Int-Soft (Generalized) Bi-Ideals of Semigroups

1 downloads 0 Views 523KB Size Report
Dec 23, 2014 - Hindawi Publishing Corporation. e Scientific World Journal. Volume 2015, Article ID 198672, 6 pages http://dx.doi.org/10.1155/2015/198672Β ...
Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2015, Article ID 198672, 6 pages http://dx.doi.org/10.1155/2015/198672

Research Article Int-Soft (Generalized) Bi-Ideals of Semigroups Young Bae Jun1 and Seok-Zun Song2 1

Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Republic of Korea Department of Mathematics, Jeju National University, Jeju 690-756, Republic of Korea

2

Correspondence should be addressed to Seok-Zun Song; [email protected] Received 14 August 2014; Accepted 23 December 2014 Academic Editor: Guilong Liu Copyright Β© 2015 Y. B. Jun and S.-Z. Song. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The notions of int-soft semigroups and int-soft left (resp., right) ideals in semigroups are studied in the paper by Song et al. (2014). In this paper, further properties and characterizations of int-soft left (right) ideals are studied, and the notion of int-soft (generalized) bi-ideals is introduced. Relations between int-soft generalized bi-ideals and int-soft semigroups are discussed, and characterizations of (int-soft) generalized bi-ideals and int-soft bi-ideals are considered. Given a soft set (𝛼; S) over U, int-soft (generalized) bi-ideals generated by (𝛼; S) are established.

1. Introduction As a new mathematical tool for dealing with uncertainties, the notion of soft sets is introduced by Molodtsov [1]. The author pointed out several directions for the applications of soft sets. At present, works on the soft set theory are progressing rapidly. Maji et al. [2] described the application of soft set theory to a decision making problem. Maji et al. [3] also studied several operations on the theory of soft sets. C ¸ a˘gman and Enginoglu [4] introduced fuzzy parameterized (FP) soft sets and their related properties. They proposed a decision making method based on FP-soft set theory and provided an example which shows that the method can be successfully applied to the problems that contain uncertainties. Feng [5] considered the application of soft rough approximations in multicriteria group decision making problems. Aktas¸ and C ¸ a˘gman [6] studied the basic concepts of soft set theory and compared soft sets to fuzzy and rough sets, providing examples to clarify their differences. In general, it is well known that the soft set theory is a good mathematical model to deal with uncertainty. Nevertheless, it is also a new notion worth applying to abstract algebraic structures. So, we can provide the possibility of a new direction of soft sets based on abstract algebraic structures in dealing with uncertainty. In fact, in the aspect of algebraic structures, the soft set theory has been applied to rings, fields, and modules (see [7, 8]), groups (see [6]), semirings (see [9]), (ordered) semigroups

(see [10, 11]), and hypervector spaces (see [12]). Song et al. [11] introduced the notion of int-soft semigroups and int-soft left (resp., right) ideals and investigated several properties. Our aim in this paper is to apply the soft sets to one of abstract algebraic structures, the so-called semigroup. So, we take a semigroup as the parameter set for combining soft sets with semigroups. This paper is a continuation of [11]. We first study further properties and characterizations of int-soft left (right) ideals. We introduce the notion of intsoft (generalized) bi-ideals and provide relations between intsoft generalized bi-ideals and int-soft semigroups. We discuss characterizations of (int-soft) generalized bi-ideals and intsoft bi-ideals. Given a soft set (𝛼, 𝑆) over π‘ˆ, we establish intsoft (generalized) bi-ideals generated by (𝛼, 𝑆).

2. Preliminaries Let 𝑆 be a semigroup. Let 𝐴 and 𝐡 be subsets of 𝑆. Then the multiplication of 𝐴 and 𝐡 is defined as follows: 𝐴𝐡 = {π‘Žπ‘ ∈ 𝑆 | π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐡} .

(1)

A semigroup 𝑆 is said to be regular if for every π‘₯ ∈ 𝑆 there exists π‘Ž ∈ 𝑆 such that π‘₯π‘Žπ‘₯ = π‘₯. A semigroup 𝑆 is said to be left (resp., right) zero if π‘₯𝑦 = π‘₯ (resp., π‘₯𝑦 = 𝑦) for all π‘₯, 𝑦 ∈ 𝑆.

2

The Scientific World Journal

A semigroup 𝑆 is said to be left (right) simple if it contains no proper left (right) ideal. A semigroup 𝑆 is said to be simple if it contains no proper two-sided ideal. A nonempty subset 𝐴 of 𝑆 is called (i) a subsemigroup of 𝑆 if 𝐴𝐴 βŠ† 𝐴, that is, π‘Žπ‘ ∈ 𝐴 for all π‘Ž, 𝑏 ∈ 𝐴, (ii) a left (resp., right) ideal of 𝑆 if 𝑆𝐴 βŠ† 𝐴 (resp., 𝐴𝑆 βŠ† 𝐴), that is, π‘₯π‘Ž ∈ 𝐴 (resp., π‘Žπ‘₯ ∈ 𝐴) for all π‘₯ ∈ 𝑆 and π‘Ž ∈ 𝐴, (iii) a two-sided ideal of 𝑆 if it is both a left and a right ideal of 𝑆, (iv) a generalized bi-ideal of 𝑆 if 𝐴𝑆𝐴 βŠ† 𝐴, (v) a bi-ideal of 𝑆 if it is both a semigroup and a generalized bi-ideal of 𝑆. A soft set theory is introduced by Molodtsov [1], and C ΒΈ a˘gman and Engino˘glu [13] provided new definitions and various results on soft set theory. In what follows, let π‘ˆ be an initial universe set and 𝐸 be a set of parameters. Let P(π‘ˆ) denote the power set of π‘ˆ and 𝐴, 𝐡, 𝐢, . . . , βŠ† 𝐸. Definition 1 (see [1, 13]). A soft set (𝛼, 𝐴) over π‘ˆ is defined to be the set of ordered pairs (𝛼, 𝐴) := {(π‘₯, 𝛼 (π‘₯)) : π‘₯ ∈ 𝐸, 𝛼 (π‘₯) ∈ P (π‘ˆ)} ,

(2)

The function 𝛼 is called approximate function of the soft set (𝛼, 𝐴). The subscript 𝐴 in the notation 𝛼 indicates that 𝛼 is the approximate function of (𝛼, 𝐴). For a soft set (𝛼, 𝐴) over π‘ˆ and a subset 𝛾 of π‘ˆ, the 𝛾inclusive set of (𝛼, 𝐴), denoted by 𝑖𝐴 (𝛼; 𝛾), is defined to be the set (3)

For any soft sets (𝛼, 𝑆) and (𝛽, 𝑆) over π‘ˆ, we define Μƒ (𝛽, 𝑆) (𝛼, 𝑆) βŠ†

if 𝛼 (π‘₯) βŠ† 𝛽 (π‘₯) βˆ€π‘₯ ∈ 𝑆.

