Inline Application Program ACS 800 Firmware Manual

38 downloads 1603 Views 4MB Size Report
Inline. Application Program. ACS 800. Firmware Manual. This manual includes information on: • Drive start-up and control. • Control panel. • Program features.
ACS 800

This manual includes information on: • Drive start-up and control • Control panel • Program features • Application macros (including the default I/O wiring diagrams) • Actual signals and parameters • Fault tracing • Fieldbus control

Firmware Manual

Inline Application Program

Inline Application Program Application Software Manual

BH800-US-05 3AUA0000002046 EFFECTIVE: 11/26/2002 SUPERSEDES: None

 2002 ABB Inc. All Rights Reserved.

i

Table of Contents

Table of Contents Introduction to the manual Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 1 1

Start-up Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to perform the ID Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 7 7

Control panel Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Status row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 How to copy data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 How to set the display contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table of Contents

ii

Program features Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update cycles in the Standard Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable analog outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update cycles in the Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update cycles in the Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update cycles in the Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Automatic Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Magnetizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flux Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flux Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

21 21 21 22 22 23 23 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 30 30 30 31 31 31 31 31 31 32 32 33 33 33 33 33 33 34 34

iii

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scalar Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor temperature thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Use of the motor thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Underload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ground Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preprogrammed Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor temperature measurement through the analog I/O extension . . . . . . . . . . . . . . . . . . . . . . . . Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34 35 35 36 36 36 37 37 37 37 37 38 38 38 38 38 38 38 38 39 39 39 39 39 39 39 39 39 40 40 40 40 41 41 41 41 41 42 43 43 44 45 45

Application macros Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dancer macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47 47 47 49

Table of Contents

iv

Tension macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLOSE LP SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OPEN LP TORQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLOSE LP TORQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loadshare macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 50 51 51 52 53 54 55 56

Actual signals and parameters Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 01 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 02 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 03 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 04 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 06 CH0 DATASETS IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 12 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 13 ANALOG INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 14 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 15 ANALOG OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 16 SYS CTRL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 20 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 21 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 23 SPEED CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 24 TORQ REF CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 25 SPEED REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 26 FLUX CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 27 BRAKE CHOPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 30 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 32 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 33 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 35 MTR TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 50 PULSE ENCODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 51 FIELDBUS DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 52 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 60 APPLIC CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 61 DRAW TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 62 DANCER CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 63 TENSION CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 64 INERTIA CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 65 LOADSHARE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 70 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 90 DATASET INPUT SEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 92 DATASET OUTPUT SEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table of Contents

v

98 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 99 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Fault tracing Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

109 109 109 109 109 110 112 114

Fieldbus control Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control via RDCO board channel CH0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fieldbus adapter communication set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AF 100 connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optical component types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communication Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Communication Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117 117 118 118 118 119 119 120

Additional data: actual signals and parameters Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Profibus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modbus and Modbus Plus address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interbus-S address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

133 133 133 133 133 133 134 136

Appendix A1: Motor Rotor Inertia, US Appendix A2: Motor Rotor Inertia, IEC Appendix B: Software One-Line Diagrams

Table of Contents

vi

Table of Contents

1

Introduction to the manual

Chapter overview The chapter includes a description of the contents of the manual. In addition it contains information about the compatibility, safety, intended audience, and related publications.

Compatibility The manual is compatible with ACS 800 Inline Application Program.

Safety instructions Follow all safety instructions delivered with the drive. • Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the Hardware Manual. • Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in this manual in the subsection describing the related user-adjustable parameters.

Reader The reader of the manual is expected to: • know the standard electrical wiring practices, electronic components, and electrical schematic symbols. • have no experience or training in the installation, operation, or service of an ACS 800.

Contents The manual consists of the following chapters: • Start-up instructs in performing an ID Run. • Control panel gives instructions for using the panel. • Program features contains the feature descriptions and the reference lists of the user settings and diagnostic signals. • Application macros contains a short description of each macro together with a connection diagram. • Actual signals and parameters describes the actual signals and parameters of the drive.

Introduction to the manual

2

• Fault tracing lists the warning and fault messages with the possible causes and remedies. • Fieldbus control describes the communication through the serial communication links. • Additional data: actual signals and parameters contains more information on the actual signals and parameters.

Introduction to the manual

3

Start-up

Chapter overview The chapter instructs how to: • complete the initial start-up • perform an identification run (ID Run) for the drive.

How to start-up SAFETY The start-up may only be carried out by a qualified electrician. The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions. Check the installation. See the installation checklist in the appropriate hardware/installation manual. Check that the starting of the motor does not cause any danger. De-couple the driven machine if: - There is a risk of damage in case of incorrect direction of rotation, or - A Standard ID Run needs to be performed during the drive setup (see the subsection How to perform the ID Run below). POWER-UP Apply mains power. The control panel first shows the panel identification data … …then the Identification Display of the drive … …and after a few seconds the panel enters the Actual Signal Display. The drive is now ready for the start-up.

CDP312 PANEL Vx.xx ....... ACS 800 xx kW ID NUMBER 1 1 -> 0.0 rpm O FREQ 0.00 Hz CURRENT 0.00 A POWER 0.00 %

Start-up

4

START-UP DATA ENTERING (parameter group 99) Select the language. The general parameter setting procedure is described below. The general parameter setting procedure:

1 -> 0.0 rpm 99 START-UP DATA 01 LANGUAGE ENGLISH

O

1 -> 0.0 rpm 99 START-UP DATA 01 LANGUAGE [ENGLISH]

O

- Press PAR to select the Parameter Mode of the panel. - Press the double-arrow keys ( - Press the arrow keys (

or

or

) to scroll the parameter groups.

) to scroll parameters within a group.

- Select the value you would like to modify by pressing ENTER. - Change the value using the arrow keys ( double-arrow keys ( or ).

or

), fast change using the

- Press ENTER to accept the new value (brackets disappear).

Select the Application Macro. The general parameter setting procedure is given above.

1 -> 0.0 rpm O 99 START-UP DATA 02 APPLICATION MACRO [ ]

Enter the motor data from the motor nameplate:

Note: Set the motor data to exactly the same value as on the motor nameplate. For example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter 99.08 MOTOR NOM SPEED to 1500 rpm will result in incorrect operation of the drive.

ABB Motors 3

motor

V 690 Y 400 D 660 Y 380 D 415 D 440 D Cat. no

M2AA 200 MLA 4 IEC 200 M/L 55 No Ins.cl. F kW r/min A cos 32.5 0.83 30 1475 56 0.83 1475 30 34 0.83 1470 30 59 0.83 30 1470 54 0.83 1475 30 59 0.83 35 1770

Hz 50 50 50 50 50 60 3GAA 202 001 - ADA

6312/C3

IP 55 IA/IN t E/s

6210/C3

380 V mains voltage

180 IEC 34-1

- motor nominal voltage Allowed range: 1/2 · UN … 2 · UN of ACS 800. (UN refers to the highest voltage in each of the nominal voltage ranges: 415 VAC for 400 VAC units, 500 VAC for 500 VAC units and 690 VAC for 600 VAC units.)

1 -> 0.0 rpm O 99 START-UP DATA 05 MOTOR NOM VOLTAGE [ ]

- motor nominal current Allowed range: 1/6 · I2hd … 2 · I2hd of ACS 800

1 -> 0.0 rpm O 99 START-UP DATA 06 MOTOR NOM CURRENT [ ]

- motor nominal frequency Range: 8 … 300 Hz

1 -> 0.0 rpm 99 START-UP DATA 07 MOTOR NOM FREQ [ ]

- motor nominal speed Range: 1 …18000 rpm

1 -> 0.0 rpm O 99 START-UP DATA 08 MOTOR NOM SPEED [ ]

Start-up

O

5

-motor nominal power Range: 0 …9000 kW

1 -> 0.0 rpm O 99 START-UP DATA 09 MOTOR NOM POWER [ ]

When the motor data has been entered, a warning appears. It indicates that the motor parameters have been set, and the drive is ready to start the motor identification (ID magnetization or ID Run).

1 -> 0.0 rpm ** WARNING ** ID MAGN REQ

O

Select the motor identification.

1 -> 0.0 rpm 99 START-UP DATA 10 MOTOR ID RUN [STANDARD]

O

The ID Run (STANDARD) should be selected. For more information, see the subsection How to perform the ID Run below.

DIRECTION OF ROTATION OF THE MOTOR Check the direction of rotation of the motor. - Press ACT to get the status row visible. - Increase the speed reference from zero to a small value by pressing REF and then the arrow keys ( , , or ). - Press to start the motor. - Check that the motor is running in the desired direction. - Stop the motor by pressing . To change the direction of rotation of the motor: - Disconnect input power from the drive and wait 5 minutes for the intermediate circuit capacitors to discharge. Measure the voltage between each input terminal (U1, V1 and W1) and ground with a multimeter to ensure that the frequency converter is discharged. - Exchange the position of two motor cable phase conductors at the motor terminals or at the motor connection box. - Verify your work by applying mains power and repeating the check as described above.

1 L->[xxx] rpm I FREQ xxx Hz CURRENT xx A POWER xx %

forward direction

reverse direction

Start-up

6

SPEED LIMITS AND ACCELERATION/DECELERATION TIMES Set the minimum speed.

1 L-> 0.0 rpm 20 LIMITS 01 MINIMUM SPEED [ ]

O

Set the maximum speed.

1 L-> 0.0 rpm 20 LIMITS 02 MAXIMUM SPEED [ ]

O

Set the acceleration time 1.

1 L-> 0.0 rpm 22 ACCEL/DECEL 02 ACCELER TIME 1 [ ]

O

Set the deceleration time 1.

1 L-> 0.0 rpm 22 ACCEL/DECEL 03 DECELER TIME 1 [ ]

O

The drive is now ready for use.

Start-up

7

How to perform the ID Run For this application, the Standard ID Run must be performed. Uncouple the motor from the roll if possible. Note: DIIL must be made and Run Enable (16.01) must be set to “Yes” or the digital input made in order to perform the ID Run.

ID Run Procedure Note: If parameter values (Group 10 to 98) are changed before the ID Run, check that the new settings meet the following conditions: • 20.01 MINIMUM SPEED < 0 rpm • 20.02 MAXIMUM SPEED > 80% of motor rated speed • 20.03 MAXIMUM CURRENT > 100% · Ihd • 20.04 MAXIMUM TORQUE > 50% • 22.02 ACCEL TIME 1 < 1 s • 70.06 CH2 M/F MODE - Set to “Not In Use” • Ensure that the panel is in the local control mode (L displayed on the status row). Press the LOC/REM key to switch between modes. • Change the selection to STANDARD. 1 L ->1242.0 rpm 99 START-UP DATA 10 MOTOR ID RUN [STANDARD]

O

• Press ENTER to verify selection. The following message will be displayed: 1 L ->1242.0 rpm ACS 800 55 kW **WARNING** ID RUN SEL

• To start the ID Run, press the Warning when the ID Run is started 1 L -> 1242.0 rpm ACS 800 55 kW **WARNING** MOTOR STARTS

I

O

key.

Warning during the ID Run

1 L -> 1242.0 rpm ACS 800 55 kW **WARNING** ID RUN

I

Warning after a successfully completed ID Run 1 L -> 1242.0 rpm ACS 800 55 kW **WARNING** ID DONE

I

Start-up

8

In general it is recommended not to press any control panel keys during the ID run. However: • The Motor ID Run can be stopped at any time by pressing the control panel stop key ( ). • After the ID Run is started with the start key ( ), it is possible to monitor the actual values by first pressing the ACT key and then a double-arrow key ( ).

Start-up

9

Control panel

Chapter overview The chapter describes how to control, monitor and change the settings of the drive using the control panel CDP 312R. The same control panel is used with all ACS 800 series drives, so the instructions given apply to all ACS 800 types. The display examples shown are based on the Standard Application Program; displays produced by other application programs may differ slightly.

Overview of the panel

The LCD type display has 4 lines of 20 characters. The language is selected at start-up by parameter 99.01. The control panel has four operation modes: - Actual Signal Display Mode 1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

- Parameter Mode - Function Mode - Drive Selection Mode The drive control keys:

ACT

PAR

FUNC

DRIVE

No.

Use

1

Start

2

Stop

3

Reference setting

4

Forward direction of rotation

5

Reverse direction of rotation

6

Fault reset

7

Local / Remote (external) control

ENTER

7

6

3

LOC

RESET

REF

1

REM

I

0

4

5

2

Control panel

10

Panel operation mode keys and displays The figure below shows the mode selection keys of the panel, and the basic operations and displays in each mode. Actual Signal Display Mode Act. signal / Fault history selection

ACT

Act. signal / Fault message scrolling

1 L -> FREQ CURRENT POWER

1242.0 rpm I 45.00 Hz 80.00 A 75.00 %

Status row Actual signal names and values

Enter selection mode Accept new signal

ENTER Parameter Mode

1 L -> 1242.0 rpm I 10 START/STOP 01 EXT1 STRT/STP/DIR DI1,2

Status row

1 L -> 1242.0 rpm I CONTRAST 7

Status row

Drive selection ID number change

ACS 801

Device type

Enter change mode Accept new value

ASAA5000 xxxxxx ID NUMBER 1

Group selection Fast value change

PAR

Parameter selection Slow value change

Parameter group Parameter Parameter value

Enter change mode Accept new value

ENTER Function Mode

Row selection

FUNC

Function start

ENTER

List of functions

Drive Selection Mode DRIVE ENTER

75 kW

Application name, version date and ID number

Status row The figure below describes the status row digits. Drive ID number Drive control status L = Local control R = Remote control “ “ = External control

Control panel

1 L ->

1242.0 rpm I

Direction of rotation -> = Forward 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

3.

To stop

1 L ->1242.0 rpm O FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

4.

To start

1 L ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

5.

To change the direction to reverse.

0

6.

To change the direction to forward.

I

1 L 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

Control panel

12

How to set speed reference Step

Action

1.

To show the status row.

Press Key ACT

PAR

FUNC

2.

To switch to local control. (Only if the drive is not under local control, i.e. there is no L on the first row of the display.)

3.

4.

To enter the Reference Setting function.

LOC REM

REF

To change the reference.

