r a c t i c a l

(see F l e i s s ,

1946) d e v e l o p e d

form

1971).

However,

an a p p r o x i m a t i o n

combination.

Satterthwaite

(1941,

t o the d i s t r i b u t i o n

If g i s a linear

combination

of

such

of

variance estimates, g = a s * 11

+ a s + ... + a s , 2 2 k k

2

2

where t h e sample v a r i a n c e s

2

2

has e x p e c t e d

value

degrees

of freedom, and w e i g h t i n g

quantity with

rg/E(g)

r degrees

a , 2

r.

i

I

factor

i s approximately

i

a^, then the

chi-square

distributed

of f r e e d o m , (a

a

2

11

+ a o + ... + a, a ) 2 2 k k 2

2

2

r =

(Satterthwaite, Considering

1941). the denominator

o f (1 - P ) / n o t e 2

that the

quantity (n is

- 1)MS /E(MS ), P P

P

chi-square distributed

with p ~ n

Hence, t h e q u a n t i t y (1 - p ) 2

with degrees

of f r e e d o m

1

degrees

of f r e e d o m .

i s approximately

c, and v

2

g i v e n by

F

distributed

(MS V

,

. + MS pi pr

- MS

. ) pir,e

2

=

MS

2

.

+

P (n -D(n.-l) P i

MS

and

v

2

=

MS

+

2

2

P_r

1

(n

(n

P

-D(n

(n

-1)

r

P

. pir, e

-1)(n.-1)(n i • .

-1 ) r

1) . P

The

Normalization The

noted

distributional

above c o u l d

confidence u s e d by

of a F u n c t i o n

be

interval

Feldt

used

not

only

i t can

techniques

for hypothesis

a l s o be

application,

having

distribution

permits

Paulson's

applied

to a

used

the

with

b a s e d on

normal

the

developed

an

a very

1/3

latter underlying

theory.

n) a

normal

of

For

Hilferty's

for x

2

close normalization

-

variance

inferential

random v a r i a b l e s ,

(cF

of a

this was

CG.

transformation

~

)

technique

transformation

and

2

confidence

In t h i s

(1942) e x t e n d e d W i l s o n

Paulson

of

to develop

testing.

p

approximate

a p p l i c a t i o n of a v a r i e t y

f u n c t i o n of

a normalizing

an

(1 -

quantity

development

(1942) n o r m a l i z i n g

work on

the

setting

a coefficient

procedures

reason,

the

CG

manner t o t h e

( 1 9 6 5 ) . However, t h e

intervals;

F-distributed

to develop

in a s i m i l a r

permits

Paulson

the

p r o p e r t i e s of

expression

statistical

of

N(0,1),

(1931)

variables. for

where

u = a

1 =

2

c = and

the q u a n t i t i e s

associated Paulson's

with

Their

[2/(9^ )]F

1 -

2/(9v )

and

v

2

are

2

the F r a t i o .

the degrees

Hakstian

and

they

empirical results result

set the

indicated

yielded

a test

of

freedom

Whalen

development

f o r m u l t i p l e independent

the e x p r e s s i o n

Paulson's

2/(91;,),

+

2 / 3

2

transformation in their

significance simplify

2/(9»,),

alpha c term

(1976)

of a t e s t

coefficients equal

to

that a p p l i c a t i o n

with

used of (to

one).

of

good Type I e r r o r •

control. The cube

value

of

the

c term, w h i c h c o r r e c t s f o r b i a s

root transformed

present

F variate,

investigation;

a n a l y s e s . With the

i t was

was

c l o s e t o u n i t y i n the

set equal

smallest value

of

i n the

t o one

v

(n

2

for a l l

= 25)

considered

P

in the

the p r e s e n t larger

study,

the a c t u a l

samples c o n s i d e r e d ,

value

of

the v a l u e

c i s .9907. W i t h of

c

i s even

to u n i t y . F u r t h e r , p r e l i m i n a r y a n a l y s i s

of

the

scaling

transformed

CG

w i t h and

indicated

t h a t the

impact

the c o n t r o l

The

on

inclusion

D e r i v a t i o n of an

without of t h e

of Type I Asymptotic

the

factor

closer

the a d e q u a c y

had

of

factor virtually

no

error. Variance

Expression

f o r the

CG In t h e p r e s e n t p.

387)

was

used

r e s e a r c h , the d e l t a

to develop

method

the asymptotic

(Rao,

variance

1973,

expression deriving that

f o r t h e CG. The d e l t a

an a s y m p t o t i c

i s expressed

covariance

We

as a f u n c t i o n

begin

w i t h a v e c t o r , t,

statistics

i n the v e c t o r

asymptotic

1 / / 2

for a

of s t a t i s t i c s

statistic

with

a known

structure.

estimates

(n)

i s a technique f o r

variance expression

consistent

By

method

U

of the elements of the v e c t o r

theory,

- 0)

w h i c h c o n t a i n s u n b i a s e d and

t

6.

The

have known c o v a r i a n c e m a t r i x I .

the vector

~ MVN(0,

I ) , where n i s t h e sample

size.