(4)

The soft union of (𝛼, 𝑆) and (𝛽, 𝑆) is defined to be the soft set Μƒ 𝛽, 𝑆) over π‘ˆ in which 𝛼 βˆͺ Μƒ 𝛽 is defined by (𝛼 βˆͺ Μƒ 𝛽) (π‘₯) = 𝛼 (π‘₯) βˆͺ 𝛽 (π‘₯) (𝛼 βˆͺ

βˆ€π‘₯ ∈ 𝑆.

(5)

The soft intersection of (𝛼, 𝑆) and (𝛽, 𝑆) is defined to be the Μƒ 𝛽, 𝑆) over π‘ˆ in which 𝛼 ∩ Μƒ 𝛽 is defined by soft set (𝛼 ∩ Μƒ 𝛽) (π‘₯) = 𝛼 (π‘₯) ∩ 𝛽 (π‘₯) (𝛼 ∩

βˆ€π‘₯ ∈ 𝑆.

(6)

The int-soft product of (𝛼, 𝑆) and (𝛽, 𝑆) is defined to be the soft set (π›ΌΜƒβˆ˜π›½, 𝑆) over π‘ˆ in which 𝛼 Μƒβˆ˜ 𝛽 is a mapping from 𝑆 to P(π‘ˆ) given by (𝛼 Μƒβˆ˜ 𝛽) (π‘₯) { ⋃ {𝛼 (𝑦) ∩ 𝛽 (𝑧)} = {π‘₯=𝑦𝑧 {0

In what follows, we take 𝐸 = 𝑆, as a set of parameters, which is a semigroup unless otherwise specified. Definition 2 (see [11]). A soft set (𝛼, 𝑆) over π‘ˆ is called an intsoft semigroup over π‘ˆ if it satisfies (βˆ€π‘₯, 𝑦 ∈ 𝑆)

(𝛼 (π‘₯) ∩ 𝛼 (𝑦) βŠ† 𝛼 (π‘₯𝑦)) .

(8)

Definition 3 (see [11]). A soft set (𝛼, 𝑆) over π‘ˆ is called an intsoft left (resp., right) ideal over π‘ˆ if it satisfies (βˆ€π‘₯, 𝑦 ∈ 𝑆)

(𝛼 (π‘₯𝑦) βŠ‡ 𝛼 (𝑦) (resp., 𝛼 (π‘₯𝑦) βŠ‡ 𝛼 (π‘₯))) . (9)

If a soft set (𝛼, 𝑆) over π‘ˆ is both an int-soft left ideal and an int-soft right ideal over π‘ˆ, we say that (𝛼, 𝑆) is an int-soft two-sided ideal over π‘ˆ. Obviously, every int-soft (resp., right) ideal over π‘ˆ is an int-soft semigroup over π‘ˆ. But the converse is not true in general (see [11]). Proposition 4. Let (𝛼, 𝑆) be an int-soft left ideal over π‘ˆ. If 𝐺 is a left zero subsemigroup of 𝑆, then the restriction of (𝛼, 𝑆) to 𝐺 is constant; that is, 𝛼(π‘₯) = 𝛼(𝑦) for all π‘₯, 𝑦 ∈ 𝐺. Proof. Let π‘₯, 𝑦 ∈ 𝐺. Then π‘₯𝑦 = π‘₯ and 𝑦π‘₯ = 𝑦. Thus 𝛼 (π‘₯) = 𝛼 (π‘₯𝑦) βŠ‡ 𝛼 (𝑦) = 𝛼 (𝑦π‘₯) βŠ‡ 𝛼 (π‘₯) ,

where 𝛼 : 𝐸 β†’ P(π‘ˆ) such that 𝛼(π‘₯) = 0 if π‘₯ βˆ‰ 𝐴.

𝑖𝐴 (𝛼; 𝛾) := {π‘₯ ∈ 𝐴 | 𝛾 βŠ† 𝛼 (π‘₯)} .

3. Int-Soft Ideals

(10)

and so 𝛼(π‘₯) = 𝛼(𝑦) for all π‘₯, 𝑦 ∈ 𝐺. Similarly, we have the following proposition. Proposition 5. Let (𝛼, 𝑆) be an int-soft right ideal over π‘ˆ. If 𝐺 is a right zero subsemigroup of 𝑆, then the restriction of (𝛼, 𝑆) to 𝐺 is constant; that is, 𝛼(π‘₯) = 𝛼(𝑦) for all π‘₯, 𝑦 ∈ 𝐺. Proposition 6. Let (𝛼, 𝑆) be an int-soft left ideal over π‘ˆ. If the set of all idempotent elements of 𝑆 forms a left zero subsemigroup of 𝑆, then 𝛼(π‘₯) = 𝛼(𝑦) for all idempotent elements π‘₯ and 𝑦 of 𝑆. Proof. Assume that the set 𝐼 (𝑆) := {π‘₯ ∈ 𝑆 | π‘₯ is an idempotent element of 𝑆}

(11)

is a left zero subsemigroup of 𝑆. For any 𝑒, V ∈ 𝐼(𝑆), we have 𝑒V = 𝑒 and V𝑒 = V. Hence 𝛼 (𝑒) = 𝛼 (𝑒V) βŠ‡ 𝛼 (V) = 𝛼 (V𝑒) βŠ‡ 𝛼 (𝑒)

(12)

and thus 𝛼(𝑒) = 𝛼(V) for all idempotent elements 𝑒 and V of 𝑆. Similarly, we have the following proposition.

if βˆƒπ‘¦, 𝑧 ∈ 𝑆 such that π‘₯ = 𝑦𝑧 otherwise. (7)

Proposition 7. Let (𝛼, 𝑆) be an int-soft right ideal over π‘ˆ. If the set of all idempotent elements of 𝑆 forms a right zero subsemigroup of 𝑆, then 𝛼(π‘₯) = 𝛼(𝑦) for all idempotent elements π‘₯ and 𝑦 of 𝑆.