Display 1 ->1242.0 rpm I 45.00 Hz FREQ CURRENT 80.00 A POWER 75.00 % 1 L ->1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L ->[1242.0 rpm]I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % 1 L ->[1325.0 rpm]I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

(slow change) (fast change) 5.

To save the reference. (The value is stored in the permanent memory; it is restored automatically after power switch-off.)

Control panel

ENTER

1 L -> 1325.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

13

Actual signal display mode In the Actual Signal Display Mode, the user can: • show three actual signals on the display at a time • select the actual signals to display • view the fault history • reset the fault history. The panel enters the Actual Signal Display Mode when the user presses the ACT key, or does not press any key within one minute. How to select actual signals to the display Step

Action

1.

To enter the Actual Signal Display Mode.

Press key

Display 1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

ACT

2.

To select a row (a blinking cursor indicates the selected row).

3.

To enter the actual signal selection function.

4.

To select an actual signal.

1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 % ENTER

1 L -> 1242.0 rpm I 1 ACTUAL SIGNALS 05 TORQUE 70.00 %

To change the actual signal group.

5.a

To accept the selection and return to the Actual Signal Display Mode.

5.b

To cancel the selection and keep the original selection.

1 L -> 1242.0 rpm I 1 ACTUAL SIGNALS 04 CURRENT 80.00 A

ENTER

ACT

PAR

FUNC

DRIVE

The selected keypad mode is entered.

1 L -> 1242.0 rpm I FREQ 45.00 Hz TORQUE 70.00 % POWER 75.00 % 1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

Control panel

14

How to display the full name of the actual signals Step

Action

Press key

Display

1.

To display the full name of the three actual signals.

Hold

1 L -> 1242.0 rpm I FREQUENCY CURRENT POWER

ACT

2.

To return to the Actual Signal Display Mode.

Release ACT

1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

How to view and reset the fault history Note: The fault history cannot be reset if there are active faults or warnings. Step

Action

1.

To enter the Actual Signal Display Mode.

Press key

ACT

Display 1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

2.

To enter the Fault History Display.

1 L -> 1242.0 rpm I 1 LAST FAULT +OVERCURRENT 6451 H 21 MIN 23 S

3.

To select the previous (UP) or the next fault/warning (DOWN).

1 L -> 1242.0 rpm I 2 LAST FAULT +OVERVOLTAGE 1121 H 1 MIN 23 S

To clear the Fault History.

4.

To return to the Actual Signal Display Mode.

Control panel

RESET

1 L -> 1242.0 rpm I 2 LAST FAULT H MIN S 1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

15

How to display and reset an active fault The table below includes the step-by-step instructions. WARNING! If an external source for start command is selected and it is ON, the drive will start immediately after fault reset. If the cause of the fault has not been removed, the drive will trip again. Step

Action

Press Key

1.

To display an active fault. ACT

2.

To reset the fault.

RESET

Display 1 L -> 1242.0 rpm ACS 801 75 kW ** FAULT ** ACS 800 TEMP 1 L -> 1242.0 rpm O FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

About the fault history The fault history reports information on the latest events (faults, warnings and resets) logged by the drive. The table below shows how these events are stored in the fault history.

A Fault History View Sign

Event

Information on display

Drive detects a fault and generates a fault message

Sequential number of the event.

Name

Sequential number (1 is the most recent event)

Name of the fault and a “+” sign in front of the name. Total power-on time.

Poweron time

User resets the fault message.

Sequential number of the event. -RESET FAULT text. Total power-on time.

1 L -> 1242.0 rpm I 2 LAST FAULT +OVERVOLTAGE 1121 H 1 MIN 23 S

Drive generates a warning message.

Sequential number of the event. Name of the warning and a “+” sign in front of the name. Total power-on time.

Drive deactivates the warning message.

Sequential number of the event. Name of the warning and a “-” sign in front of the name. Total power-on time.

Control panel

16

Parameter mode In the Parameter Mode, the user can: • view the parameter values • change the parameter settings. The panel enters the Parameter Mode when the user presses the PAR key. How to select a parameter and change the value Step

Action

1.

To enter the Parameter Mode.

Press key

Display 1 L -> 1242.0 rpm O 10 START/STOP/DIR 01 EXT1 STRT/STP/DIR DI1,2

PAR

2.

To select a different group.

1 L -> 1242.0 rpm O 11 REFERENCE SELECT 01 KEYPAD REF SEL REF1 (rpm)

3.

To select a parameter.

1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI1

4.

To enter the parameter setting function.

5.

ENTER

To change the parameter value.

1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT [AI1] 1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT [AI2]

- (slow change for numbers and text) - (fast change for numbers only) 6a.

To save the new value.

6b.

To cancel the new setting and keep the original value, press any of the mode selection keys.

ENTER

ACT

PAR

FUNC

DRIVE

The selected mode is entered.

Control panel

1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI2 1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI1

17

Function mode In the Function Mode, the user can: • copy the drive parameter values and motor data from the drive to the panel. • copy group 1 to 97 parameter values from the panel to the drive. 1) • adjust the contrast of the display. The panel enters the Function Mode when the user presses the FUNC key. How to copy data from a drive to the panel Note: • Uploading must be completed before downloading. • The uploading and downloading are possible only if the program versions of the destination drive are the same as the versions of the source drive, see parameters 33.01 and 33.02. • The drive must be stopped during the downloading. Step

Action

1.

Set-up the drives. In each drive, activate the communication to the optional equipment. See parameter group 98 OPTION MODULES.

2.

In one drive, set the parameters in groups 10 to 97 as preferred.

3.

Enter the Function Mode.

Press Key

FUNC

4.

Select the upload function (a flashing cursor indicates the selected function).

5.

Enter the upload function.

6.

Switch to external control. (No L on the first row of the display.)

7.

Display

1 L -> 1242.0 rpm O UPLOAD CONTRAST 4 1 L -> 1242.0 rpm O UPLOAD CONTRAST 4

ENTER

LOC REM

1 L -> 1242.0 rpm O UPLOAD 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

LOC REM

Enter the Function Mode.

1 L -> 1242.0 rpm O UPLOAD CONTRAST 4

FUNC

4.

Select the download function (a flashing cursor indicates the selected function).

5.

Start the download.

1 L -> 1242.0 rpm O UPLOAD CONTRAST 4 ENTER

1 L -> 1242.0 rpm O DOWNLOAD =>=>

How to set the display contrast Step

Action

1.

Enter the Function Mode.

Press Key

Display 1 L -> 1242.0 rpm O UPLOAD CONTRAST 4

FUNC

2.

Select a function (a flashing cursor indicates the selected function).

3.

Enter the contrast setting function.

4.

Adjust the contrast.

5.a

Accept the selected value.

5.b

Cancel the new setting and retain the original value, press any of the mode selection keys. The selected mode is entered.

Control panel

1 L -> 1242.0 rpm O UPLOAD CONTRAST 4 ENTER

1 L -> 1242.0 rpm O CONTRAST [4] 1 L -> 1242.0 rpm CONTRAST [6]

ENTER

ACT

PAR

FUNC

DRIVE

1 L -> 1242.0 rpm O UPLOAD CONTRAST 6 1 L -> 1242.0 rpm O UPLOAD CONTRAST 4

19

Drive selection mode In the Drive Selection Mode, the user can: • Select the drive with which the panel communicates through the panel link. • Change the identification number of a drive or panel connected to the panel link. • View the status of the drives connected on the panel link. The panel enters the Drive Selection Mode when the user presses the DRIVE key. In normal use the features available in the Drive Selection Mode are not needed; the features are reserved for applications where several drives are connected to one panel link. (For more information, see the Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, Code: 3AFY 58919748). Each on-line station must have an individual identification number (ID). By default, the ID number of the drive is 1. NOTE: The default ID number setting of the drive should not be changed unless the drive is to be connected to the panel link with other drives on-line.

How to select a drive and change its panel link ID number Step

Action

1.

To enter the Drive Selection Mode.

Press key

Display ACS 800

75 kW

DRIVE

ASAAA5000 xxxxxx ID NUMBER 1 2.

To select the next drive/view.

ACS 800

The ID number of the station is changed by first pressing ENTER (the brackets round the ID number appear) and then adjusting the value with double-arrow buttons. The new value is accepted with ENTER. The power of the drive must be switched off to validate its new ID number setting.

ASAAA5000 xxxxxx ID NUMBER 1

1o

The status display of all devices connected to the Panel Link is shown after the last individual station. If all stations do not fit on the display at once, press the double-arrow up to view the rest of them.

3.

To connect to the last displayed drive and to enter another mode, press one of the mode selection keys.

Status Display Symbols: o = Drive stopped, direction forward = Drive running, direction reverse F = Drive tripped on a fault PAR

ACT

FUNC

The selected mode is entered.

75 kW

1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

Control panel

20

Reading and entering packed boolean values on the display Some actual values and parameters are packed boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the control panel, packed boolean values are read and entered in hexadecimal format. In this example, bits 1, 3 and 4 of the packed boolean value are ON: Bit 15

Boolean Hex

Control panel

Bit 0

0000 0000 0001 1010 0 0 1 A

21

Program features

Chapter overview The chapter describes program features. For each feature, there is a list of related user settings, actual signals, and fault and warning messages.

Local control vs. external control The drive can receive Start/Stop/Direction commands and reference values from the control panel or through digital and analog inputs. An optional fieldbus adapter enables control over an open fieldbus link.

Local Control

External Control

ACS800

Standard I/O

Control panel

Fieldbus Adapter Optional I/O Module RDCO Board

DriveWindow

Slot 1

Slot 1 or Slot 2

CH0 (DDCS)

(Advant fieldbus connection only)

AF 100 Interface

CH3 (DDCS)

Local control The control commands are given from the control panel keypad when the drive is in local control. L indicates local control on the panel display.

1 L ->1242 rpm

I

The control panel always overrides the external control signal sources when used in local mode.

Program features

22

External control When the drive is in external control, the commands are given through the control terminal block on the standard I/O board (digital and analog inputs), optional I/O extension modules and/or CH0 Fieldbus Adapter. In addition, it is also possible to set the control panel as the source for the external control. External control is indicated by a blank on the panel display or with an R in those special cases when the panel is defined as a source for external control.

1

->1242 rpm

I

External Control through the Input/ Output terminals, or through the fieldbus interfaces

1 R ->1242 rpm

I

External Control by control panel

The user can connect the control signals to two external control locations, EXT1 or EXT2. Depending on the user selection, either one is active at a time. Settings Panel key

Additional information

LOC/REM

Selection between local and external control

Parameter 11.02

Program features

Selection between EXT1 and EXT2

10.01

Start and stop source for EXT1

10.02

Direction source for EXT1

11.03

Reference source for EXT1

10.03

Start and stop source for EXT2

10.04

Direction source for EXT2

11.06

Reference source for EXT2

Group 98 OPTION MODULES

Activation of the optional I/O and serial communication

23

Block diagram: start, stop, direction source for EXT1 The figure below shows the parameters that select the interface for start, stop, and direction for external control location EXT1. DI1

DI1 / Std IO

Select

DI2

DI2 / Std IO

EXT1 Start/stop

DI7 DI1 / DIO ext 1

Fieldbus Adapter Slot1 CH0 / RDCO board

I/O Extensions See group 98 OPTION MODULES. Fb. selection See the chapter Fieldbus control

10.01

COMM. MODULE KEYPAD

Control panel CH2/Master Drive

DI1 / Std IO = Digital input DI1 on the standard I/O terminal block DI1 / DIO ext 1 = Digital input DI1 on the Digital I/O Extension Module 1 (DI 8 in Parameters)

Block diagram: reference source for EXT1 The figure below shows the parameters that select the interface for the speed reference of external control location EXT1. AI1 / Std IO AI2 / Std IO AI3 / Std IO

AI1 / AIO ext

CH0 / NAMC board

Control panel CH2/Master Drive

AI1, AI2, AI3

Select

AI5

I/O Extensions See parameter group 98 OPTION MODULES. Fb. selection See the chapter Fieldbus control

EXT1 Reference REF1 (rpm)

11.03

COMM. MODULE KEYPAD

AI1 / Std IO = analog input AI1 on the standard I/O terminal block AI1 / AIO ext = analog input AI1 on the Analog I/O Extension Module (AI 5 in Parameters)

Program features

24

Reference types and processing It is possible to scale the external reference so that the signal maximum value corresponds to a speed other than the maximum speed limit. Settings Parameter

Additional information

Group 11 REFERENCE SELECT

External reference source, type and scaling

Group 20 LIMITS

Operating limits

Group 22 ACCEL/DECEL

Speed reference acceleration and deceleration ramps

Group 32 SUPERVISION

Reference supervision

Diagnostics Actual signal

Additional information

Group 02 ACTUAL SIGNALS The reference values in different stages of the reference processing chain. Parameter

Program features

Group 14 RELAY OUTPUTS

Active reference / reference loss through a relay output

Group 15 ANALOG OUTPUTS

Reference value

25

Programmable analog inputs The drive has three programmable analog inputs: one voltage input (0/2 to 10 V) and two current inputs (0/4 to 20 mA). Two extra inputs are available if an optional Analog I/O Extension Module is used. Each input can be inverted and filtered, and the maximum and minimum values can be adjusted. Update cycles in the Standard Application Program Input AI1 / standard

10 ms

AI2 / standard

10 ms

AI3 / standard

10 ms

AI1 / extension

10 ms

AI2 / extension

10 ms

Settings Parameter

Additional information

Group 11 REFERENCE Reference source SELECT Group 13 ANALOG INPUTS

Processing of the standard inputs

35.01

Motor temperature measurement

Group 61 DRAW TRIM CTRL

Draw reference source

Group 62 DANCER CONTROLS

Reference and feedback sources

Group 63 TENSION CONTROLS

Reference and feedback sources

Group 65 LOADSHARE Loadshare reference CTRL 98.06

- activation of optional analog inputs

98.13

- signal type definition (bipolar or unipolar)

Diagnostics Actual value

Additional information

01.18, 01.19, 01.20

Standard inputs

01.38, 01.39

Optional inputs

Program features

26

Programmable analog outputs Two programmable current outputs are available as standard, and two outputs can be added by using an optional Analog I/O Extension Module. Analog output signals can be inverted and filtered. The analog output signals can be proportional to motor speed, process speed (scaled motor speed), output frequency, output current, motor torque, motor power, etc. It is possible to write a value to an analog output through a serial communication link. Update cycles in the Application Program Output

