Integrated thermal modelling

7 downloads 0 Views 2MB Size Report
Oct 21, 2013 - 2013-10-21. 8. = . P-wave velocity. Lithology. Present-day thermal conductivity. Example from Viking Graben, North Sea ...
Integrated basin-scale thermal modeling Ketil Hokstad, Rune Kyrkjebø, Kenneth Duffaut, Christine Fichler, Zuzana Alasonati Tašárová, Torgeir Wiik, Andrew J. Carter, Eirik Dischler, Øyvind Kjøsnes Statoil Research Centre, Trondheim

EAGE, Amsterdam, 18. June 2014.

Introduction Temperature history is important for petroleum exploration: • Source maturation • Reservoir quality Integrated thermal modeling: • Geophysical observations • Kinematic restoration

Example of quartz cementation.

• Rock physics model

(from Walderhaug-Porten (2012), MSc thesis, NTNU, Trondheim)

2

Thermal modeling

Temperature

Geological time

Present-day temperature

Diffusion equation

Max paleo temperature

Dræge et al., TLE, 2014

3

Steady state

Rock physics model: Underlying principles • Simplified rock physics model aimed at basin-scale frontier exploration • Fundamental parameters controling all geophysical parameters (Vp, K, density) are:

− Porosity − Lithology

• Rocks have «memory»

5

2013-10-21

Rocks have ‘’memory’’!

Rock physics model : Thermal conductivity Heat conductivity (𝐾) :

𝐾 = 𝑎(𝐿)𝑉𝑃

Depth (km)

𝑉𝑃 = seismic velocity 𝐿 = "lithology parameter”

6

Adapted from Rybach (1997) (1997)

2013-10-21

Depth (km)

Steady-state temperature from well data

__ 50 0C/km __ Rock physics model o MDT o BHT 460C NPD

7

2013-10-21

Thermal conductivity in 2D and 3D P-wave velocity

Present-day thermal conductivity

Lithology

𝐾 = 𝑎 𝐿 𝑉𝑃 Example from Viking Graben, North Sea

8

2013-10-21

Elements of time-dependent thermal modeling • Backstripping: (time-reversed geology) 1D

− Background porosity trend − Heat conductivity (velocity)

2-3D

− Density, − Velocity • Basal heat flow history

Temperature modeling

− Crustal stretching and thinning Geological time • Solve the heat equation − 1D Finite Difference − 2D Finite Difference

9

2013-10-21

Backstripping

Viking Graben: Seismic line NSDP-84-1 P-wave velocity

• Horizons of interest: • BCU (source) • Top Brent (res) • Top Statfjord (res)

Lithology

• Projected wells: • 34/11-2S (Kvitebjørn) • 35/11-7 (Troll area) Previous work on NDSP-84-1: • Kyrkjebø (1999) • Odinsen et al. (2000) • Christiansson et al. (2000)

10

Backstripping velocity, density and K Present-day thermal conductivity

Decompaction

Frozen

Time of maximum burial Two episodes of Neogene uplift (=erosion) in the east

11

Viking Graben: Macro-trend (compaction curve)

Macro trend is obtained from • Seismic interval velocities • And/or density (gravity modeling)

12

Barents Sea: Macro trends from seismic velocities and density depth function (gravity)

Seismic velocity trend functions

Density-depth function from gravity Porosity:

13

Viking Graben: Basal heatflow history 0 Ma

-65 Ma

-165 Ma

Tectonic restoration – β-factors Rune Kyrkjebø (1999); PhD Thesis

14

Crustal thickness

Basal heatflow

Seismic velocity and heatflow

Seismic velocity and temperature

Thermal modeling Projected well 34/11-2S (no uplift)

17

Comparison with 34/11-2S well (Kvitebjørn)

____ Time dependent: Seismic ____ Steady state: Seismic ____ Steady state: Well log 18

Thermal modeling Projected well 35/11-7 (500m uplift)

19

Comparison with 35/11-7 well (Troll area)

____ Time dependent: Seismic ____ Steady state: Seismic ____ Steady state: Well log 20

Synthetic example: Generic effects of subsidence (sedimentation) and uplift Temperature at z=2.5 km

subsidence

Subs./uplift turned ON

Subs./upift turned OFF

uplift

• Subsidence&sedimentation => cooling • Uplift => first heating; then cooling; • Effect of advection and changed conductivity

Black: Reference (steady) Red: Subsidence 50 m/My Blue: Uplift 50 m/My

Viking Graben: Thermal equilibrium? Projected well 35/11-7: • Aproximately thermal equilibrium • Neogene uplift and erosion

Projected well 34/11-2S • Not in thermal equilibrium • Neogene sedimentation • Pliocene sed.rate: 170 m/Ma

____ Time dependent ____ Steady state 22

Top Brent Temperature

Top Brent Quartz Temperature cement

(Walderhaug, 1996)

BCU Transformation ratio

(1st order Arrhenius reaction)

BCU Vitrinite reflection

(Burnham and Sweaney 1991)

Conclusions • New appraoch to thermal modeling − Based on geophysical data and rock physics model

− Objectives and application similar to conventional basin modeling • Demonstrated on Viking Graben (Line NSDP-84-1) • Tested with good results in a different settings, inside and outside Norway

− Continental shelf, passive margin, subduction zone

29

Acknowledgements We thank • Ketil Kåsli for initiating our research on thermal modeling

• Kjell Inge Skjønberg for turning our research Matlab codes into Petrel plugins • Anders Dræge, Jan Ove Hansen, Kristin Rønning, Torbjørn Dahlgren, Luppo W. Kuilman, Michael Erdmann, Stoney Clarke, Lill-Tove W, Sigernes and Olav K. Leirfall for discussions • Statoil for permission to publish this work

Reference:

Hokstad, K. , Wiik, T., Dræge, A., Duffaut, K., Fichler, C., and Kyrkjebø, R. (2014), Temperature modeling constrained on geophysical data and kinematic restoration: Patent Application No WO/2014/029415

30