The Scientific World Journal

3

For a nonempty subset 𝐴 of 𝑆 and Ξ¦, Ξ¨ ∈ P(π‘ˆ) with Ξ¦ βŠ‹ Ξ¨, define a map πœ’π΄(Ξ¦,Ξ¨) as follows: πœ’π΄(Ξ¦,Ξ¨) : 𝑆 󳨀→ P (π‘ˆ) ,

π‘₯ 󳨃󳨀→ {

Ξ¦ if π‘₯ ∈ 𝐴, Ξ¨ otherwise.

(13)

Then (πœ’π΄(Ξ¦,Ξ¨) , 𝑆) is a soft set over π‘ˆ, which is called the (Ξ¦, Ξ¨)characteristic soft set. The soft set (πœ’π‘†(Ξ¦,Ξ¨) , 𝑆) is called the (Ξ¦, Ξ¨)-identity soft set over π‘ˆ. The (Ξ¦, Ξ¨)-characteristic soft set with Ξ¦ = π‘ˆ and Ξ¨ = 0 is called the characteristic soft set and is denoted by (πœ’π΄, 𝑆). The (Ξ¦, Ξ¨)-identity soft set with Ξ¦ = π‘ˆ and Ξ¨ = 0 is called the identity soft set and is denoted by (πœ’π‘† , 𝑆). (πœ’π΄(Ξ¦,Ξ¨) , 𝑆)

(πœ’π΅(Ξ¦,Ξ¨) , 𝑆)

Lemma 8. Let and be (Ξ¦, Ξ¨)-characteristic soft sets over π‘ˆ where 𝐴 and 𝐡 are nonempty subsets of 𝑆. Then the following properties hold: (Ξ¦,Ξ¨) Μƒ πœ’π΅(Ξ¦,Ξ¨) = πœ’π΄βˆ©π΅ , (1) πœ’π΄(Ξ¦,Ξ¨) ∩ (Ξ¦,Ξ¨) . (2) πœ’π΄(Ξ¦,Ξ¨) Μƒβˆ˜ πœ’π΅(Ξ¦,Ξ¨) = πœ’π΄π΅

Proof. (1) Let π‘₯ ∈ 𝑆. If π‘₯ ∈ 𝐴 ∩ 𝐡, then π‘₯ ∈ 𝐴 and π‘₯ ∈ 𝐡. Thus we have Μƒ πœ’π΅(Ξ¦,Ξ¨) ) (π‘₯) = πœ’π΄(Ξ¦,Ξ¨) (π‘₯) ∩ πœ’π΅(Ξ¦,Ξ¨) (π‘₯) (πœ’π΄(Ξ¦,Ξ¨) ∩ (Ξ¦,Ξ¨) = Ξ¦ = πœ’π΄βˆ©π΅ (π‘₯) .

(Ξ¦,Ξ¨) = Ξ¨ = πœ’π΄βˆ©π΅ (π‘₯) .

(15)

(πœ’π΄(Ξ¦,Ξ¨) Μƒβˆ˜ πœ’π΅(Ξ¦,Ξ¨) ) (π‘₯) = ⋃ {πœ’π΄(Ξ¦,Ξ¨) (𝑦) ∩ πœ’π΅(Ξ¦,Ξ¨) (𝑧)} (16)

βŠ‡ πœ’π΄(Ξ¦,Ξ¨) (π‘Ž) ∩ πœ’π΅(Ξ¦,Ξ¨) (𝑏) = Ξ¦, and so (πœ’π΄(Ξ¦,Ξ¨) Μƒβˆ˜ πœ’π΅(Ξ¦,Ξ¨) )(π‘₯) = Ξ¦. Since π‘₯ ∈ 𝐴𝐡, we get (Ξ¦,Ξ¨) (π‘₯) = Ξ¦. Suppose π‘₯ βˆ‰ 𝐴𝐡. Then π‘₯ =ΜΈ π‘Žπ‘ for all π‘Ž ∈ 𝐴 πœ’π΄π΅ and 𝑏 ∈ 𝐡. If π‘₯ = 𝑦𝑧 for some 𝑦, 𝑧 ∈ 𝑆, then 𝑦 βˆ‰ 𝐴 or 𝑧 βˆ‰ 𝐡. Hence (πœ’π΄(Ξ¦,Ξ¨) Μƒβˆ˜ πœ’π΅(Ξ¦,Ξ¨) ) (π‘₯) = ⋃ {πœ’π΄(Ξ¦,Ξ¨) (𝑦) ∩ πœ’π΅(Ξ¦,Ξ¨) (𝑧)} π‘₯=𝑦𝑧

=Ξ¨=

(17) (Ξ¦,Ξ¨) πœ’π΄π΅

(π‘₯) .

(Ξ¦,Ξ¨) In any case, we have πœ’π΄(Ξ¦,Ξ¨) Μƒβˆ˜ πœ’π΅(Ξ¦,Ξ¨) = πœ’π΄π΅ .

Proof. Suppose that (𝛼, 𝑆) is an int-soft left ideal over π‘ˆ. Let π‘₯ ∈ 𝑆. If π‘₯ = 𝑦𝑧 for some 𝑦, 𝑧 ∈ 𝑆, then (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼) (π‘₯) = ⋃ {πœ’π‘†(Ξ¦,Ξ¨) (𝑦) ∩ 𝛼 (𝑧)} π‘₯=𝑦𝑧

βŠ† ⋃ {Ξ¦ ∩ 𝛼 (𝑦𝑧)} = 𝛼 (π‘₯) .

(19)

π‘₯=𝑦𝑧

Otherwise, we have (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼)(π‘₯) = 0 βŠ† 𝛼(π‘₯). Therefore Μƒ (𝛼, 𝑆). (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼, 𝑆) βŠ† Μƒ (𝛼, 𝑆). For any Conversely, assume that (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼, 𝑆) βŠ† π‘₯, 𝑦 ∈ 𝑆, we have 𝛼 (π‘₯𝑦) βŠ‡ (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼) (π‘₯𝑦) βŠ‡ πœ’π‘†(Ξ¦,Ξ¨) (π‘₯) ∩ 𝛼 (𝑦) = Ξ¦ ∩ 𝛼 (𝑦) = 𝛼 (𝑦) .