Cycle

AO / standard

50 ms

AO / extension

50 ms

Settings Parameter

Additional information

Group 15 ANALOG OUTPUTS

Value selection and processing (standard outputs)

Group 35 MOT TEMP MEAS

Motor temperature measurement

Group 98 OPTION MODULES

Activation of optional I/O

Diagnostics Actual value

Additional information

01.22, 01.23

Values of the standard outputs

01.28, 01.29

Values of the optional outputs

Warning IO CONF

Improper use of optional I/O

Fault IO CONF

Program features

Improper use of optional I/O

27

Programmable digital inputs The drive has six programmable digital inputs as a standard. Six extra inputs are available if the optional Digital I/O Extension Modules are used. Update cycles in the Application Program Input

Cycle

DI / standard

50 ms

DI / extension

50 ms

Settings Parameter

Additional information

Group 10 START/STOP/ DIR

Start, stop, direction source

Group 11 REFERENCE SELECT

Reference selection, reference source

Group 12 CONSTANT SPEEDS

Constant speed selection

Group 16 SYSTEM CTRL INPUTS

External run enable, fault reset, user macro change

Group 61 DRAW TRIM CTRL

Digital potentiometer for reference

Group 62 DANCER CONTROLS

Regulator control

Group 63 TENSION CONTROLS

Regulator control

98.03 … 98.05

Activation of the optional Digital I/O Extension Modules

Diagnostics Actual value

Additional information

01.17

Standard digital inputs

01.40

Optional digital inputs

Warning IO CONF

Improper use of optional I/O

Fault IO CONF

Improper use of optional I/O

I/O COMM

Communication loss to I/O

Program features

28

Programmable relay outputs On the standard I/O board there are three programmable relay outputs. Six ouputs can be added by using the optional Digital I/O Extension Modules. With parameter setting it is possible to choose which information to indicate through the relay output: ready, running, fault, warning, motor stall, etc. It is possible to write a value to a relay output through a serial communication link. Update cycles in the Application Program Output

Cycle

RO / standard

50 ms

RO / extension

50 ms

Settings Parameter

Additional information

Group 14 RELAY OUTPUTS

Value selections and operation times

Group 98 OPTION MODULES

Activation of optional relay outputs

Diagnostics

Program features

Actual value

Additional information

01.21

Standard relay output states

01.41

Optional relays output states

29

Actual signals Several actual signals are available: • Drive output frequency, current, voltage and power • Motor speed and torque • Supply voltage and intermediate circuit DC voltage • Reference values • Drive temperature • Operating time counter (h), kWh counter • Digital I/O and analog I/O status • PID controller actual values Three signals can be shown simultaneously on the control panel display. It is also possible to read the values through the serial communication link or through the analog outputs. Settings Parameter

Additional information

Group 15 ANALOG OUTPUTS

Selection of an actual signal to an analog output

Group 92 D SET TR ADDR

Selection of an actual signal to a dataset (serial communication)

Diagnostics Actual value

Additional information

Group 01 ACTUAL SIGNALS … 09 ACTUAL SIGNALS

Lists of actual signals

Program features

30

Motor identification The performance of Direct Torque Control is based on an accurate motor model determined during the motor start-up. A quick motor identification is automatically done the first time the start command is given. During this first start-up, the motor is magnetized at zero speed for several seconds to allow the motor model to be created. The First Start is the motor identification method suitable for most applications. However, as previously stated, for inline applications, a separate identification run must be performed. Settings Parameter 99.10.

Power loss ride-through If the incoming supply voltage is cut off, the drive will continue to operate by utilizing the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue the operation after the break if the main contactor remained closed.

Umains fout U DC TM (Nm) (Hz) (V d.c.) 160

80

520

120

60

390

80

40

260

40

20

130

UDC

fout TM

t(s) 1.6 4.8 8 11.2 14.4 UDC= Intermediate circuit voltage of the drive, fout = output frequency of the drive, TM = Motor torque Loss of supply voltage at nominal load (fout = 40 Hz). The intermediate circuit DC voltage drops to the minimum limit. The controller keeps the voltage steady as long as the supply is switched off. The drive runs the motor in generator mode. The motor speed falls but the drive is operational as long as the motor has enough kinetic energy.

Note: Cabinet assembled units equipped with main contactor option have a “hold circuit” that keeps the contactor control circuit closed during a short supply break. The allowed duration of the break is adjustable. The factory setting is five seconds.

Program features

31

Automatic Start Since the drive can detect the state of the motor within a few milliseconds, starting is immediate under all conditions. There is no restart delay, e.g. the starting of turbining pumps or windmilling fans is easy. Settings Parameter 21.01.

DC Magnetizing When DC Magnetizing is activated, the drive automatically magnetizes the motor before the start. This feature guarantees the highest possible breakaway torque, up to 200% of motor nominal torque. By adjusting the premagnetizing time, it is possible to synchronize the motor start and e.g. a mechanical brake release. The Automatic Start and DC Magnetizing features cannot be activated at the same time. Settings Parameters 21.01 and 21.02.

DC Hold By activating the motor DC Hold feature it is possible to lock the rotor at zero speed. When both the reference and the motor speed fall below the preset DC hold speed, the drive stops the motor and starts to inject DC into the motor. When the reference speed again exceeds above the DC hold speed, the normal drive operation resumes. Settings Parameters 21.04, 21.05, and 21.06.

Motor Speed DC Hold DC hold speed

t

Speed Reference

DC hold speed

t

Program features

32

Flux Braking The drive can provide greater deceleration by raising the level of magnetization in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. This feature is useful in motor power ranges below 15 kW. TBr TN (%)

Motor Speed

TBr = Braking Torque TN = 100 Nm

60

No Flux Braking

40

Flux Braking

20 Flux Braking

No Flux Braking t (s)

f (Hz) 50 HZ/60 Hz

Braking Torque (%) 120 1

No Flux Braking

80 Rated Motor Power 1 2 3 4 5

2.2 kW 15 kW 37 kW 75 kW 250 kW

40 2 4

0

3 5

5

10

20

30

40

f (Hz) 50

40

f (Hz) 50

120 1

80

Flux Braking

2

40

3 4 5

0 5

10

20

30

The drive monitors the motor status continuously, also during the Flux Braking. Therefore, Flux Braking can be used both for stopping the motor and for changing the speed. The other benefits of Flux Braking are: • The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it commences braking. • The cooling of the motor is efficient. The stator current of the motor increases during the Flux Braking, not the rotor current. The stator cools much more efficiently than the rotor. Settings Parameter 26.02.

Program features

33

Flux Optimization Flux Optimization reduces the total energy consumption and motor noise level when the drive operates below the nominal load. The total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed. Settings Parameter 26.01.

Acceleration and deceleration ramps It is possible to adjust the acceleration/ deceleration times and the ramp shape. The available ramp shape alternatives are Linear and S-curve.

Motor speed

Linear S-curve

Linear: Suitable for drives requiring steady or slow acceleration/deceleration. S-curve: Ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed.

2 t (s)

Settings Parameter group 22 ACCEL/DECEL.

Constant speeds It is possible to predefine constant speeds. Constant speeds are selected with digital inputs. Constant speed activation overrides the external speed reference. Settings Parameter group 12 CONSTANT SPEEDS.

Program features

34

Speed controller tuning During the motor identification, the drive speed controller is automatically tuned. It is, however, possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller Autotune Run. In Autotune Run, the speed controller is tuned based on the load and inertia of the motor and the machine. The figure below shows speed responses at a speed reference step (typically, 1 to 20%). n nN

%

A

B

D

C

A : Undercompensated B : Normally tuned (autotuning) C : Normally tuned (manually). Better dynamic performance than with B D : Overcompensated speed controller

t

The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller. Derivative acceleration compensation

Speed reference

+ -

Error value

Proportional, integral

Derivative Calculated actual speed

Settings Parameter group 23 SPEED CTRL and 20 LIMITS. Diagnostics Actual signal 01.02.

Program features

+

+ Torque + reference

35

Speed control performance figures The table below shows typical performance figures for speed control when Direct Torque Control is used. T (%) TN Speed Control

No Pulse Encoder

With Pulse Encoder

Static speed error, + 0.1 to 0.5 % % of nN (10% of nominal slip)

+ 0.01 %

Dynamic speed error

0.1 %sec.*

0.4 %sec.*

*Dynamic speed error depends on speed controller tuning.

Tload

100

t (s) 0.1 - 0.4 %sec

nact-nref nN

TN = rated motor torque nN = rated motor speed nact = actual speed nref = speed reference

Torque control performance figures The drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control, when Direct Torque Control is used. Torque Control

No Pulse Encoder

With Pulse Encoder

Linearity error

+ 4 %*

+3%

Repeatability error

+ 3 %*

+1%

Torque rise time

1 to 5 ms

1 to 5 ms

T (%) TN 100 90

Tref Tact

*When operated around zero frequency, the error may be greater. 10 < 5 ms TN = rated motor torque Tref = torque reference Tact = actual torque

t(s)

Program features

36

Scalar Control It is possible to select Scalar Control as the motor control method instead of Direct Torque Control (DTC). In the Scalar Control mode, the drive is controlled with a frequency reference. The oustanding performance of the default motor control method, Direct Torque Control, is not acheived with Scalar Control. It is recommended to activate Scalar Control mode in the following special applications: • In multimotor drives: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after motor identification. • If the nominal current of the motor is less than 1/6 of the nominal output current of the drive. • If the drive is used without a motor connected (e.g. for test purposes) • The drive runs a medium voltage motor via a step-up transformer In the Scalar Control mode, some standard features are not available. Setting Parameter 99.04.

IR compensation for a scalar controlled drive IR Compensation is active only when the motor control mode is Scalar (see the Scalar Control section, above). When IR Compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR Compensation is useful in applications that require high breakaway torque. In Direct Torque Control mode, no IR COmpensation is possible/needed.

Program features

Motor Voltage IR compensation

No compensation f (Hz)

37

Programmable protection functions Motor Thermal Protection The motor can be protected against overheating by activating the Motor Thermal Protection function and by selecting one of the motor thermal protection modes available. The Motor Thermal Protection modes are based either on a motor temperature thermal model or on an overtemperature indication from a motor thermistor. Motor temperature thermal model The drive calculates the temperature of the motor on the basis of the following assumptions: • The motor is in the ambient temperature of 86 °F (30 °C) when power is applied to the drive. • Motor temperature is calculated using either the user-adjustable or automatically calculated motor thermal time and motor load curve (see the figures on the right). The load curve should be adjusted in case the ambient temperature exceeds 80 °F (30 °C).

Motor Load 100%

Motor Current 150 (%) 100

Break point Motor load curve

50 Temp. Rise

t

Zero speed load Speed

100% 63%

Motor thermal time

t

Use of the motor thermistor It is possible to detect motor overtemperature by connecting a motor thermistor (PTC) between the +24 VDC voltage supply offered by the drive and digital input DI6. In normal motor operation temperature, the thermistor resistance should be less than 1.5 kOhm (current 5 mA). The drive stops the motor and gives a fault indication if the thermistor resistance exceeds 4 kOhm. Settings Parameters 30.04 to 30.09. Note: It is also possible to use the motor temperature measurement function. See the subsection Motor temperature measurement through the standard I/O.

Program features

38

Stall Protection The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (frequency, time) and choose how the drive reacts to the motor stall condition (warning indication / fault indication & stop the drive / no reaction). Settings Parameters 30.10 to 30.12. Underload Protection Loss of motor load may indicate a process malfunction. The drive provides an underload function to protect the machinery and process in such a serious fault condition. Supervision limits - underload curve and underload time - can be chosen as well as the action taken by the drive upon the underload condition (warning indication / fault indication & stop the drive / no reaction). Settings Parameters 30.13 to 30.15. Motor Phase Loss The Phase Loss function monitors the status of the motor cable connection. The function is useful especially during the motor start: the drive prevents the motor from starting if it detects a missing motor phase. The Phase Loss function also supervises the motor connection status during normal operation. Settings Parameter 30.16. Ground Fault Protection The Ground Fault Protection detects ground faults in the motor or motor cable. The Ground Fault protection is based on ground leakage current measurement with a summation current transformer at the output of the converter. • A ground fault in the line supply does not activate the protection. • In a grounded supply, the protection activates in 200 microseconds. • In floating supply networks, the line supply capacitance should be 1 microF or more. • The capacitive currents due to screened copper motor cables up to 1,000 feet (300 meters) do not activate the protection. Settings Parameter 30.17.

Program features

39

Preprogrammed Faults Overcurrent The overcurrent trip limit for the drive is 3.5 · I2hd (rated output current, heavy-duty use rating). DC overvoltage The DC overvoltage trip limit is 1.3 ·U1max, where U 1max is the maximum value of the supply voltage range. For 400 V units, U1max is 415 V. For 500 V units, U1max is 500 V. For 690 V units, U1max is 690 V. The actual voltage in the intermediate circuit corresponding to the supply voltage trip level is 728 VDC for 400 V units, 877 VDC for 500 V units, and 1210 VDC for 690 V units. DC undervoltage The DC undervoltage trip limit is 0.65 · U1min, where U1min is the minimum value of the supply voltage range. For 400 V and 500 V units, U1min is 380 V. For 690 V units, U1min is 525 V. The actual voltage in the intermediate circuit corresponding to the supply voltage trip level is 334 VDC for 400 V and 500 V units, and 461 VDC for 690 V units. Drive temperature The drive supervises the inverter module temperature. If the inverter module temperature exceeds 240 °F (115 °C), a warning is given. The temperature trip level is 260 °F (125 °C). Short circuit There are separate protection circuits for supervising the motor cable and the inverter short circuits. If a short circuit occurs, the drive will not start and a fault indication is given. Input phase loss Input phase loss protection circuits supervise the supply cable connection status by detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive is stopped and a fault indication is given if the ripple exceeds 13%. Ambient temperature The drive will not start if the ambient temperature is below 23 °F (-5 °C) to 32 °F (0 °C) or above 163 °F (73 °C) to 180 °F (82 °C) (the exact limits vary within the given ranges depending on drive type). Overfrequency If the drive output frequency exceeds the preset level, the drive is stopped and a fault indication is given. The preset level is 50 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active).