1 /3 The

statistic

delta

f ( t ) = (1 - p )

tie).

estimates

2

By t h e

method, [f (t)

where

a

- f(6) ] ~ N ( 0 ,

= 'L4>. The v e c t o r

2

derivatives,

9f(t)/9t|

i or

r

005

025

050

950

975

995

a: 10

05

01

2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8

013 014 012 012 009 010 009 004 007 004 007 006 004 005 008 004 005 005 004 004 004 003 004 004 002 003 005

038 038 045 036 032 039 029 029 027 022 025 025 027 024 027 024 023 022 019 028 022 024 020 021 017 021 021

060 062 068 064 060 066 055 052 052 045 044 042 049 044 053 053 049 044 036 046 040 048 041 044 042 048 050

960 966 965 953 954 959 955 956 958 944 940 944 942 942 940 948 945 946 941 948 946 945 946 950 954 949 947

981 985 990 982 980 984 978 978 981 974 971 976 972 972 975 975 973 972 972 972 972 974 975 978 976 975 978

997 1000 999 1000 998 998 998 997 998 997 993 995 993 996 996 996 994 995 993 995 997 996 996 996 997 996 997

100 096 102 110 106 106 100 095 094 101 104 098 107 102 112 106 104 099 095 098 093 103 095 094 089 099 103

057 053 056 055 052 055 051 051 046 049 054 048 055 053 052 049 050 050 047 056 050 050 046 043 041 046 043

016 014 013 012 011 012 011 007 009 007 014 011 011 009 012 008 011 010 011 009 007 007 008 008 005 007 008

%

006

027

050

950

977

996

100

050

010

91.7

75.8

71.0

91.6

23.0

25.2

45.1

n

Overall Chi -square (df = 27) 144.1 131.1

Note. Decimal points omitted i n alphas and proportions. The standardized estimate i s the value [

(

1

_ £

2

)

1 / 3

.

( i -

p

2 ) 1 / 3

]

/

[

^

(

l

.

3

2

)

1 / 3

]

1 / 2 .

Table 5 Proportion of the Standardized Estimates Falling below Selected Percentile Points of the Unit Normal Distribution and Actual Proportion of Type I Errors for p = .70 (Design VII, both Facets Random) z

"p

25 25 25 75 75 75 150 150 150 25 25 25 75 75 75 150 150 150 25 25 25 75 75 75 150 150 150

i

n

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

n

Mean p i

o

r

p: 005

025

050

950

975

995

a: 10

05

01

2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8

013 014 018 006 006 014 005 007 008 004 004 005 004 004 007 003 006 005 005 005 006 006 004 003 004 004 005

045 043 046 038 024 042 031 031 030 022 020 022 024 025 026 021 030 025 023 022 024 023 022 021 022 025 021

070 073 070 065 055 070 062 053 054 040 044 045 054 048 052 047 056 044 048 046 044 043 049 047 044 050 043

964 958 956 963 962 958 959 964 950 946 951 937 944 951 953 952 955 945 933 939 949 951 944 943 941 944 947

986 982 979 984 983 982 984 980 974 973 977 971 970 974 978 974 979 973 970 972 974 974 968 976 968 974 976

998 996 999 998 998 997 996 996 995 994 997 994 994 998 998 994 "994 994 993 996 994 994 994 997 994 996 997

106 114 114 102 093 112 103 090 104 094 092 108 110 097 098 095 100 100 115 107 094 092 105 104 103 107 096

058 060 067 054 041 060 048 050 056 049 043 051 054 052 048 048 051 052 053 050 050 049 053 045 054 051 045

015 018 019 008 008 017 009 011 013 010 007 011 010 006 009 009 012 011 012 009 012 012 010 006 010 008 008

i

006

028

052 . 950

976

996

102

052

011

76.5

60.2

42.1

44.5

66.8

a

f

Overall Chi -square (df = 27) 174.5

169.4

132.4

Note. Decimal points omitted in The standardized estimate is the [(1-p ) 2

1 / 3

-

(1-p ) 2

1 / 3

97.8

alphas and proportions. value

]/[Var(1-p ) / ] / . 2

1

3

1

2

Table 6 Proportion of the Standardized Estimates Falling below Selected Percentile Points of the Unit Normal Distribution and Actual Proportion of Type I Errors for p * = .90 (Design VII , both Facets Random) L

n

25 10 25 20 25 30 75 10 75 20 75 30 150 10 150 20 150 30 25 10 25 20 25 30 75 10 75 20 75 30 150 10 150 20 150 30 25 10 25 20 25 30 75 . 10 75 20 75 30 150 10 150 20 150 30

n

n

p

Mean p^ or

p: 005

025

050

950

975

995

a: 10

05

01

2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8

016 014 018 010 009 006 009 006 011 004 006 008 004 004 006 006 007 008 003 004 006 003 002 005 004 008 007

047 043 054 033 034 026 031 028 035 022 027 028 022 022 030 022 021 026 024 022 021 022 023 025 020 024 026

078 074 084 060 060 047 060 054 060 041 048 046 043 052 058 045 048 054 043 042 040 037 047 048 046 052 040

969 962 964 959 958 956 958 952 958 945 943 951 936 943 948 947 956 946 935 940 941 945 941 940 949 951 946

987 986 986 979 980 984 980 979 981 973 974 978 970 972 972 975 976 976 966 968 970 976 969 975 974 980 972

1000 999 1000 998 998 996 996 997 997 994 995 995 996 994 996 994 997 997 992 994 994 995 993 995 996 997 996

109 113 120 101 102 090 102 102 102 096 105 095 106 108 109 098 092 108 108 102 100 092 106 108 097 100 094

060 058 068 054 054 042 051 049 054 049 053 050 053 050 057 047 045 050 058 054 050 046 054 050 046 045 054

016 015 018 012 011 010 013 009 013 010 011 013 008 010 010 012 101 011 011 010 012 008 009 010 008 011 011

i

007

028

052

950

976

996

102

052

011

192.0 188.4

106.3

95.4

80.3

38.4

43.2

40.9

a

r

Overall Chi -square (df = 27) 189.2

Note. Decimal points omitted in

alphas and proportions.

The standardized estimate is the [

(

l

-

p

2 ) l / 3

_ ( i - 2 ) 1 / 3 ] p

/

[

^

value N

a

r

(

l

- 2 1 / 3 1 / 2 ?

)

]

Suggest Documents