(20)

Similarly, we have the following theorem.

(1) (𝛼, 𝑆) is an int-soft right ideal over π‘ˆ, Μƒ (𝛼, 𝑆). (2) (𝛼 Μƒβˆ˜ πœ’π‘†(Ξ¦,Ξ¨) , 𝑆) βŠ† Corollary 11. For the (Ξ¦, Ξ¨)-identity soft set (πœ’π‘†(Ξ¦,Ξ¨) , 𝑆), let (𝛼, 𝑆) be a soft set over π‘ˆ such that 𝛼(π‘₯) βŠ† Ξ¦ for all π‘₯ ∈ 𝑆. Then the following assertions are equivalent: (1) (𝛼, 𝑆) is an int-soft two-sided ideal over π‘ˆ, Μƒ (𝛼, 𝑆). Μƒ (𝛼, 𝑆) and (𝛼 Μƒβˆ˜ πœ’π‘†(Ξ¦,Ξ¨) , 𝑆) βŠ† (2) (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼, 𝑆) βŠ† Note that the soft intersection of int-soft left (right, twosided) ideals over π‘ˆ is an int-soft left (right, two-sided) ideal over π‘ˆ. In fact, the soft intersection of int-soft left (right, twosided) ideals containing a soft set (𝛼, 𝑆) over π‘ˆ is the smallest int-soft left (right, two-sided) ideal over π‘ˆ. For any soft set (𝛼, 𝑆) over π‘ˆ, the smallest int-soft left (right, two-sided) ideal over π‘ˆ containing (𝛼, 𝑆) is called the int-soft left (right, two-sided) ideal over π‘ˆ generated by (𝛼, 𝑆) and is denoted by (𝛼, 𝑆)𝑙 ((𝛼, 𝑆)π‘Ÿ , (𝛼, 𝑆)2 ). Theorem 12. Let 𝑆 be a monoid with identity 𝑒. Then (𝛼, 𝑆)𝑙 = (𝛽, 𝑆), where

If π‘₯ =ΜΈ 𝑦𝑧 for all π‘₯, 𝑦 ∈ 𝑆, then (Ξ¦,Ξ¨) (πœ’π΄(Ξ¦,Ξ¨) Μƒβˆ˜ πœ’π΅(Ξ¦,Ξ¨) ) (π‘₯) = Ξ¨ = πœ’π΄π΅ (π‘₯) .

Μƒ (𝛼, 𝑆). (2) (πœ’π‘†(Ξ¦,Ξ¨) Μƒβˆ˜ 𝛼, 𝑆) βŠ†

Theorem 10. For the (Ξ¦, Ξ¨)-identity soft set (πœ’π‘†(Ξ¦,Ξ¨) , 𝑆), let (𝛼, 𝑆) be a soft set over π‘ˆ such that 𝛼(π‘₯) βŠ† Ξ¦ for all π‘₯ ∈ 𝑆. Then the following assertions are equivalent:

(Ξ¦,Ξ¨) Μƒ πœ’π΅(Ξ¦,Ξ¨) = πœ’π΄βˆ©π΅ Therefore πœ’π΄(Ξ¦,Ξ¨) ∩ . (2) For any π‘₯ ∈ 𝑆, suppose π‘₯ ∈ 𝐴𝐡. Then there exist π‘Ž ∈ 𝐴 and 𝑏 ∈ 𝐡 such that π‘₯ = π‘Žπ‘. Thus we have

π‘₯=𝑦𝑧

(1) (𝛼, 𝑆) is an int-soft left ideal over π‘ˆ,

Hence (𝛼, 𝑆) is an int-soft left ideal over π‘ˆ. (14)

If π‘₯ βˆ‰ 𝐴 ∩ 𝐡, then π‘₯ βˆ‰ 𝐴 or π‘₯ βˆ‰ 𝐡. Hence we have Μƒ πœ’π΅(Ξ¦,Ξ¨) ) (π‘₯) = πœ’π΄(Ξ¦,Ξ¨) (π‘₯) ∩ πœ’π΅(Ξ¦,Ξ¨) (π‘₯) (πœ’π΄(Ξ¦,Ξ¨) ∩

Theorem 9. For the (Ξ¦, Ξ¨)-identity soft set (πœ’π‘†(Ξ¦,Ξ¨) , 𝑆), let (𝛼, 𝑆) be a soft set over π‘ˆ such that 𝛼(π‘₯) βŠ† Ξ¦ for all π‘₯ ∈ 𝑆. Then the following assertions are equivalent:

(18)

𝛽 (π‘Ž) = ⋃ {𝛼 (𝑦) | π‘Ž = π‘₯𝑦, π‘₯, 𝑦 ∈ 𝑆} , for all π‘Ž ∈ 𝑆.

(21)

4

The Scientific World Journal

Proof. Let π‘Ž ∈ 𝑆. Since π‘Ž = π‘’π‘Ž, we have 𝛽 (π‘Ž) = ⋃ {𝛼 (𝑦) | π‘Ž = π‘₯𝑦, π‘₯, 𝑦 ∈ 𝑆} βŠ‡ 𝛼 (π‘Ž) ,

(22)

Μƒ (𝛽, 𝑆). For all π‘₯, 𝑦 ∈ 𝑆, we have and so (𝛼, 𝑆) βŠ† 𝛽 (π‘₯𝑦) = ⋃ {𝛼 (π‘₯2 ) | π‘₯𝑦 = π‘₯1 π‘₯2 , π‘₯1 , π‘₯2 ∈ 𝑆} βŠ‡ ⋃ {𝛼 (𝑧2 ) | π‘₯𝑦 = (π‘₯𝑧1 ) 𝑧2 , 𝑦 = 𝑧1 𝑧2 , 𝑧1 , 𝑧2 ∈ 𝑆} βŠ‡ ⋃ {𝛼 (𝑧2 ) | 𝑦 = 𝑧1 𝑧2 , 𝑧1 , 𝑧2 ∈ 𝑆} = 𝛽 (𝑦) . (23) Thus (𝛽, 𝑆) is an int-soft left ideal over π‘ˆ. Now let (𝛾, 𝑆) be an Μƒ (𝛾, 𝑆). Then 𝛼(π‘Ž) βŠ† int-soft left ideal over π‘ˆ such that (𝛼, 𝑆) βŠ† 𝛾(π‘Ž) for all π‘Ž ∈ 𝑆 and

(24)

Μƒ (𝛾, 𝑆). Therefore (𝛼, 𝑆)𝑙 = (𝛽, 𝑆). This implies that (𝛽, 𝑆) βŠ†

Theorem 13. Let 𝑆 be a monoid with identity 𝑒. Then (𝛼, 𝑆)π‘Ÿ = (𝛽, 𝑆), where (25)

for all π‘Ž ∈ 𝑆.