Program features

40

Internal fault If the drive detects an internal fault the drive is stopped and a fault indication is given.

Operation limits ACS 800 has adjustable limits for speed, current (maximum), torque (maximum) and DC voltage. Settings Parameter group 20 LIMITS.

Power limit The maximum allowed motor power is 1.5 · Phd. If the limit is exceeded, the motor torque is automatically restricted. The function protects the input bridge of the drive against overload.

Program features

41

Supervisions The drive monitors whether certain user selectable variables are within the userdefined limits. The user may set limits for speed, current etc. Settings Parameter group 32 SUPERVISION. Diagnostics Actual Signals

Additional information

02.28

Bits in a packed boolean word

Group 14 RELAY OUTPUTS

Indication through a relay output

Parameter lock The user can prevent parameter adjustment by activating the parameter lock. Settings Parameters 16.02 and 16.03.

Program features

42

Motor temperature measurement through the standard I/O The figure below shows the temperature measurement options of one motor when the standard I/O board is used as the connection interface. RMIO board

One sensor Motor

3

AI1+

4

AI1-

9

AO1+

10

AO1-

T

10 nF

Three sensors

RMIO board

Motor T

T

3

AI1+

4

AI1-

9

AO1+

10

AO1-

T

10 nF

WARNING! According to IEC 664, the connection of the motor temperature sensor to the RMIO, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creeping distance of .315” (8mm) (400 / 500 VAC equipment). If the assembly does not fulfil the requirement: • The RMIO board terminals must be protected against contact and they may not be connected to other equipment. Or • The temperature sensor must be isolated from the RMIO board terminals.

Program features

43

Settings Parameter

Additional information

15.01

Analog output in a motor 1 temperature measurement

35.01 … 35.03

Motor 1 temperature measurement settings

Other Parameters 13.01 to 13.05 (AI1 processing) and 15.02 to 15.05 (AO1 processing) are not effective. At the motor end the cable shield should be grounded through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Diagnostics Actual values

Additional information

01.35

Temperature value

02.15

Warning bit state

02.18

Fault bit states

02.20

Fault bit states

Warnings MOTOR 1 TEMP

Chapter Fault tracing and parameter 02.15

T MEAS ALM

Chapter Fault tracing and parameter 02.15

Faults MOTOR 1 TEMP

Chapter Fault tracing and parameter 02.20

Program features

44

Motor temperature measurement through the analog I/O extension The figure below shows the temperature measurement options of one motor when an optional Analog I/O Extension Module is used. NAIO

One sensor

AI1+

Motor

AI1T AO1+ 10 nF

Three sensors

AO1-

NAIO

AI1+

Motor

AI1T

T

T AO1+ 10 nF

AO1-

WARNING! According to IEC 664, the connection of the motor temperature sensor to the Analog I/O Extension Module, NAIO or RAIO, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creeping distance of .315” (8 mm) (400 / 500 VAC equipment). If the assembly does not fulfil the requirement: • The option module terminals must be protected against contact and they may not be connected to other equipment. Or • The temperature sensor must be isolated from the NAIO/RAIO module terminals.

Program features

45

Settings Parameter

Additional information

35.01 … 35.03

Motor 1 temperature measurement

98.12

Activation of optional analog I/O

Other Parameters 13.16 to 13.20 and 96.01 to 96.05 are not effective. At the motor end the cable shield should be grounded through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected. The NAIO module must also be connected to a power supply. See the module manual.

Diagnostics Actual values

Additional information

01.35

Temperature value

02.15

Warning bit state

02.18

Fault bit state

02.20

Fault bit state

Warnings MOTOR 1 TEMP

Chapter Fault tracing and parameter 02.15

T MEAS ALM

Chapter Fault tracing and parameter 02.15

Faults MOTOR 1 TEMP

Chapter Fault tracing and parameter 02.20

Program features

46

Program features

47

Application macros

Chapter overview This chapter describes the intended use, operation and the default control connections of the standard application macros.

Overview of macros Application macros are preprogrammed parameter sets. While starting up the drive, the user can select one of the macros with parameter 99.02. There are four standard macros.

Dancer macro The purpose of dancer regulation is to control the web tension by regulating dancer position. This is achieved using dancer position feedback. The dancer is loaded from either an external source controlled by the customer or an analog output of the drive to produce tension on the web. When using the dancer setpoint functionality of the drive, a 0(4) - 20mA analog output signal is used in conjunction with an I - P (Analog Pressure Regulator) Regulator to produce the desired amount of web tension. Web tension variations are absorbed by the dancer and cause the position of the dancer to change. The difference in dancer position feedback and the dancer position setpoint (Max Dancer Travel center point plus any offset) allow the Dancer PI Regulator to develop the error correction needed to return the dancer to the setpoint position by trimming the speed of the section. The setpoint position for the dancer is defaulted to the center of the total dancer movement. The regulation position can be adjusted by the customer via a parameter. The Dancer PI Regulator is updated every 10ms to produce very responsive trim. This allows for very stable dancer position control over the entire speed range.

Fixed Idlers

Movable Idler “Dancer”

A beneficial feature of a Dancer is web storage, which acts like an accumulator to absorb and isolate tension disturbances.

Application macros

48

The drive is speed controlled and uses the dancer position feedback to regulate the web tension to the midpoint. To properly operate in this mode the following parameters must be set up: 62.05 RANGE ADJUST 62.06 TRIM REG REL TO 62.09 DANCER CTL ENABLE - must be active for the PI regulator to operate 62.11 DANCER FDBK INPUT 62.14 MAX DANCER TRAVEL 62.15 CENTER OFFSET If the dancer loading is being controlled by the drive, the following parameters must also be set up: 62.10 DANCER LOAD SETPT

Application macros

49

Default control connections The figure below shows the external control connections for the Dancer Macro. The markings of the standard I/O board terminals are visible.

A

Arpm

X20 1 2 X21 1 2 3 4 5 6 7 8 9 10 11 12 X22 1 2 3 4 5 6 7 8 9 10 11 X23 1 2 X25 1 2 3 X26 1 2 3 X27 1 2 3

VREF GND

Reference voltage -10 VDC 1 kohm < RL < 10 kohm

VREF GND AI1+ AI1AI2+ AI2AI3+ AI3AO1+ AO1AO2+ AO2-

Speed Reference 0(2)... 10V 1kohm < RL < 10kohm Speed reference 0(2) … 10 V, Rin > 200 kohm

DI1 DI2 DI3 DI4 DI5 DI6 +24 V +24 V DGND1 DGND2 DIIL

Stop/Start By default not in use Dancer Ctrl Enable By default not in use By default not in use Fault Reset +24 VDC, max. 100 mA

+24 V GND

Auxiliary voltage output, non-isolated, 24 VDC, 250 mA

Dancer Fdbk Input. 0(4) … 20 mA, Rin = 100 ohm Dancer Load Setpoint. 0(4) … 20 mA, Rin = 100 ohm Output Current 0(4) … 20 mA = 0 … motor nom. current, RL < 700 ohm Output Speed 0(4) … 20 mA = 0 … motor nom. speed, RL < 700 ohm

Digital ground Digital ground Estop Input

RO11 RO12 RO13

Relay output 1

RO21 RO22 RO23

Relay output 2

R031 R032 R033

Relay output 3

Ready

Running

Fault

Application macros

50

Tension macro The purpose of tension regulation is to control the web tension. This is achieved by using loadcell tension feedback. Differences between the tension setpoint and the loadcell feedback allow the Tension PI Regulator to develop the error correction needed to maintain tension by trimming either speed or torque of the driven section. The Tension PI Regulator is updated every 10ms to produce very responsive trim. When running in Speed Trim, the tension regulator is very adaptable to a large variety of web material characteristics and should be used in applications where stall tension is required. An Inline application can optionally be operated in Torque Trim. When running in Torque Trim, an encoder is typically required. If stall tension is required, speed trim is recommended. When using Torque Trim, accurate web material information is required for calculating the inertia torque value of the roll, thus making it less adaptable to a wide variety of materials. However, Torque Trim may result in more stable steady state performance. Open-Loop Tension regulation can be achieved by selecting torque control and Torque No Trim. See Parameters 63:15 TENSION MODE and 63:16 MODE TRANSITION. Loadcell Feedback is not required in this type of operation. The drive will calculate the required torque based on tension setpoint, roll diameter, frictional losses, and gearing to achieve the proper tension on the Web. In open loop tension mode, the overspeed reference is 50 rpm or 10% of the speed reference (whichever is greater); this is not adjustable. CLOSE LP SPD The drive is speed controlled and uses the loadcell feedback to regulate the web tension to the setpoint. To properly operate in this mode the following parameters must be set up: 63.05 RANGE ADJUST 63.06 TRIM REG REL TO 63.09 TENSION CTL ENABLE - must be active for the PI regulator to operate 63.10 TENSION SETPOINT 63.11 TENSION FDBK INPUT 63.14 MAXIMUM TENSION 63.15 TENSION MODE - must be "CLOSE LP SPD" 63.16 MODE TRANSITION - do not want transition to be active

Application macros

51

OPEN LP TORQ The drive is torque controlled with no tension trim. To properly operate in this mode the following parameters must be set up: 60.02 GEAR RATIO 63.09 TENSION CTL ENABLE - must be active to run in torque mode 63.10 TENSION SETPOINT 63.14 MAXIMUM TENSION 63.15 TENSION MODE - can be any of the three modes 63.16 MODE TRANSITION - if TENSION MODE is not "OPEN LP TQ" then this must be selected in order to run open loop torque. 63.17 STATIC FRICTION It is also advised to use inertia compensation (Group 64). CLOSE LP TORQ The drive is torque controlled and uses the loadcell feedback to regulate the web tension to the setpoint. To properly operate in this mode the following parameters must be set up: 60.02 GEAR RATIO 63.05 RANGE ADJUST 63.06 TRIM REG REL TO 63.09 TENSION CTL ENABLE - must be active to run in torque mode 63.10 TENSION SETPOINT 63.11 TENSION FDBK INPUT 63.14 MAXIMUM TENSION 63.15 TENSION MODE - must be "CLOSE LP TORQ" 63.16 MODE TRANSITION - do not want transition to be active 63.17 STATIC FRICTION It is also advised to use inertia compensation (Group 64).

Application macros

52

Default control connections The figure below shows the external control connections for the Tension Macro. The markings of the standard I/O board terminals are visible. .

A

Arpm

Application macros

X20 1 2 X21 1 2 3 4 5 6 7 8 9 10 11 12 X22 1 2 3 4 5 6 7 8 9 10 11 X23 1 2 X25 1 2 3 X26 1 2 3 X27 1 2 3

VREF GND

Reference voltage -10 VDC 1 kohm < RL < 10 kohm

VREF GND AI1+ AI1AI2+ AI2AI3+ AI3AO1+ AO1AO2+ AO2-

Speed Reference 0(2)... 10V 1kohm < RL < 10kohm Speed reference 0(2) … 10 V, Rin > 200 kohm

DI1 DI2 DI3 DI4 DI5 DI6 +24 V +24 V DGND1 DGND2 DIIL

Stop/Start By default not in use Tension Ctrl Enable. By default not in use By default not in use Fault Reset +24 VDC, max. 100 mA

+24 V GND

Auxiliary voltage output, non-isolated, 24 VDC, 250 mA

Tension Fdbk Input. 0(4) … 20 mA, Rin = 100 ohm Tension Setpoint. 0(4) … 20 mA, Rin = 100 ohm Output Current 0(4) … 20 mA = 0 … motor nom. current, RL < 700 ohm Output Speed 0(4) … 20 mA = 0 … motor nom. speed, RL < 700 ohm

Digital ground Digital ground Estop Input

RO11 RO12 RO13

Relay output 1

RO21 RO22 RO23

Relay output 2

R031 R032 R033

Relay output 3

Ready

Running

Fault

53

Draw macro The purpose of draw is to control web tension by manually trimming the speed of the section. The draw reference can be set from analog inputs, digital inputs or the keypad. If an analog input is selected, 50% of the analog range corresponds to zero draw. To properly operate in this mode, the following parameters must be set: 61.01 DRAW REF SEL 61.02 DRAW W/ TRIM 61.03 DRAW RANGE

Application macros

54

Default control connections The figure below shows the external control connections for the Draw Macro. The markings of the standard I/O board terminals are visible.

A

Arpm

Application macros

X20 1 2 X21 1 2 3 4 5 6 7 8 9 10 11 12 X22 1 2 3 4 5 6 7 8 9 10 11 X23 1 2 X25 1 2 3 X26 1 2 3 X27 1 2 3

VREF GND

Reference voltage -10 VDC 1 kohm < RL < 10 kohm

VREF GND AI1+ AI1AI2+ AI2AI3+ AI3AO1+ AO1AO2+ AO2-

Speed Reference 0(2)... 10V 1kohm < RL < 10kohm Speed Reference 0(2) … 10 V, Rin > 200 kohm By default not in use. 0(4) … 20 mA, Rin = 100 ohm By default not in use. 0(4) … 20 mA, Rin = 100 ohm Output Current 0(4) … 20 mA = 0 … motor nom. current, RL < 700 ohm Output Speed 0(4) … 20 mA = 0 … motor nom. speed, RL < 700 ohm

DI1 DI2 DI3 DI4 DI5 DI6 +24 V +24 V DGND1 DGND2 DIIL

Stop/Start By default not in use By default not in use By default not in use By default not in use Fault Reset +24 VDC, max. 100 mA

+24 V GND

Auxiliary voltage output, non-isolated, 24 VDC, 250 mA

Digital ground Digital ground Estop Input

RO11 RO12 RO13

Relay output 1

RO21 RO22 RO23

Relay output 2

R031 R032 R033

Relay output 3

Ready

Running

Fault

55

Loadshare macro The purpose of loadshare is to distribute the torque required by a section between the drives connected to that section. The figures below illustrate two basic application types. Only the follower drive(s) in the section would select the loadshare macro; however, both master and follower drives have parameters that must be configured:

Follower Drive: 65.01 LDSH ADJ SEL 65.02 LDSH RANGE +/70.06 CH2 M/F MODE 70.10 M/F COMM DELAY 70.11 CH2 COM LOSS CTRL

Master Drive: 70.06 CH2 M/F MODE 70.07 MASTER SIGNAL 1 70.08 MASTER SIGNAL 2 70.09 MASTER SIGNAL 3

Application macros

56

Default control connections The figure below shows the external control connections for the Loadshare Macro. The markings of the standard I/O board terminals are visible.

A

Arpm

Application macros

X20 1 2 X21 1 2 3 4 5 6 7 8 9 10 11 12 X22 1 2 3 4 5 6 7 8 9 10 11 X23 1 2 X25 1 2 3 X26 1 2 3 X27 1 2 3

VREF GND

Reference voltage -10 VDC 1 kohm < RL < 10 kohm

VREF GND AI1+ AI1AI2+ AI2AI3+ AI3AO1+ AO1AO2+ AO2-

Speed Reference 0(2)... 10V 1kohm < RL < 10kohm By default not in use 0(2) … 10 V, Rin > 200 kohm By default not in use. 0(4) … 20 mA, Rin = 100 ohm By default not in use. 0(4) … 20 mA, Rin = 100 ohm Output Current 0(4) … 20 mA = 0 … motor nom. current, RL < 700 ohm Output Speed 0(4) … 20 mA = 0 … motor nom. speed, RL < 700 ohm

DI1 DI2 DI3 DI4 DI5 DI6 +24 V +24 V DGND1 DGND2 DIIL

Stop/Start By default not in use By default not in use By default not in use By default not in use Fault Reset +24 VDC, max. 100 mA

+24 V GND

Auxiliary voltage output, non-isolated, 24 VDC, 250 mA

Digital ground Digital ground Estop Input

RO11 RO12 RO13

Relay output 1

RO21 RO22 RO23

Relay output 2

R031 R032 R033

Relay output 3

Ready

Running

Fault

57

Actual signals and parameters Chapter overview The chapter describes the actual signals and parameters. The fieldbus equivalent value is given for each signal/parameter. More data is given in chapter Additional data: actual signals and parameters. Terms and abbreviations The table defines the terms and abbreviations used in the parameter and actual signal tables. Term

Definition

Absolute Maximum Frequency

Value of 20.08, or 20.07 if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed

Value of parameter 20.02, or 20.01 if the absolute value of the minimum limit is higher than the maximum limit.

Actual signal

Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.

FbEq

Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Parameter

A user-adjustable operation instruction of the drive.

Actual signals and parameters

58

No. Name Value

Description

FbEq

01 ACTUAL SIGNALS

Basic signals for monitoring of the drive.

01.02 MOTOR SPEED FILT

Calculated motor speed in rpm. 100% corresponds to the absolute maximum speed of the motor.

+200 = +1%

01.03 FREQUENCY

Calculated output frequency.

1 = 1 Hz

01.04 CURRENT

Measured motor current.

10 = 1 A

01.05 TORQUE

Calculated motor torque. 100 is the motor nominal torque.

10 = 1 %

01.06 POWER

Motor power. 100% is the nominal power.

+100 = +1%

01.07 DC BUS VOLTAGE

Measured intermediate circuit voltage.

1 = 1 VDC

01.08 MAINS VOLTAGE

Calculated supply voltage.

1 = 1 VAC

01.09 OUTPUT VOLTAGE

Calculated motor voltage.

1 = 1 VAC

01.10 ACS600 TEMP

Temperature of the heatsink.

1 = 1 oC

01.14 OP HOUR COUNTER

Elapsed time counter. Runs when the NAMC board is powered.

1 = 1 Hr

01.15 KILOWATT HOURS

kWH counter.

1 = 100 kWH

01.16 APPL CODE DUTY

Application code load.

1 = 1%

01.17 DI6-1 STATUS

Status of digital inputs. Example: 000001 = DI1 is on, DI2 to DI6 are off. 1 = 1

01.18 AI1 [V]

Value of analog input AI1.

1000 = 1 V

01.19 AI2 [mA]

Value of analog input AI2

1000 = 1 mA

01.20 AI3 [mA]

Value of analog input AI3

1000 = 1 mA

01.21 RO3-1 STATUS

Status of relay outputs. Example: 001 = RO1 is energized, RO2 and RO3 are de-energized.

1=1

01.22 AO1 [mA]

Value of analog output AO1.

1000 = 1 mA

01.23 AO2 [mA]

Value of analog output AO2.

1000 = 1 mA

01.28 AO3 [mA]

Value of output 1 of the NAIO Analog I/O Extension module (optional).

1000 = 1 mA

01.28 AO4 [mA]

Value of output 2 of the NAIO Analog I/O Extension module (optional).

1000 = 1 mA

01.35 MOTOR 1 TEMP

Measured temperature of motor 1. See parameter 35.01.

1 = 1 oC

01.36 MOTOR 2 TEMP

Measured temperature of motor 2. See parameter 35.04.

1 = 1 oC

01.37 MOTOR TEMP EST

Estimated motor temperature.

1 = 1 oC

01.38 AI5 [mA]

Value of input 1 of the NAIO Analog I/O Extension module (optional).

1000 = 1 mA

01.39 AI6 [mA]

Value of input 2 of the NAIO Analog I/O Extension module (optional).

1000 = 1 mA

01.40 DI7-12 STATUS

Status of digital inputs of the NDIO Digital I/O Extension modules (optional).

1=1

01.41 RO4-7 STATUS

Status of digital outputs of the NDIO Digital I/O Extension modules (optional).

1=1

01.43 MOTOR RUN-TIME

Motor run time counter. The counter runs when the inverter modulates. 1 = 10 Hr Can be reset by parameter 34.06

01.44 FAN ON-TIME

Running time of the drive cooling fan. Note: The counter can be reset by the DriveWindow PC tool. Resetting is recommended when the fan is replaced.

01.45 MOTOR RUN-TIME

Control board temperature.

02 ACTUAL SIGNALS

Speed and torque reference monitoring signals and application values.

02.01 SPEED REF 2

Limited speed reference. 100% corresponds to the absolute maximum speed of the motor.

Actual signals and parameters

200 = 1%

59

No. Name Value

Description

FbEq

02.02 SPEED REF 3

Ramped and shaped speed reference. 100% corresponds to the absolute maximum speed of the motor.

200 = 1%

02.03 SPEED REF 4

Sum of SPEED REF 3 and SPEED CORRECTION. 100% corresponds 200 = 1% to the absolute maximum speed of the motor.

02.04 SPEED USED REF

Final speed reference for the internal speed controller. 100% corresponds to the absolute maximum speed of the motor.

200 = 1%

02.05 SPEED ESTIMATED

Estimated motor speed. 100% corresponds to the absolute maximum speed of the motor.

200 = 1%

02.06 SPEED MEASURED

Measured motor actual speed (zero when no encoder is used). 100% corresponds to the absolute maximum speed of the motor.

200 = 1%

02.07 MOTOR TORQUE FILT

Filtered motor torque. 100% corresponds to the motor nominal torque.

100 = 1%

02.08 TORQ REF 1

Limited sum of M/F torque reference and external torque reference. 100% corresponds to the motor nominal torque.

100 = 1%

02.09 TORQ REF 2

Speed controller output. 100% corresponds to the motor nominal torque.

100 = 1%

02.10 TORQ REF 3

Internal torque reference; after the torque reference selector. 100% corresponds to the motor nominal torque.

100 = 1%

02.11 TORQ REF 4

Sum of TORQ REF 3 and LOAD COMPENSATION. 100% corresponds 100 = 1% to the motor nominal torque.

02.12 TORQ REF 5

Sum of TORQ REF 4 and TORQUE TRIM. 100% corresponds to the motor nominal torque.

100 = 1%

02.13 TORQ USED REF

Final torque reference for the internal torque controller. 100% corresponds to the motor nominal torque.

100 = 1%

02.14 ACTUAL MTR FLUX

Flux reference in percent.

100 = 1%

02.15 ALARM WORD 1

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.16 ALARM WORD 2

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.17 ALARM WORD 3

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.18 FAULT WORD 1

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.19 FAULT WORD 2

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.20 FAULT WORD 3

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.21 SYSTEM FAULT

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.22 INT FAULT INFO

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.23 LIMIT WORD 1

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.24 MAIN CTRL WORD

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.25 FOLLOWER MCW

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.26 MAIN STATUS WORD

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.27 AUX STATUS WORD

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.28 AUX STATUS WORD 4

A 16-bit data word. See the chapter Fieldbus Control.

1=1

02.31 1. LATEST FAULT

Fieldbus code of the latest fault. See chapter Fault tracing for the codes.

02.32 2. LATEST FAULT

Fieldbus code of the 2nd latest fault.

02.33 3. LATEST FAULT

Fieldbus code of the 3rd latest fault.

02.34 4. LATEST FAULT

Fieldbus code of the 4th latest fault.

02.35 5. LATEST FAULT

Fieldbus code of the 5th latest fault.

02.36 1. LATEST WARNING

Fieldbus code of the latest warning.

Actual signals and parameters

60

No. Name Value

Description

FbEq

02.37 2. LATEST WARNING

Fieldbus code of the 2nd latest warning.

02.38 3. LATEST WARNING

Fieldbus code of the 3rd latest warning.

02.39 4. LATEST WARNING

Fieldbus code of the 4th latest warning.

02.40 5. LATEST WARNING

Fieldbus code of the 5th latest warning.

03 ACTUAL SIGNALS

Data words for monitoring or fieldbus communication.

03.01 DRAW SETPOINT

Percentage of speed adjustment due to the draw reference.

100 = 1%

03.02 TOTAL DRAW TRIM

Total percentage of speed adjustment for progressive draw systems.

100 = 1%

03.03 DANCER LOAD SETPT Dancer cylinder setpoint from an analog input. Used for setting desired 10 = 1% web tension. 03.04 DANCER LOAD REF

Dancer cylinder reference. Comprised of DANCER LOAD SETPT, tension taper settings and stall tension settings.

10 = 1%

03.05 DANCER REG OUTPUT

Percentage output of the dancer’s PI regulator.

10 = 1%

03.06 DANCER POSITION

Position of travel for the dancer arm.

10 = 1 mm 10 = 1 inch

03.07 TENSION SETPOINT

Tension setpoint from analog input.

10 = 1N 10 = 1 lb

03.08 TENSION REFERENCE Tension reference. Comprised of TENSION SETPOINT, tension taper settings and stall tension settings.

10 = 1 N 10 = 1 lb

03.09 TENSION REG OUTPT

Percentage output of the tension’s PI regulator

10 = 1%

03.10 TENSION ACTUAL

Tension actual as measured by the loadcell.

10 = 1 N 10 = 1 lb

03.11 TEN CALC TORQ REF 03.12 CALC TTL INERTIA

Torque reference calculated from the TENSION REFERENCE and ROLL DIAMETER.

1 = 1 Nm

Total calculated section inertia.

1 = 1 kgm2

1 = 1 lbft 1 = 1 lbft2

03.15 PACK STATUS BITS

A 16-bit data word. See the chapter Fieldbus Control.

1=1

04 INFORMATION

Information on the application loaded.

04.02 DTC SW VERSION

Flux software version.

1=1

04.03 INV NOM VOLTAGE

Downloaded inverter nominal supply voltage.

1=1V

04.04 INV NOM CURRENT

Downloaded inverter nominal current.

10 = 1 A

04.05 SW DEVELOP Co

Application software development company.

04.06 TECH SUPPORT No

Application software development company’s support phone number.

04.08 APPL SW PART No

Application software part number.

06 CH0 DATASETS IN

Words for monitoring data received from fieldbus.

06.01 DATASET 1 WORD 1

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.02 DATASET 1 WORD 2

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.03 DATASET 1 WORD 3

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.04 DATASET 3 WORD 1

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.04 DATASET 3 WORD 2

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.05 DATASET 3 WORD 3

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.07 DATASET 5 WORD 1

A 16-bit data word. See the chapter Fieldbus Control.

1=1

Actual signals and parameters

61

No. Name Value

Description

FbEq

06.08 DATASET 5 WORD 2

A 16-bit data word. See the chapter Fieldbus Control.

1=1

06.09 DATASET 5 WORD 3

A 16-bit data word. See the chapter Fieldbus Control.

1=1

10 START/STOP/DIR

The sources for external start, stop and direction control

10.01 EXT1 STRT/STOP

Defines the connections and the source of the start and stop commands for external control location 1.

NOT SEL DI1

This function is not selected.

1

Start and stop through digital input DI1. 0 = stop; 1 = start.

2

WARNING! After a fault reset, the drive will start if DI1 = 1. DI1P,2P

Pulse start through DI1. Transition from 0 to 1 = start.

3

Pulse stop through DI2. Transition from 1 to 0 = stop. DI7

See selection DI1.

4

FIELDBUS

See selection DI1. Instead of a digital input, the command comes from Dataset 1 Word 1 Bit 03. See the chapter Fieldbus Control.

5

MASTER DRV

Starts and stops with the master drive.

6

FBA & DI1

Starts if DI1 and FIELDBUS = 1. Stops if DI1 or FIELDBUS = 0.

7

MSTR & DI1

Starts if DI1 = 1 and MASTER DRV starts. Stops if DI1 = 0 or MASTER 8 DRV stops.

FBA & MSTR

Starts if FIELDBUS = 1 and MASTER DRV starts. Stops if FIELDBUS = 9 0 or MASTER DRV stops.

10.02 EXT1 DIRECTION

Enables the control of direction of rotation of the motor, or fixes the directIon.

FORWARD

Fixed to forward.

1

DI2

If digital input DI2 = 1, the direction is reverse.

2

DI3

See selection DI2.

3

DI4

See selection DI2.

4

DI8

See selection DI2.

5

DI9

See selection DI2.

6

AI5

Direction will reverse if the speed reference is negative; SPD REF SELECT must be “AI5”.

7

FIELDBUS

See selection DI2. Instead of a digital input, the command comes from Dataset 1 Word 1 Bit 04. See the chapter Fieldbus Control.