Definition 14. A soft set (𝛼, 𝑆) over π‘ˆ is called an int-soft generalized bi-ideal over π‘ˆ if it satisfies (26)

We know that any int-soft generalized bi-ideal may not be an int-soft semigroup by the following example. Example 15. Let 𝑆 = {π‘Ž, 𝑏, 𝑐, 𝑑} be a semigroup with the following Cayley table: π‘Ž π‘Ž π‘Ž π‘Ž π‘Ž

𝑏 π‘Ž π‘Ž π‘Ž π‘Ž

𝑐 π‘Ž π‘Ž 𝑏 𝑏

𝑑 π‘Ž π‘Ž π‘Ž 𝑏

(27)

2Z { { π‘₯ 󳨃󳨀→ {4N { {4Z

if π‘₯ = π‘Ž, if π‘₯ ∈ {𝑏, 𝑑} , if π‘₯ = 𝑐.

Proof. Assume that 𝐴 is a generalized bi-ideal of 𝑆. Let Ξ¦, Ξ¨ ∈ P(π‘ˆ) with Ξ¦ βŠ‹ Ξ¨ and π‘₯, 𝑦, 𝑧 ∈ 𝑆. If π‘₯, 𝑧 ∈ 𝐴, then πœ’π΄(Ξ¦,Ξ¨) (π‘₯) = Ξ¦ = πœ’π΄(Ξ¦,Ξ¨) (𝑧) and π‘₯𝑦𝑧 ∈ 𝐴𝑆𝐴 βŠ† 𝐴. Hence (30)

If π‘₯ βˆ‰ 𝐴 or 𝑧 βˆ‰ 𝐴, then πœ’π΄(Ξ¦,Ξ¨) (π‘₯) = Ξ¨ or πœ’π΄(Ξ¦,Ξ¨) (𝑧) = Ξ¨. Hence πœ’π΄(Ξ¦,Ξ¨) (π‘₯𝑦𝑧) βŠ‡ Ξ¨ = πœ’π΄(Ξ¦,Ξ¨) (π‘₯) ∩ πœ’π΄(Ξ¦,Ξ¨) (𝑧) .

(31)

Therefore (πœ’π΄(Ξ¦,Ξ¨) , 𝑆) is an int-soft generalized bi-ideal over π‘ˆ for any Ξ¦, Ξ¨ ∈ P(π‘ˆ) with Ξ¦ βŠ‹ Ξ¨. Conversely, suppose that the (Ξ¦, Ξ¨)-characteristic soft set (πœ’π΄(Ξ¦,Ξ¨) , 𝑆) over π‘ˆ is an int-soft generalized bi-ideal over π‘ˆ for any Ξ¦, Ξ¨ ∈ P(π‘ˆ) with Ξ¦ βŠ‹ Ξ¨. Let π‘Ž be any element of 𝐴𝑆𝐴. Then π‘Ž = π‘₯𝑦𝑧 for some π‘₯, 𝑧 ∈ 𝐴 and 𝑦 ∈ 𝑆. Then πœ’π΄(Ξ¦,Ξ¨) (π‘Ž) = πœ’π΄(Ξ¦,Ξ¨) (π‘₯𝑦𝑧) βŠ‡ πœ’π΄(Ξ¦,Ξ¨) (π‘₯) ∩ πœ’π΄(Ξ¦,Ξ¨) (𝑧) = Ξ¦ ∩ Ξ¦ = Ξ¦,

(32)

and so πœ’π΄(Ξ¦,Ξ¨) (π‘Ž) = Ξ¦. Thus π‘Ž ∈ 𝐴, which shows that 𝐴𝑆𝐴 βŠ† 𝐴. Therefore 𝐴 is a generalized bi-ideal of 𝑆.

Let (𝛼, 𝑆) be a soft set over π‘ˆ = Z defined as follows: 𝛼 : 𝑆 󳨀→ P (π‘ˆ) ,

(2) the (Ξ¦, Ξ¨)-characteristic soft set (πœ’π΄(Ξ¦,Ξ¨) , 𝑆) over π‘ˆ is an int-soft generalized bi-ideal over π‘ˆ for any Ξ¦, Ξ¨ ∈ P(π‘ˆ) with Ξ¦ βŠ‹ Ξ¨.

πœ’π΄(Ξ¦,Ξ¨) (π‘₯𝑦𝑧) = Ξ¦ = πœ’π΄(Ξ¦,Ξ¨) (π‘₯) ∩ πœ’π΄(Ξ¦,Ξ¨) (𝑧) .

4. Int-Soft (Generalized) Bi-Ideals

β‹… π‘Ž 𝑏 𝑐 𝑑

We consider characterizations of an int-soft (generalized) bi-ideal.

(1) 𝐴 is a generalized bi-ideal of 𝑆,

Similarly, we have the following theorem.

(𝛼 (π‘₯𝑦𝑧) βŠ‡ 𝛼 (π‘₯) ∩ 𝛼 (𝑧)) .

Proof. Let (𝛼, 𝑆) be an int-soft generalized bi-ideal over π‘ˆ and let π‘₯ and 𝑦 be any elements of 𝑆. Then there exists π‘Ž ∈ 𝑆 such that 𝑦 = π‘¦π‘Žπ‘¦, and so

Lemma 17. For any nonempty subset 𝐴 of 𝑆, the following are equivalent:

= 𝛾 (π‘Ž) .

(βˆ€π‘₯, 𝑦 ∈ 𝑆)

Theorem 16. In a regular semigroup 𝑆, every int-soft generalized bi-ideal is an int-soft semigroup, that is, an int-soft biideal.

Therefore (𝛼, 𝑆) is an int-soft semigroup over π‘ˆ.

βŠ† ⋃ {𝛾 (π‘₯1 π‘₯2 ) | π‘Ž = π‘₯1 π‘₯2 , π‘₯1 , π‘₯2 ∈ 𝑆}

𝛽 (π‘Ž) = ⋃ {𝛼 (π‘₯) | π‘Ž = π‘₯𝑦, π‘₯, 𝑦 ∈ 𝑆} ,

If a soft set (𝛼, 𝑆) over π‘ˆ is both an int-soft semigroup and an int-soft generalized bi-ideal over π‘ˆ, then we say that (𝛼, 𝑆) is an int-soft bi-ideal over π‘ˆ. We provide a condition for an int-soft generalized bi-ideal to be an int-soft semigroup.

𝛼 (π‘₯𝑦) = 𝛼 (π‘₯ (π‘¦π‘Žπ‘¦)) = 𝛼 (π‘₯ (π‘¦π‘Ž) 𝑦) βŠ‡ 𝛼 (π‘₯) ∩ 𝛼 (𝑦) . (29)

𝛽 (π‘Ž) = ⋃ {𝛼 (π‘₯2 ) | π‘Ž = π‘₯1 π‘₯2 , π‘₯1 , π‘₯2 ∈ 𝑆} βŠ† ⋃ {𝛾 (π‘₯2 ) | π‘Ž = π‘₯1 π‘₯2 , π‘₯1 , π‘₯2 ∈ 𝑆}

Then (𝛼, 𝑆) is an int-soft generalized bi-ideal over π‘ˆ = Z. But it is not an int-soft semigroup over π‘ˆ = Z since 𝛼(𝑐) ∩ 𝛼(𝑐) = 4Z βŠ†ΜΈ 4N = 𝛼(𝑏) = 𝛼(𝑐𝑐).

(28)

Theorem 18. A soft set (𝛼, 𝑆) over π‘ˆ is an int-soft generalized bi-ideal over π‘ˆ if and only if the nonempty 𝛾-inclusive set of (𝛼, 𝑆) is a generalized bi-ideal of 𝑆 for all 𝛾 βŠ† π‘ˆ.

The Scientific World Journal

5

Proof. Assume that (𝛼, 𝑆) is an int-soft semigroup over π‘ˆ. Let 𝛾 βŠ† π‘ˆ be such that 𝑖𝑆 (𝛼; 𝛾) =ΜΈ 0. Let π‘Ž ∈ 𝑆 and π‘₯, 𝑦 ∈ 𝑖𝑆 (𝛼; 𝛾). Then 𝛼(π‘₯) βŠ‡ 𝛾 and 𝛼(𝑦) βŠ‡ 𝛾. It follows from (26) that 𝛼 (π‘₯π‘Žπ‘¦) βŠ‡ 𝛼 (π‘₯) ∩ 𝛼 (𝑦) βŠ‡ 𝛾

(33)

and that π‘₯π‘Žπ‘¦ ∈ 𝑖𝑆 (𝛼; 𝛾). Thus 𝑖𝑆 (𝛼; 𝛾) is a generalized bi-ideal of 𝑆. Conversely, suppose that the nonempty 𝛾-inclusive set of (𝛼, 𝑆) is a generalized bi-ideal of 𝑆 for all 𝛾 βŠ† π‘ˆ. Let π‘₯, 𝑦, 𝑧 ∈ 𝑆 be such that 𝛼(π‘₯) = 𝛾π‘₯ and 𝛼(𝑧) = 𝛾𝑧 . Taking 𝛾 = 𝛾π‘₯ ∩ 𝛾𝑧 implies that π‘₯, 𝑧 ∈ 𝑖𝑆 (𝛼; 𝛾). Hence π‘₯𝑦𝑧 ∈ 𝑖𝑆 (𝛼; 𝛾), and so 𝛼 (π‘₯𝑦𝑧) βŠ‡ 𝛾 = 𝛾π‘₯ ∩ 𝛾𝑧 = 𝛼 (π‘₯) ∩ 𝛼 (𝑧) .

(34)

Therefore (𝛼, 𝑆) is an int-soft generalized bi-ideal over π‘ˆ.

Μƒ (𝛼, 𝑆). For any Conversely, suppose that (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼, 𝑆) βŠ† π‘₯, 𝑦, 𝑧 ∈ 𝑆, let π‘Ž = π‘₯𝑦𝑧. Then 𝛼 (π‘₯𝑦𝑧) = 𝛼 (π‘Ž) βŠ‡ (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼) (π‘Ž) = ⋃ ((𝛼 Μƒβˆ˜ πœ’π‘† ) (𝑏) ∩ 𝛼 (𝑐)) π‘Ž=𝑏𝑐

βŠ‡ (𝛼 Μƒβˆ˜ πœ’π‘† ) (π‘₯𝑦) ∩ 𝛼 (𝑧) (37) = ( ⋃ (𝛼 (𝑒) ∩ πœ’π‘† (V))) ∩ 𝛼 (𝑧) π‘₯𝑦=𝑒V

βŠ‡ (𝛼 (π‘₯) ∩ πœ’π‘† (𝑦)) ∩ 𝛼 (𝑧)

Lemma 19 (see [11]). A soft set (𝛼, 𝑆) over π‘ˆ is an int-soft semigroup over π‘ˆ if and only if the nonempty 𝛾-inclusive set of (𝛼, 𝑆) is a subsemigroup of 𝑆 for all 𝛾 βŠ† π‘ˆ. Combining Theorem 18 and Lemma 19, we have the following characterization of an int-soft bi-ideal.

= (𝛼 (π‘₯) ∩ π‘ˆ) ∩ 𝛼 (𝑧) = 𝛼 (π‘₯) ∩ 𝛼 (𝑧) . Therefore (𝛼, 𝑆) is an int-soft generalized bi-ideal over π‘ˆ.

Theorem 20. A soft set (𝛼, 𝑆) over π‘ˆ is an int-soft bi-ideal over π‘ˆ if and only if the nonempty 𝛾-inclusive set of (𝛼, 𝑆) is a biideal of 𝑆 for all 𝛾 βŠ† π‘ˆ.

Theorem 22. Let (𝛼, 𝑆) be an int-soft semigroup over π‘ˆ. Then (𝛼, 𝑆) is an int-soft bi-ideal over π‘ˆ if and only if Μƒ (𝛼, 𝑆), where (πœ’π‘† , 𝑆) is the identity soft set over (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼, 𝑆) βŠ† π‘ˆ.