8

10.03 EXT2 STRT/STOP

Defines the connections and the source of the start and stop commands for external control location 2.

NOT SEL

See Parameter 10.01

1

DI1

See Parameter 10.01

2

DI1P,2P

See Parameter 10.01

3

DI7

See Parameter 10.01

4

FIELDBUS

See Parameter 10.01

5

MASTER DRV

See Parameter 10.01

6

FBA & DI1

See Parameter 10.01

7

MSTR & DI1

See Parameter 10.01

8

FBA & MSTR

See Parameter 10.01

9

10.04 EXT2 DIRECTION

Enables the control of direction of rotation of the motor, or fixes the directIon.

Actual signals and parameters

62

No. Name Value

Description

FbEq

FORWARD

See Parameter 10.02

1

DI2

See Parameter 10.02

2

DI3

See Parameter 10.02

3

DI4

See Parameter 10.02

4

DI8

See Parameter 10.02

5

DI9

See Parameter 10.02

6

AI5

See Parameter 10.02

7

FIELDBUS

See Parameter 10.02

8

11 REFERENCE SELECT

External control location selection and external reference sources and limits.

11.02 EXT1/EXT2 SELECT

Defines the source from which the drive reads the signal that selects between the two external control locations, EXT1 or EXT2.

EXT1

EXT1 active. The control signal sources are defined by parameter 10.01 and 11.03.

1

EXT2

EXT2 active. The control signal sources are defined by parameter 10.03 and 10.04.

2

DI1

Digital input DI1. 0 = EXT1, 1= EXT2

3

DI2

See selection DI1

4

DI3

See selection DI1

5

DI4

See selection DI1

6

DI5

See selection DI1

7

DI6

See selection DI1

8

DI7

See selection DI1

9

DI8

See selection DI1

10

DI9

See selection DI1

11

DI10

See selection DI1

12

FIELDBUS

Fieldbus Control Word, bit 11.

13

11.03 EXT1 REF SELECT

Select the required source for the Web Speed (Material speed) e.g. AI or Fieldbus. The Analog Input should be scaled to be 100% at maximum line speed (10 VDC if AI (voltage input) is used and 20 mA if AI (current input) is used. For example, AI1 should be 10 VDC at 1000 ft/min (304.8 m/min) line speed if 1000 ft/min (304.8 m/min) is the maximum line speed.

KEYPAD

Control panel. The first line on the display shows the reference value.

1

AI1

Analog input AI1 (voltage).

2

AI2

Analog input AI2 (current).

3

AI3

Analog input AI3 (current).

4

AI5

Analog input AI5 (voltage or current). If joystick operation is desired, set 5 EXT1 DIRECTION to “AI5”. With this done, when the input is less than 0 VDC the direction is reverse. When the input is greater than 0 VDC the direction is forward.

FIELDBUS

Dataset 1 Word 2. See the chapter Fieldbus Control.

6

MASTER DRV

Follows the speed reference of the master drive.

7

Actual signals and parameters

63

No. Name Value DI3, DI4

Description

FbEq

Digital Input 3: Reference increase

8

Digital Input 4: Reference decrease The program stores the active speed reference (not reset by a stop command or power switch). DIG POT RATE1 sec and DIG POT RATE2 sec define the rate of change. FBUS b4,5

See selection DI3, DI4. Instead of a digital input, the commands come from DataSet1 Word 2, bits 4 and 5. See chapter Fieldbus Control.

9

MASTER DRIVE xAI1

Follows the speed reference from the Master Drive multiplied by AI1.

10

11.04 EXT1 REF MINIMUM

Defines the minimum value for external reference 1 (absolute value). Corresponds to the minimum setting of the used source signal.

0…18000 rpm

Setting range in rpm. (Hz if parameter 99.04 is SCALAR.)

1 = 1 rpm

Example: Analog input AI1 is selected as the reference source (value of parameter 11.03 is AI1). The reference minimum and maximum correspond the AI minimum and maximum settings as follows: EXT REF1 Range 2’

1 2 1’ 2’

parameter 13.01 parameter 13.02 parameter 11.04 parameter 11.05

1’ AI1 Range 1

2

NOTE: If the reference is given through fieldbus, the scaling differs from that of an analog signal. See the chapter Fieldbus control for more information.

Actual signals and parameters

64

No. Name Value

Description

FbEq

11.05 EXT1 REF MAXIMUM

Parameter 11:05 EXT1 REF MAXIMUM may be calculated from the formula shown below. However, it is strongly advised to reconfirm the calculated value during the startup. A procedure to experimentally reconfirm Parameter 11:05 is described in steps 1-6. Parameter 11:05 defines the maximum rotational speed in rpm. This parameter is used as an intermediate scaling factor to scale the Web Speed or Material speed to a rotational speed reference for the drive. Lmax x Z Parameter 11:05 (rpm) = Dxπ Where:Lmax= Maximum Line Speed in ft/min or m/min D = Roll diameter in ft (m) π = 3.1415 Z= Gear Ratio Nmotor Gear Ratio (Z) = Nshaft Calculation of rotational speed reference from web speed (material speed) in the application software: Lact x Z = Dxπ =

Analog Input x Lmax 100

x

Z Dxπ

=

Analog Input x Param 11:05 x π x D 100 x Z

=

Analog Input x Param 11:05 100

x

Z Dxπ

The factor Speed Share (Speed Multiplier) is used to scale the line speed reference input to the rpm reference of the drive. 1. If Group 61 is being utilized, ensure that 61:01 DRAW REF SEL is set to “NO DRAW.” 2. Put the drive in speed mode only, disable the tension and dancer command (depending on selected operating mode). 63:09 TENSION CTL ENABLE to “NOT SEL” or 62:09 DANCER CTL ENABLE to “NOT SEL.” This sets the trim amount to zero so the section will follow the line speed reference. 3. Ensure ALL SAFETY conditions are met to safely operate the production line (machinery). 4. Without web in the machine, place the line in run and slowly increase the line speed to approximately 50%. 5. Check the surface speed of sections with a tachometer (hand-tach). Then without changing speeds, check the surface speed of the inline roll. 6. Adjust 11:05 EXT1 REF MAXIMUM to match the roll surface speed to the line speed. NOTE: 20:02 MAXIMUM SPEED must be greater than EXT1 REF MAXIMUM or the speed of the section will be limited to MAXIMUM SPEED. 0…18000 rpm

Actual signals and parameters

See description for EXT1 REF MINIMUM range.

1 = 1 rpm

65

No. Name Value

Description

FbEq

11.06 EXT2 REF SELECT

Select the required source for the Web Speed (Material speed) e.g. AI or Fieldbus. The Analog Input should be scaled to be 100% at maximum line speed (10 VDC if AI (voltage input) is used and 20 mA if AI (current input) is used. For example, AI2 should be 10 VDC at 1000 ft/min (304.8 m/min) line speed if 1000 ft/min (304.8 m/min) is the maximum line speed.

KEYPAD

See parameter 11.03

1

AI1

See parameter 11.03

2

AI2

See parameter 11.03

3

AI3

See parameter 11.03

4

AI5

See parameter 11.03

5

FIELDBUS

See parameter 11.03

6

MASTER DRV

See parameter 11.03

7

DI3, DI4

See parameter 11.03

8

FBUS b4,5

See parameter 11.03

9

MASTER DRIVE xAI1

See parameter 11.03

10

11.07 EXT2 REF MINIMUM 0…18000 rpm 11.08 EXT2 REF MAXIMUM 0…18000 rpm 11.09 DIG POT RATE1 sec 1 ... 300 11.10 DIG POT RATE2 sec 1 ... 300

Defines the minimum value for external reference 2 (absolute value). Corresponds to the minimum setting of the used source signal. See parameter 11.04

1 = 1 rpm

See parameter 11.05 See parameter 11.05

1 = 1 rpm

Defines the rate of speed reference change when DI3 or DI4 or Fbus b4,5 are high for 3 seconds or less. Setting range

1=1

Defines the rate of speed reference change when DI3 or DI4 or Fbus b4,5 are high for more than 3 seconds. Setting range

1=1

12 CONSTANT SPEEDS An active constant speed overrides the drive speed reference. 12.01 CONST SPEED SEL

Selects the activation signal source for the ramped constant speeds.

NOT SEL

This function is not selected.

1

DI3

Digital input DI3 = 1 selects CONST SPD 1.

2

DI3, DI4

Digital input DI3 = 1 selects CONST SPD 1. Digital input DI4 = 1 selects 3 CONST SPD 2.

DI5

See selection DI3.

4

DI5, DI6

See selection DI3, DI4.

5

DI9

See selection DI3.

6

DI9, DI10

See selection DI3, DI4.

7

FIELDBUS

See selection DI3, DI4. Instead of digital inputs, the selection comes 8 from Dataset 1 Word 1 Bits 05 & 06. See the chapter Fieldbus Control.

12.02 CONST SPD 1 -18000 … 18000 rpm 12.03 CONST SPD 2 -18000 … 18000 rpm 12.04 INCH SPD SEL

Defines ramped speed 1. Setting range.

1 = 1 rpm

Defines ramped speed 2. Setting range.

1 = 1 rpm

Selects the activation signal source for the stepped constant speed.

Actual signals and parameters

66

No. Name Value

Description

FbEq

NOT SEL

This function is not selected.

1

DI3

Digital input DI3 = 1 selects INCH SPD 1.

2

DI4

See selection DI3.

3

DI5

See selection DI3.

4

DI6

See selection DI3.

5

DI8

See selection DI3.

6

DI10

See selection DI3.

7

FIELDBUS

See selection DI3. Instead of a digital input, the selection comes from Dataset 1 Word 1 Bits 08. See the chapter Fieldbus Control.

8

12.05 INCH SPD 1 -18000 … 18000 rpm 12.06 TAKE-UP / PAYOUT

Defines stepped speed 1. Setting range.

1 = 1 rpm

Selects the activation signal source for the stepped constant speed that is added to external speed reference. NOTE: This constant speed does not override the speed reference; it is added to the speed reference.

NOT SEL

This function is not selected.

1

DI4

Digital input DI4 = 1 selects SPEED CHANGE.

2

DI6

See selection DI4.

3

DI8

See selection DI4.

4

DI9

See selection DI4.

5

DI10

See selection DI4.

6

FIELDBUS

See selection DI4. Instead of a digital input, the selection comes from Dataset 1 Word 1 Bits 09. See the chapter Fieldbus Control.

7

12.07 SPEED CHANGE -18000 … 18000 rpm 12.08 CNST SPD RUN SEL

Defines take-up/payout speed adder. Setting range.

1 = 1 rpm

Selects if the drive is to start when the digital inputs used in CONST SPEED SEL = 1 or if the run command is required.

MNSTRT REQ

A separate run command is required to start the drive.

0

STRT W/CNST

The drive starts when the constant speed digital input = 1.

1

13 ANALOG INPUTS

The analog signal processing

13.01 MINIMUM AI1

Defines the minimum value for analog input AI1. When used as a reference, the value corresponds to the reference minimum setting. Example: If AI1 is selected as the source for external reference 1, this value corresponds to the value of parameter 11.04.

0V

Zero Volts.

1

2V

Two Volts

2

TUNED VALUE

The value measured by the tuning function. See the selection TUNE.

3

The value measurement triggering. Procedure:

4

NOTE: The program cannot detect a loss of analog input signal.

TUNE

- Connect the minimum signal to input. - Set the parameter to TUNE. NOTE: The readable range in tuning is 0 V to 10 V.

Actual signals and parameters

67

No. Name Value

Description

13.03 SCALE AI1

FbEq

Scales analog input AI1. Example: The effect on speed reference REF1 when: - REF1 maximum value setting (Parameter 11.05) = 1500 rpm - Actual AI1 value = 4 V (40% of the full scale value) - AI1 scaling = 100%, AI3 scaling = 10% AI1 10 V

1500 rpm

40%

600 rpm

0V 50 … 150%

Scaling range.

13.04 FILTER AI1 ms

100 = 1%

Defines the filter time constant for analog input AI1. %

O = I · (1 - e-t/T)

Unfiltered Signal

0 I = filter input (step) O = filter output t = time T = filter time constant

63 Filtered Signal

T

t

NOTE: The signal is also filtered due to the signal interface hardware (10 ms time constant). This cannot be changed by any parameter. 0 … 10000 13.05 INVERT AI1

Filter time constant.

100 = 1s

Activates/deactivates the inversion of the analog input AI1.

NO

No inversion

0

YES

Inversion active. The maximum value of the analog input signal corresponds to the minimum reference and vice versa.

65535

13.06 MINIMUM AI2

See MINIMUM AI1.

1=1

13.08 SCALE AI2

See SCALE AI1.

1=1

13.09 FILTER AI2 ms

See FILTER AI1.

1=1

13.10 INVERT AI2

See INVERT AI1.

1=1

13.11 MINIMUM AI3

See MINIMUM AI1.

1=1

13.13 SCALE AI3

See SCALE AI1.

1=1

13.14 FILTER AI3 ms

See FILTER AI1.

1=1

13.15 INVERT AI3

See INVERT AI1.

1=1

13.16 MINIMUM AI5

See MINIMUM AI1.

1=1

13.18 SCALE AI5

See SCALE AI1.

1=1

Actual signals and parameters

68

No. Name Value

Description

FbEq

13.19 FILTER AI5 ms

See FILTER AI1.

1=1

13.20 INVERT AI5

See INVERT AI1.

1=1

13.21 MINIMUM AI6

See MINIMUM AI1.

1=1

13.23 SCALE AI6

See SCALE AI1.

1=1

13.24 FILTER AI6 ms

See FILTER AI1.

1=1

13.25 INVERT AI6

See INVERT AI1.

1=1

14 RELAY OUTPUTS

Status information indicated through relay outputs.

14.01 RO1 GROUP+INDEX

The relay output is controlled by use of “pointers”. This parameter selects the word that the desired bit is packed in. Example: 801 = 8.01 MAIN STATUS WORD.

0 … 10000 14.02 RO1 BITNUMBER 0 … 32 14.03 RO1 TON DELAY 0.0 … 3600.0 s

Setting range.

1=1

This selects the desired bit from the word selected by RO1 GROUP+INDEX. Setting range.

1=1

Defines the operation delay for the relay output RO1. Setting range. The figure below illustrates the operation and release delays for relay output RO1.

10 = 1 s

1

Drive status

0 1

RO1 status

0

14.04 RO1 TOFF DELAY 0.0 … 3600.0 s

tOn

tOff

tOn

14.04

tOff

14.05

tOn

tOff

time

Defines the release delay for the relay output RO1. See description for RO1 TON DELAY range.

10 = 1 s

14.05 RO2 GROUP+INDEX

See RO1 GROUP+INDEX.

1=1

14.06 RO2 BITNUMBER

See RO1 BIT NUMBER.

1=1

14.07 RO2 TON DELAY

See RO1 TON DELAY.

10 = 1 s

14.08 RO2 TOFF DELAY

See RO1 TOFF DELAY.

10 = 1 s

14.09 RO3 GROUP+INDEX

See RO1 GROUP+INDEX.

1=1

14.10 RO3 BITNUMBER

See RO1 BIT NUMBER.

1=1

14.11 RO3 TON DELAY

See RO1 TON DELAY.

10 = 1 s

14.12 RO3 TOFF DELAY

See RO1 TOFF DELAY.

10 = 1 s

14.13 RO4 GROUP+INDEX

See RO1 GROUP+INDEX.

1=1

14.14 RO4 BITNUMBER

See RO1 BIT NUMBER.

1=1

14.15 RO5 GROUP+INDEX

See RO1 GROUP+INDEX.

1=1

14.16 RO5 BITNUMBER

See RO1 BIT NUMBER.

1=1

Actual signals and parameters

69

No. Name Value

Description

15 ANALOG OUTPUTS

The analog signal processing

15.01 ANALOG OUTPUT 1

The analog output is controlled by use of “pointers”. This parameter selects the signal that is the desired output. Example: 102 = 1.02 SPEED.

0 … 10000 15.03 MINIMUM AO1

FbEq

Setting range.

1=1

Defines the minimum value of the analog output signal AO1.

0 mA

Zero mA.

1

4 mA

Four mA.

2

10 mA

Ten mA. 50% offset on 0 to 20 mA for testing or indication of direction.

3

15.04 FILTER AO1 ms 0.00 ... 10.00 s

Defines the filtering time constant for analog output AO1. 1=1

Filter time constant %

O = I · (1 - e-t/T)

Unfiltered Signal

100

I = filter input (step) O = filter output t = time T = filter time constant

63 Filtered Signal t T

NOTE: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters. 15.05 NOM VALUE AO1 0 … 65535

When the value of the signal selected in ANALOG OUTPUT 1 equals this parameter, the output = 20 mA. Setting range.

10 = 1

15.06 ANALOG OUTPUT 2

See ANALOG OUTPUT 1.

1=1

15.08 MINIMUM AO2

See MINIMUM AO1.

1=1

15.09 FILTER AO2 ms

See FILTER AO1.

1=1

15.10 NOM VALUE AO2

See NOM VALUE AO1.

10 = 1

15.11 ANALOG OUTPUT 3

See ANALOG OUTPUT 1.

1=1

15.13 MINIMUM AO3

See MINIMUM AO1.

1=1

15.14 FILTER AO3 ms

See FILTER AO1.

1=1

15.15 NOM VALUE AO3

See NOM VALUE AO1.

10 = 1

15.16 ANALOG OUTPUT 4

See ANALOG OUTPUT 1.

1=1

15.18 MINIMUM AO4

See MINIMUM AO1.

1=1

15.19 FILTER AO4 ms

See FILTER AO1.

1=1

15.20 NOM VALUE AO4

See NOM VALUE AO1.

10 = 1

16 SYS CTRL INPUTS

The analog signal processing

16.01 RUN ENABLE

Sets the run enable signal on, or selects a source for the external run enable signal. If no run enable signal is on, the drive will not start or stops if it is running.

YES

Run enable signal is on.

1

DI1

External signal required through digital input DI1. 1 = run enable.

2

DI2

See selection DI1.

3

DI3

See selection DI1.

4

Actual signals and parameters

70

No. Name Value

Description

FbEq

DI4

See selection DI1.

5

DI5

See selection DI1.

6

DI6

See selection DI1.

7

FIELDBUS

See selection DI1. Instead of a digital input, the selection comes from Dataset 1 Word 1 Bits 00. See the chapter Fieldbus Control.

8

MASTER DRV

The run enable signal comes from the master drive.

9

16.02 PARAMETER LOCK

Selects the state of the parameter lock. The lock prevents parameter changing.

OPEN

The lock is open. Parameter values can be changed.

0

LOCKED

Locked. Parameter values cannot be changed from the control panel. The lock can be opened by entering the valid Pass Code.

65535

16.03 PASS CODE 0 … 30000 16.04 FAULT RESET SEL NOT SEL DI2

Selects the pass code for the parameter lock. Setting 358 opens the lock. The value resumes back to 0 automatically. 1 = 1 Selects the source for the fault reset signal. The signal resets the drive after a fault trip if the cause of the fault no longer exists. This function is not selected.

1

Reset through digital input DI2 or by control panel:

2

- If the drive is in external control mode: Reset by a rising edge of DI2 - If the drive is in local control mode: Reset by the RESET key of the control panel. DI3

See selection DI2.

3

DI4

See selection DI2.

4

DI5

See selection DI2.

5

DI6

See selection DI2.

6

FIELDBUS

See selection DI2. Instead of a digital input, the selection comes from Dataset 1 Word 1 Bits 07 See the chapter Fieldbus Control.

7

MASTER DRV

The reset signal comes from the master drive. The master drive must be stopped (not in RUN).

8

16.06 LOCAL LOCK

Disables entering to local control mode (LOC/REM key of the panel). WARNING! Before activating, ensure that the control panel is not needed for stopping the drive!

OFF

Local control allowed.

0

ON

Local control disabled.

65535

16.07 PARAMETER SAVE

Saves the valid parameter values to the permanent memory. NOTE: A new parameter value of a standard macro is saved automatically when changed from the panel but not when altered through a fieldbus connection.

DONE

Saving started.

0

SAVE…

Saving is done.

1

16.09 CTRL BOARD SUPPLY

Defines the source of the control board power supply. NOTE: If an external supply is used but this parameter has value INTERNAL, the drive trips to a fault at power switch off.

INTERNAL 24V

Internal (default).

EXTERNAL 24V

External. The control board is powered from an external supply.

Actual signals and parameters

71

No. Name Value

Description

FbEq

20 LIMITS

Drive operation limits.

20.01 MINIMUM SPEED

Defines the allowed minimum speed. The limit cannot be set if the value of parameter 99.04 is SCALAR. WARNING! The limit is linked to the motor nominal speed setting i.e. parameter 99.08. If 99.08 is changed, the default speed limit will also change.

-18000 / (no. of pole pairs)

Minimum speed limit

1 = 1 rpm

… MAXIMUM SPEED 20.02 MAXIMUM SPEED

Defines the allowed maximum speed. The value cannot be set if the value of parameter 99.04 is SCALAR. WARNING! The limit is linked to the motor nominal speed setting i.e. parameter 99.08. If 99.08 is changed, the default speed limit will also change.

MINIMUM SPEED … 18000 Maximum speed limit / (no. of pole pairs) 20.03 MAXIMUM CURRENT 0.0 … 200.0% Ihd 20.04 MAXIMUM TORQUE 0.0 … 600.0 % 20.05 OVERVOLTAGE CTRL

1 = 1 rpm

Defines the allowed maximum motor current in percent of the rated heavy-duty use output current (I2hd). Current limit

10 = 1%

Defines the maximum torque limit 1 for the drive. Value of limit in percent of motor nominal torque.

10 = 1%

Activates or deactivates the overvoltage control of the intermediate DC link. Fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque. NOTE: If a braking chopper and resistor are connected to the drive, the controller must be off (selection NO) to allow chopper operation.

OFF

Overvoltage control deactivated.

0

ON

Overvoltage control activated.

65535

20.06 UNDERVOLTAGE CTRL

Activates or deactivates the undervoltage control of the intermediate DC link. If the DC voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor speed in order to keep the voltage above the lower limit. By decreasing the motor speed, the inertia of the load will cause regeneration back into the drive, keeping the DC link charged and preventing an undervoltage trip until the motor coasts to stop. This will act as a power-loss ride-through functionality in systems with a high inertia, such as a centrifuge or a fan.

OFF

Undervoltage control deactivated.

0

ON

Undervoltage control activated.

65535

20.07 MINIMUM FREQ -300.00 … 50.00 Hz

Defines the minimum limit for the drive output frequency. The limit can be set only if the value of parameter 99.04 is SCALAR. Minimum frequency limit.

100 = 1 Hz

NOTE: If the value is positive, the motor cannot be run in the reverse direction. 20.08 MAXIMUM FREQ

Defines the maximum limit for the drive output frequency. The limit can be set only if the value of parameter 99.04 is SCALAR

Actual signals and parameters

72

No. Name Value -50.00 … 300.00 Hz 20.10 SET MIN TORQ -300.0 … 0% 20.11 P MOTORING LIM 0 … 600.0% 20.12 P GENERATING LIM -600.0 … 0%

Description

FbEq

Maximum frequency limit

100 = 1 Hz

Minimum negative output torque as a percentage of the motor nominal torque. Setting range. Defines the allowed maximum power fed by the inverter to the motor. Maximum motoring power limit in percent of the motor nominal power

100 = 1%

Defines the allowed maximum power fed by the motor to the inverter. Maximum generating power limit in percent of the motor nominal power 100 = 1%

21 START/STOP

Start and stop modes of the motor.

21.01 START FUNCTION

Selects the motor starting method.

AUTO

100 = 1%

1 Automatic start guarantees optimal motor start in most cases. It includes the flying start function (starting to a rotating machine) and the automatic restart function (stopped motor can be restarted immediately without waiting the motor flux to die away). The drive motor control program identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions. NOTE: In scalar control mode (parameter 99.04 is SCALAR), no flying start or automatic restart is possible by default. The flying start feature needs to be activated separately by parameter 21.08.

DC MAGN

2 DC magnetizing should be selected if a high break-away torque is required. The drive pre-magnetizes the motor before the start. The premagnetizing time is determined automatically, being typically 200 ms to 2 s depending on the motor size. DC MAGN guarantees the highest possible break-away torque. NOTE: Starting to a rotating machine is not possible when DC magnetizing is selected. NOTE: DC magnetizing cannot be selected in scalar control mode (parameter 99.04 is SCALAR).

CNST DCMAGN

3 Constant DC magnetizing should be selected instead of DC magnetizing if constant pre-magnetizing time is required (e.g. if the motor start must be simultaneous with a mechanical brake release). This selection also guarantees the highest possible break-away torque when the pre-magnetizing time is set long enough. The premagnetizing time is defined by parameter 21.02. NOTE: Starting to a rotating machine is not possible when DC magnetizing is selected. NOTE: DC magnetizing cannot be selected in scalar control mode (parameter 99.04 is SCALAR). WARNING! The drive will start after the set magnetizing time has passed although the motor magnetization is not completed. Ensure always in applications where a full breakaway torque is essential, that the constant magnetizing time is long enough to allow generation of full magnetization and torque.

21.02 CONST MAGN TIME

Actual signals and parameters

Defines the magnetizing time in the constant magnetizing mode. See parameter 21.02. After the start command, ACS 800 automatically premagnetizes the motor the set time.

73

No. Name Value 30 … 10000 ms

21.03 STOP FUNCTION COAST STOP

Description

FbEq

Magnetizing time. To ensure full magnetizing, set this value to the same 1 = 1 ms value as or higher than the rotor time constant. If not known, use the rule-of-thumb value given in the table below: Motor Rated Power

Constant Magnetizing Time

< 10 kW

> 100 to 200 ms

10 to 200 kW

> 200 to 1000 ms

200 to 1000 kW

> 1000 to 2000 ms

Selects the motor stop function. Stop by cutting off the motor power supply. The motor coasts to a stop. 1 WARNING! If the brake control function is on, the application program uses ramp stop in spite of the selection COAST (see parameter group 42 BRAKE CONTROL).

RAMP STOP 21.04 DC HOLD

Stop along a ramp defined by the active deceleration time. See parameter group 22 ACCEL/DECEL.

2

Activates/deactivates the DC hold function. DC Hold is not possible if the value of parameter 99.04 is SCALAR. When both the reference and the speed drop below parameter 21.05, the drive will stop generating sinusoidal current and start to inject DC into the motor. The current is set by parameter 21.06. When the reference speed exceeds parameter 21.05, normal drive operation continues. SPEEDmotor

DC Hold

t

Ref. DC HOLD SPEED

t NOTE: DC Hold has no effect if the start signal is switched off. NOTE: Injecting DC current into the motor causes the motor to heat up. In applications where long DC hold times are required, externally ventilated motors should be used. If the DC hold period is long, the DC hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor. NO

Function inactive

1

YES

Function active

2

YES - NO RUN

Function is active at ZERO SPEED for HOLD AT ZERO TIME

3

21.05 DC HOLD SPEED 0 … 3000 rpm 21.06 DC HOLD CURR 0 … 100.0% 21.07 HOLD AT ZERO TIME 0 ... 99,999 sec

Defines the DC Hold speed. See parameter 21.04. Speed in rpm

1 = 1 rpm

Defines the DC hold current. See parameter 21.04. Current in percent of the motor nominal current

1 = 1%

Defines the time that DC Hold is active once Zero Speed is reached. Setting range

1 = 1 sec

Actual signals and parameters

74

No. Name Value

Description

FbEq

21.09 E-STOP MODE

The drive stopping method when an e-stop command has been received.

STOP RAMPING

The drive ramps to zero speed in the time set by E-STOP RAMP TIME. 1 When the drive reaches zero speed it will turn off (remove RUN).

STOP TORQ

The drive decelerates to zero speed at torque limit. When the drive reaches zero speed it will turn off (remove RUN).

2

COAST STOP

The drive coasts to a stop (immediate removal of RUN).

3

Defines the delay for zero speed delay function. The function is useful in applications where a smooth and quick restarting is essential. During the delay the drive knows accurately the rotor position.