Theorem 21. For the identity soft set (πœ’π‘† , 𝑆) and a soft set (𝛼, 𝑆) over π‘ˆ, the following are equivalent:

Proof. It is the same as the proof of Theorem 21.

(1) (𝛼, 𝑆) is an int-soft generalized bi-ideal over π‘ˆ, Μƒ (𝛼, 𝑆). (2) (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼, 𝑆) βŠ†

Theorem 23. If (𝛼, 𝑆) and (𝛽, 𝑆) are int-soft generalized biΜƒ 𝛽, 𝑆). ideals over π‘ˆ, then so is the soft intersection (𝛼 ∩

Proof. Assume that (𝛼, 𝑆) is an int-soft generalized bi-ideal over π‘ˆ. Let π‘Ž be any element of 𝑆. If (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼)(π‘Ž) = 0, then Μƒ (𝛼, 𝑆). Otherwise, there exist it is clear that (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼, 𝑆) βŠ† π‘₯, 𝑦, 𝑒, V ∈ 𝑆 such that π‘Ž = π‘₯𝑦 and π‘₯ = 𝑒V. Since (𝛼, 𝑆) is an int-soft generalized bi-ideal over π‘ˆ, it follows from (26) that 𝛼 (𝑒V𝑦) βŠ‡ 𝛼 (𝑒) ∩ 𝛼 (𝑦)

(35)

Proof. For any π‘Ž, 𝑏, π‘₯ ∈ 𝑆, we have Μƒ 𝛽) (π‘Žπ‘₯𝑏) = 𝛼 (π‘Žπ‘₯𝑏) ∩ 𝛽 (π‘Žπ‘₯𝑏) (π›Όβˆ© βŠ‡ (𝛼 (π‘Ž) ∩ 𝛼 (𝑏)) ∩ (𝛽 (π‘Ž) ∩ 𝛽 (𝑏)) βŠ‡ (𝛼 (π‘Ž) ∩ 𝛽 (π‘Ž)) ∩ (𝛼 (𝑏) ∩ 𝛽 (𝑏))

(38)

Μƒ 𝛽) (π‘Ž) ∩ (𝛼 ∩ Μƒ 𝛽) (𝑏) . = (π›Όβˆ© Μƒ 𝛽, 𝑆) is an int-soft generalized bi-ideals over π‘ˆ. Thus (𝛼 ∩

and that (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼) (π‘Ž) = ⋃ ((π›ΌΜƒβˆ˜πœ’π‘† ) (π‘₯) ∩ 𝛼 (𝑦)) π‘Ž=π‘₯𝑦

= ⋃ (( ⋃ (𝛼 (𝑒) ∩ πœ’π‘† (V))) ∩ 𝛼 (𝑦)) π‘Ž=π‘₯𝑦

π‘₯=𝑒V

Theorem 24. If (𝛼, 𝑆) and (𝛽, 𝑆) are int-soft bi-ideals over π‘ˆ, Μƒ 𝛽, 𝑆). then so is the soft intersection (𝛼 ∩ Proof. It is the same as the proof of Theorem 23.

= ⋃ (( ⋃ (𝛼 (𝑒) ∩ π‘ˆ)) ∩ 𝛼 (𝑦))

Theorem 25. If 𝑆 is a group, then every int-soft generalized biideal is a constant function.

= ⋃ (𝛼 (𝑒) ∩ 𝛼 (𝑦))

Proof. Let 𝑆 be a group with identity 𝑒 and let (𝛼, 𝑆) be an intsoft generalized bi-ideal over π‘ˆ. For any π‘₯ ∈ 𝑆, we have

π‘Ž=π‘₯𝑦

π‘₯=𝑒V

π‘Ž=𝑒V𝑦

βŠ† ⋃ 𝛼 (𝑒V𝑦)

𝛼 (π‘₯) = 𝛼 (𝑒π‘₯𝑒) βŠ‡ 𝛼 (𝑒) ∩ 𝛼 (𝑒) = 𝛼 (𝑒) = 𝛼 (𝑒𝑒)

π‘Ž=𝑒V𝑦

= 𝛼 ((π‘₯π‘₯βˆ’1 ) (π‘₯βˆ’1 π‘₯)) = 𝛼 (π‘₯ (π‘₯βˆ’1 π‘₯βˆ’1 ) π‘₯)

= 𝛼 (π‘Ž) . (36) Μƒ (𝛼, 𝑆). Therefore (𝛼 Μƒβˆ˜ πœ’π‘† Μƒβˆ˜ 𝛼, 𝑆) βŠ†

βŠ‡ 𝛼 (π‘₯) ∩ 𝛼 (π‘₯) = 𝛼 (π‘₯) , and so 𝛼(π‘₯) = 𝛼(𝑒). Therefore 𝛼 is a constant function.

(39)

6

The Scientific World Journal

For any soft set (𝛼, 𝑆) over π‘ˆ, the smallest int-soft (generalized) bi-ideal over π‘ˆ containing (𝛼, 𝑆) is called an intsoft (generalized) bi-ideal over π‘ˆ generated by (𝛼, 𝑆) and is denoted by (𝛼, 𝑆)𝑏 .

Conflict of Interests

Theorem 26. Let 𝑆 be a monoid with identity 𝑒 and let (𝛼, 𝑆) be a soft set over π‘ˆ such that 𝛼(π‘₯) βŠ† 𝛼(𝑒) for all π‘₯ ∈ 𝑆. Then (𝛼, 𝑆)𝑏 = (𝛽, 𝑆), where

Acknowledgments

𝛽 (π‘Ž) = ⋃ {𝛼 (π‘₯1 ) ∩ 𝛼 (π‘₯3 ) | π‘Ž = π‘₯1 π‘₯2 π‘₯3 , π‘₯1 , π‘₯2 , π‘₯3 ∈ 𝑆} , (40)

The authors declare that there is no conflict of interests regarding the publication of this paper.

The authors wish to thank the anonymous reviewer(s) for the valuable suggestions. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2012R1A1A2042193).

for all π‘Ž ∈ 𝑆. Proof. Let π‘Ž ∈ 𝑆. Since π‘Ž = π‘’π‘’π‘Ž it follows from hypothesis that 𝛽 (π‘Ž) = ⋃ {𝛼 (π‘₯1 ) ∩ 𝛼 (π‘₯3 ) | π‘Ž = π‘₯1 π‘₯2 π‘₯3 , π‘₯1 , π‘₯2 , π‘₯3 ∈ 𝑆} βŠ‡ 𝛼 (𝑒) ∩ 𝛼 (π‘Ž) = 𝛼 (π‘Ž) (41) Μƒ (𝛽, 𝑆). For any π‘₯, 𝑦, 𝑧 ∈ 𝑆, we get and that (𝛼, 𝑆) βŠ† 𝛽 (π‘₯) = ⋃ {𝛼 (π‘₯1 ) ∩ 𝛼 (π‘₯3 ) | π‘₯ = π‘₯1 π‘₯2 π‘₯3 , π‘₯1 , π‘₯2 , π‘₯3 ∈ 𝑆} , 𝛽 (𝑧) = ⋃ {𝛼 (𝑧1 ) ∩ 𝛼 (𝑧3 ) | 𝑧 = 𝑧1 𝑧2 𝑧3 , 𝑧1 , 𝑧2 , 𝑧3 ∈ 𝑆} , 𝛽 (π‘₯𝑦𝑧) = ⋃ {𝛼 (𝑒1 ) ∩ 𝛼 (𝑒3 ) | π‘₯𝑦𝑧 = 𝑒1 𝑒2 𝑒3 , 𝑒1 , 𝑒2 , 𝑒3 ∈ 𝑆} βŠ‡ ⋃ {𝛼 (π‘₯1 ) ∩ 𝛼 (𝑧3 ) | π‘₯𝑦𝑧 = π‘₯1 (π‘₯2 π‘₯3 𝑦𝑧1 𝑧2 ) 𝑧3 , π‘₯ = π‘₯1 π‘₯2 π‘₯3 , 𝑧 = 𝑧1 𝑧2 𝑧3 } . (42) Since 𝛽 (π‘₯) ∩ 𝛽 (𝑧) = ⋃ {(𝛼 (π‘₯1 ) ∩ 𝛼 (π‘₯3 )) ∩ (𝛼 (𝑧1 ) ∩ 𝛼 (𝑧3 )) |

(43)

π‘₯ = π‘₯1 π‘₯2 π‘₯3 , 𝑧 = 𝑧1 𝑧2 𝑧3 ∈ 𝑆} , we have 𝛽(π‘₯) ∩ 𝛽(𝑧) βŠ† 𝛽(π‘₯𝑦𝑧). Let 𝑦 = 𝑒. Then 𝛽(π‘₯) ∩ 𝛽(𝑧) βŠ† 𝛽(π‘₯𝑧) for all π‘₯, 𝑧 ∈ 𝑆. Hence (𝛽, 𝑆) is an int-soft (generalized) bi-ideal over π‘ˆ. Let (𝛾, 𝑆) be an int-soft (generalized) bi-ideal Μƒ (𝛾, 𝑆). For any π‘Ž ∈ 𝑆, we have over π‘ˆ such that (𝛼, 𝑆) βŠ† 𝛽 (π‘Ž) = ⋃ {𝛼 (π‘₯1 ) ∩ 𝛼 (π‘₯3 ) | π‘Ž = π‘₯1 π‘₯2 π‘₯3 , π‘₯1 , π‘₯2 , π‘₯3 ∈ 𝑆} βŠ† ⋃ {𝛾 (π‘₯1 ) ∩ 𝛾 (π‘₯3 ) | π‘Ž = π‘₯1 π‘₯2 π‘₯3 , π‘₯1 , π‘₯2 , π‘₯3 ∈ 𝑆} βŠ† ⋃ {𝛾 (π‘₯1 π‘₯2 π‘₯3 ) | π‘Ž = π‘₯1 π‘₯2 π‘₯3 , π‘₯1 , π‘₯2 , π‘₯3 ∈ 𝑆} = 𝛾 (π‘Ž) , (44) Μƒ (𝛾, 𝑆). Therefore (𝛼, 𝑆)𝑏 = (𝛽, 𝑆). and so (𝛽, 𝑆) βŠ†

References [1] D. Molodtsov, β€œSoft set theoryβ€”First results,” Computers and Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31, 1999. [2] P. K. Maji, A. R. Roy, and R. Biswas, β€œAn application of soft sets in a decision making problem,” Computers & Mathematics with Applications, vol. 44, no. 8-9, pp. 1077–1083, 2002. [3] P. K. Maji, R. Biswas, and A. R. Roy, β€œSoft set theory,” Computers & Mathematics with Applications, vol. 45, no. 4-5, pp. 555–562, 2003. [4] N. C ΒΈ a˘gman and S. Enginoglu, β€œFP-soft set theory and its applications,” Annals of Fuzzy Mathematics and Informatics, vol. 2, no. 2, pp. 219–226, 2011. [5] F. Feng, β€œSoft rough sets applied to multicriteria group decision making,” Annals of Fuzzy Mathematics and Informatics, vol. 2, no. 1, pp. 69–80, 2011. [6] H. AktasΒΈ and N. C ΒΈ a˘gman, β€œSoft sets and soft groups,” Information Sciences, vol. 177, no. 13, pp. 2726–2735, 2007. [7] U. Acar, F. Koyuncu, and B. Tanay, β€œSoft sets and soft rings,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3458–3463, 2010. [8] A. O. AtagΒ¨un and A. Sezgin, β€œSoft substructures of rings, fields and modules,” Computers & Mathematics with Applications, vol. 61, no. 3, pp. 592–601, 2011. [9] F. Feng, Y. B. Jun, and X. Zhao, β€œSoft semirings,” Computers & Mathematics with Applications, vol. 56, no. 10, pp. 2621–2628, 2008. [10] Y. B. Jun, K. J. Lee, and A. Khan, β€œSoft ordered semigroups,” Mathematical Logic Quarterly, vol. 56, no. 1, pp. 42–50, 2010. [11] S. Z. Song, H. S. Kim, and Y. B. Jun, β€œIdeal theory in semigroups based on inter sectional soft sets,” The Scientific World Journal, vol. 2014, Article ID 136424, 7 pages, 2014. [12] Y. B. Jun, C. H. Park, and N. O. Alshehri, β€œHypervector spaces based on intersectional soft sets,” Abstract and Applied Analysis, vol. 2014, Article ID 784523, 6 pages, 2014. [13] N. C ΒΈ a˘gman and S. Engino˘glu, β€œSoft set theory and uni-int decision making,” European Journal of Operational Research, vol. 207, no. 2, pp. 848–855, 2010.