Speed

No Zero Speed Delay Speed Controller switched off: Motor coasts to stop Zero Speed Time

With Zero Speed Delay Speed

21.10 ZERO SPEED DELAY

Speed Controller remains live. Motor is decelerated to true 0 speed Zero Speed Delay Time

No Zero Speed Delay The drive receives a stop command and decelerates along a ramp. When the motor actual speed falls below an internal limit (called Zero Speed), the speed controller is switched off. The inverter modulation is stopped and the motor coasts to a standstill. With Zero Speed Delay The drive receives a stop command and decelerates along a ramp. When the actual motor speed falls below an internal limit (called Zero Speed), the zero speed function activates. During the delay the functions keeps the speed controller live: the inverter modulates, motor is magnetized, and the drive is ready for a quick start. 0.0 ... 60.0 s 21.11 E-STOP COAST DLY 0 … 100 s

Delay time

10 = 1 s

Time allowed for the drive to stop after an e-stop command is received before an internal coast stop is commanded. Setting range.

22 ACCEL/DECEL

Acceleration and deceleration times.

22.01 ACC/DEC SEL

Selects the active acceleration / deceleration time pair.

1=1s

ACC/DEC 1

Acceleration time 1 and deceration time 1 are used. See parameters 22.02 and 22.03.

1

ACC/DEC 2

Acceleration time 2 and deceleration time 2 are used. See parameters 22.04 and 22.05.

2

DI5

Acceleration/Deceleration time pair selection through digital input DI5. 0 = Acceleration time 1 and deceleration time 1 are in use. 1 = Acceleration time 2 and deceleration time 2 are in use.

3

DI6

See selection DI5.

4

DI8

See selection DI5.

5

DI10

See selection DI5.

6

Fieldbus

See selection DI5. Instead of a digital input, the command comes from Dataset1 Word 3 bit 14. See chapter Fieldbus Control.

7

Actual signals and parameters

75

No. Name Value

Description

22.02 ACCEL TIME 1

Defines the acceleration time 1 i.e. the time required for the speed to change from zero to the maximum speed.

FbEq

- If the speed reference increases faster than the set acceleration rate, the motor speed will follow the acceleration rate. - If the speed reference increases slower than the set acceleration rate, the motor speed will follow the reference signal. - If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive operating limits. 0.0 … 1000.0 s 22.03 DECEL TIME 1

Acceleration time

10 = 1 s

Defines the deceleration time 1 i.e. the time required for the speed to change from the maximum (see parameter 20.02) to zero. - If the speed reference decreases slower than the set deceleration rate, the motor speed will follow the reference signal. - If the reference changes faster than the set deceleration rate, the motor speed will follow the deceleration rate. - If the deceleration time is set too short, the drive will automatically prolong the deceleration in order not to exceed drive operating limits. If there is any doubt about the deceleration time being too short, ensure that the DC overvoltage control is on (parameter 20.05). NOTE: If a short deceleration time is needed for a high inertia application, the drive should be equipped with an electric braking option e.g. with a braking chopper and a braking resistor.

0.0 … 1000.0 s

Deceleration time

22.04 ACCEL TIME 2

See parameter 22.02.

0.00 ... 1800.00 s

See parameter 22.02.

22.05 DECEL TIME 2

See parameter 22.03.

0.00 ... 1800.00 s

See parameter 22.03.

22.06 Shape Time

10 = 1 s 0 ... 18000 0 ... 18000

0.0 s: Linear Ramp. Suitable for steady acceleration or deceleration and for slow ramps. 0.01 to 1000.0 s: S-curve Ramp. S-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. The S-curve consists of symmetrical curves at both ends of the ramp and a linear section in between. A rule of thumb. A suitable relation between the ramp shape time and the acceleration ramp is 1/ 5.

Actual signals and parameters

76

No. Name Value 0 … 1000.00 s 22.07 E-STOP RAMP TIME

Description

FbEq

Acceleration time

100 = 1 s

Defines the time inside which the drive is stopped if - the drive receives an emergency stop command or - the Run Enable signal is switched off and the Run Enable function has value OFF3 (see parameter 21.07). The emergency stop command can be given through a fieldbus or an Emergency Stop module (optional). Consult the local ABB representative for more information on the optinal module and the related settings of the Standard Application Program.

0.0 … 1000.0 s 22.08 VARIABLE SLOPE

Deceleration Time

10 = 1 s

Variable slope is used to smooth the speed reference step changes from an overriding controller. If the overriding controller is generating the ramped speed reference to the drive (not using the internal drive ramp), the cycle time of the controller may cause the reference to be “stepped” instead of smooth. When the drive sees a speed step, it responds with a torque step that may upset the process. To compensate for the stepped reference, the drive can ramp the reference from the current to the new step, using the VAR SLOPE RATE as the time.

NO

Variable slope is not active.

0

YES

Variable slope is active.

65535

22.09 VAR SLOPE RATE 10.0 … 1000.0 ms

Cycle time of the overriding controller Setting range.

10 = 1 ms

22.10 CNSTSPD (JOG) RAMP Ramp time for constant speeds. NOTE: This only applies when CNST SPD RUN SEL is set to STRT W/ CNST 0 ... 1000 s

Setting Range

10 = 1 s

23 SPEED CONTROL

Speed controller variables. The parameters are not visible if parameter 99.04 is SCALAR.

23.01 GAIN

Defines a relative gain for the speed controller. Great gain may cause speed oscillation. The figure below shows the speed controller output after an error step when the error remains constant. %

Gain = Kp = 1 TI = Integration time = 0 TD= Derivation time = 0 Error Value Controller Output

Controller output = Kp · e

e = Error value

t 0.0 … 200.0

Actual signals and parameters

Gain

10 = 1

77

No. Name Value

Description

FbEq

23.02 INTEGRATION TIME

Defines an integration time for the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant. The shorter the integration time, the faster the continuous error value is corrected. Too short an integration time makes the control unstable. The figure below shows the speed controller output after an error step when the error remains constant. %

Controller Output Gain = Kp = 1 TI = Integration time > 0 TD= Derivation time = 0

Kp · e

e = Error value

Kp · e

t

TI 0.01 … 999.97 s 23.03 DERIVATION TIME

Integration time

100 = 1 s

Defines the derivation time for the speed controller. Derivative action boosts the controller output if the error value changes. The longer the derivation time, the more the speed controller output is boosted during the change. If the derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller. The derivation makes the control more responsive for disturbances. NOTE: Changing this parameter is recommended only if a pulse encoder is used. The figure below shows the speed controller output after an error step when the error remains constant.

% ∆e Kp · TD · Ts

Gain = Kp = 1 TI = Integration time > 0 TD= Derivation time > 0 Ts= Sample time period = 2 ms ∆e = Error value change between two samples Controller Output

Kp · e Error Value e = Error value

Kp · e

TI 0.0 … 9999.8 ms

Derivation time value.

t 1 = 1 ms

Actual signals and parameters

78

No. Name Value

Description

FbEq

23.04 ACC COMPENSATION

Defines the derivation time for acceleration compensation. In order to compensate inertia during acceleration a derivative of the reference is added to the output of the speed controller. The principle of a derivative action is described for parameter 23.03. NOTE: As a general rule, set this parameter to the value between 50 and 100% of the sum of the mechanical time constants of the motor and the driven machine. (The speed controller autotuning does this automatically, see parameter 23.06.) The figure below shows the speed responses when a high inertia load is accelerated along a ramp. No Acceleration Compensation %

Acceleration Compensation %

Speed reference Actual speed

t

0.00 … 999.98 s 23.05 SLIP GAIN

t

Derivation time

10 = 1 s

Defines the slip gain for the motor slip compensation control. 100% means full slip compensation; 0% means no slip compensation. The default value is 100%. Other values can be used if a static speed error is detected despite of the full slip compensation. Example: 1000 rpm constant speed reference is given to the drive. Despite of the full slip compensation (SLIP GAIN = 100%), a manual tachometer measurement from the motor axis gives a speed value of 998 rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip gain should be increased. At the 106% gain value, no static speed error exists.

0.0 … 400.0% 23.06 AUTOTUNE RUN

Slip gain value.

1=1%

Start automatic tuning of the speed controller. Instructions: - Run the motor at a constant speed of 20 to 40% of the rated speed. - Change the autotuning parameter 23.06 to YES. NOTE: The motor load must be connected to the motor.

NO

No autotuning. This is the basic value to which automatically reverts to 0 NO.

YES

Activates the speed controller autotuning.

23.07 INTEG INIT VALUE -300.00 … 300.00% 23.08 DERIV FILT TIME 0 … 10000 ms 23.09 ACC COMP FILT 0 … 10000 ms 23.10 DAMPENING COEF 0 … 10

Actual signals and parameters

65535

Initial value of the integrator. Setting range.

100 = 1%

Derivation time for the speed controller. Setting range.

1 = 1 ms

Acceleration compensation term filter coefficient. Setting range.

1 = 1 ms

Coefficient of dampening for AUTOTUNE RUN. A lower value yields an increased dynamic response. Setting range.

1=1

79

No. Name Value

Description

23.11 P-GAIN MIN

The proportional gain setting when the speed controller output is zero.

0 … 100 23.12 P-GAIN WEAKPOINT 0 … Max Torque% 23.13 P-GAIN WP FILT 0 … 99999 ms 23.14 DROOP RATE

FbEq

Setting range.

1=1

The output level of the speed controller where the gain is set to GAIN. Setting range.

1 = 1%

This can soften the rate of change for the proportional gain. Filter time constant.

1 = 1 ms

Defines the droop rate. The parameter value needs to be changed only if both the Master and the Follower are speed-controlled. The droop rate needs to be set both for the Master and the Follower. The correct droop rate for a process must be found out case by case in practice. The drooping prevents a conflict between the Master and the Follower by allowing a slight speed difference between them. The drooping slightly decreases the drive speed as the drive load increases. The actual speed decrease at a certain operating point depends on the droop rate setting and the drive load ( = torque reference / speed controller output). At 100% speed controller output, drooping is at its nominal level, i.e. equal to the value of the DROOP RATE. The drooping effect decreases linearly to zero along with the decreasing load. Speed Decrease = Speed Controller Output · Drooping · Max. Speed Example: Speed Controller output is 50%, DROOP Motor RATE is 1%, maximum speed of the drive is Speed 1500 rpm. % of Speed decrease = 0.50 · 0.01 · 1500 rpm = 7.5 rpm nominal

100%

No Drooping } Par. 60.06 DROOP RATE Drooping

100%

0 … 100.0% 23.15 KPS TIS MIN FREQ 0 … 200 Hz 23.16 KPS TIS MAX FREQ 0 … 200 Hz 23.17 KPS VAL MIN FREQ 100 … 500% 23.18 TIS VAL MIN FREQ 100 … 500% 23.19 SPEED ACT FILT 0 … 10000 ms

Speed Controller Drive load Output / %

Setting range.

10 = 1%

The minimum frequency limit above which the relative gain and integral time is defined by KPS VAL MIN FREQ and TIS VAL MIN FREQ. Setting range.

1 = 1 Hz

The frequency point which relative KPS and TIS equal 100% Setting range.

1 = 1 Hz

The relative gain percentage of the KPS value at the speed defined by KPS TIS MIN FREQ. Setting range.

1 = 1%

The relative gain percentage of the TIS value at the speed defined by KPS TIS MIN FREQ. Setting range.

1 = 1%

The time constant of the first order actual speed filter. Setting range.

1 = 1 ms

Actual signals and parameters

80

No. Name Value

Description

24 TORQ REF CTRL

Torque control variables. The parameters are not visible if parameter 99.04 is SCALAR.

24.08 LOAD COMPENSATION

Load compensation added to TORQ REF 3.

-300.00 … 300.00% 24.09 TORQ TRIM

FbEq

NOTE: If the overriding system sends a value here, it must be set to zero before the stop command is given to the drive. Setting range.

100 = 1%

Additional torque step added to TORQ REF 4. NOTE: If the overriding system sends a value here, it must be set to zero before the stop command is given to the drive.

-300.00 … 300.00% 24.10 SPD TORQ MAX

Setting range.

100 = 1%

Maximum torque limit of the speed regulator output. NOTE: This parameter is read-only when the drive is in torque control.

0 … 300.0% 24.11 SPD TORQ MIN

Setting range.

100 = 1%

Minimum torque limit of the speed regulator output. NOTE: This parameter is read-only when the drive is in torque control.

-300.0 … 0%

25 SPEED REF

Setting range.

100 = 1%

Speed control variables. NOTE: These values are READ-ONLY.

25.01 SPEED REF

Initial speed reference from keypad or remote source.

25.02 SPEED MULTIPLIER

Speed Reference Share Coefficient. This value is multiplied by SPEED REF.

0 ... 400.00%

1 = 1 rpm

Setting range.

100 = 1%

25.03 SPEED CORRECTION

Speed step added to the ramped speed reference. Used for tension trim.

1 = 1 rpm

25.04 ADDITIVE SPD REF

Speed step added to SPEED REF. Used with PAYOUT / TAKE-UP.

1 = 1 rpm

25.05 FREQUENCY REF

Initial frequency reference from Keypad or Remote Source.

100 = 1 Hz

26 FLUX CONTROL

Flux control variables. Improves the stability of a system by decreasing the amount of electrical motor flux when low torque requirements are present.

26.01 FLUX OPTIMIZATION

Activates/deactivates the flux optimization function. NOTE: The function cannot be used if parameter 99.04 is SCALAR.

NO

Inactive.

0

YES

Active.

65535

26.02 FLUX BRAKING

Activates/deactivates the flux braking function. NOTE: The function cannot be used if parameter 99.04 is SCALAR.

NO

Inactive.

0

YES

Active.

65535

26.06 FLUX REF/MAX 30.0 … 100.0% 26.07 ACTIVE FLUX CTRL

Maximum flux reference. Used if ACTIVE FLUX CTRL is NO or if the required motor torque is > 30%. Setting range.

10 = 1%

Activates/deactivates the active flux control.

NO

Motor flux percentage equals FLUX REF/MAX.

0

YES

Motor flux percentage comes from the active program control.

66535

26.08 FLUX REF 2

Actual signals and parameters

Motor flux percentage active while no run signal is present or when the required motor torque is >10% and