Jul 21, 2014 - user out of the control loop: passive monitoring role. (NORMAN, 1990). â slower in detection. â loss of mode awareness. â deskilling. ⢠Effect on ...
Technische Universität München – Institute of Ergonomics
Reading the Driver: Visual Workload Assessment in Highly Automated Driving Scenarios
Markus Zimmermann Iris M. Rothkirch Klaus J. Bengler
Technische Universität München – Institute of Ergonomics
Outline 1. Automation & Mental Workload 2. Visual Metrics
3. Experiment 4. Results
5. Next steps 21st July 2014
Reading the Driver
2
Technische Universität München – Institute of Ergonomics
Vision How to measure the user state in real time in order to facilitate a cooperation & adaptive interaction? Interface
Environment
System Automated
Interaction
Obstacles, Cars, …
Authority, Timing, …
Interface Workload
21st July 2014
Reading the Driver
User Demand Mode Awareness …
3
Technische Universität München – Institute of Ergonomics
Automation • Automation is known to take the
= + • Highly Automated (GASSER, 2012) • Longitudinal and Lateral control done by the Machine
• Task lane-change: Consent • No supervision necessary 21st July 2014
user out of the control loop:
passive monitoring role (NORMAN, 1990) – slower in detection
– loss of mode awareness – deskilling
• Effect on mental workload: – overload – underload
Gasser, T. M. (2012). Rechtsfolgen zunehmender Fahrzeugautomatisierung: Gemeinsamer Schlussbericht der Projektgruppe. Berichte der Bundesanstalt für Straßenwesen, (F 83). Norman, D. A. (1990). The 'Problem' with Automation: Inappropriate Feedback and Interaction, not 'Over-Automation'. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 327(1241), 585–593. doi:10.1098/rstb.1990.0101
4
Technische Universität München – Institute of Ergonomics
Example: Driver Assistance !!!
21st July 2014
Reading the Driver
Page 5
Technische Universität München – Institute of Ergonomics
Mental Workload (MWL) 𝑀𝑒𝑛𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 =
•
𝑛𝑒𝑒𝑑𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
MWL can predict the drivers’ future performance
(PARASURAMAN ET AL., 2008) Multidimensional interaction of task and system demands
•
•
Internal and external factors
•
Relation MWL/performance can be transferred to the Yerkes Dodson law (YOUNG AND STANTON, 2002)
influence MWL (WAARD, 1996) •
Overload and underload are linked to
negative consequences Optimization is crucial (STANTON AND YOUNG, 2000)
21st July 2014
Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2008). Situation Awareness , Mental Workload , and Trust in Automation : Viable , Empirically Supported Cognitive Engineering Constructs. Journal of Cognitive Engineering and Desicion Making, 2(2):140–160. Stanton, N. A., & Young, M. S. (2000). A proposed psychological model of driving automation. Theoretical Issues in Ergonomics Science, 1(4), 315–331. doi:10.1080/14639220052399131 Waard, D. D. (1996). The Measurement of Drivers Mental Workload. Technical report, University of Groningen. Young, M. S. and Stanton, N. A. (2002a). Attention and automation: New perspectives on mental underload and performance. Technical report, Brunel University.
6
Technische Universität München – Institute of Ergonomics (AHLSTROM & FRIEDMAN-BERG, 2006; STEIN, 1992)
(CALLAN, 1998; VAN ORDEN ET AL., 2001).
Long fixations frequency
Fixations
Saccade frequency
Saccades
(ANGUS ET AL, 2004; VAN ORDEN ET AL., 2001) (AHLSTROM & FRIEDMAN-BERG, 2006; STEIN, 1992)
Fixation rate
Saccade duration
(GREEF ET AL, 2009)
Fixation duration
(WICKENS, 2000; VAN ORDEN ET AL., 2001; JESSEE 2010).
Saccade extent
(JESSEE, 2010)
Fixation duration variability (MAY ET AL., 1986) (CAIN, 2007; WIERWILLE & EGGEMEIER, 1993; ANGUS ET AL., 2004; VAN ORDEN, 2001; AHLSTROM, ET AL., 2006)
Saccade latency
Mental workload
Blink duration
(ANGUS ET AL., 2004; GREEF ET AL., 2009; CAIN, 2007; AHLSTROM, ET AL., 2006)
(ANGUS ET AL., 2004; JESSEE, 2010; WIERWILLE & EGGEMEIER, 1993; VAN ORDEN, 2001)
Pupil diameter
Blink rate
(MARSHALL, 2002; MARSHALL 2005)
(CAIN, 2007; NEUMANN & LIPP, 2002)
Blink latency
Glance frequency
ICA
Pupil
(ROTHKIRCH, 2013)
Blinks 21st July 2014
Percent time on AOI (IQBAL & BAILEY, 2004; JUST & CARPENTER, 1976).
Glances
Total glance duration (ROTHKIRCH, 2013)
Literature available on http://www.d3cos.eu/dp/#STATE-WL-VIS
7
Technische Universität München – Institute of Ergonomics
Hypotheses
Driver out of the loop
Under load
?
Driver mentally challenged
Over load
High MWL
Prospective MWL Low MWL
Increase of MWL with increasing
U-shaped relation between mental
task demand through auditory
workload and performance/
prompt-verbal response n-back task
prospective mental workload
MWL optimisation is crucial to maintain effective task performance 21st July 2014
Reading the Driver
8
Technische Universität München – Institute of Ergonomics
Procedure •
3-7-5-9-4
Within subjects design
•
Taskload
…-…-3-7-5
Randomized conditions
•
n = 25
average age = 22,4
UI Design
Questionnaires
Activation
Cooperative Lanechange Task
21st July 2014
Reading the Driver
9
Technische Universität München – Institute of Ergonomics
Experimental design Evaluation of
Conditions
Right scenario
with CoS
without CoS
Timing short timing
with CoS
Efficiency of design
long timing
Left scenario
UI Quality
long timing
No nback
3-back
without CoS
Gaze patterns
with CoS
short timing
long timing
long timing
no WL
no WL
medium WL
high WL
no WL
medium WL
high WL
no WL
no WL
no WL
1
2
3
4
5
6
7
8
9
10
21st July 2014
Workload
1-back
Reading the Driver
10
Technische Universität München – Institute of Ergonomics
Equipment / Measures
Eyetracker FaceLAB 5 • Fixations Static driving simulator
• Saccades
• Total scenario duration
• Blinks
• Steering response latency
• Pupil size
21st July 2014
Reading the Driver
11
Technische Universität München – Institute of Ergonomics
Derived Measures: Glances
Glances on static areas of interest
Glances on dynamic areas of interest
•
Scenery
•
Look ahead
•
Side windows
•
Left motorway barrier
•
Left, center & right mirrors
•
Truck
•
Instruments
•
Cars left
21st July 2014
Reading the Driver
12
Technische Universität München – Institute of Ergonomics
Gaze Distributions
21st July 2014
Reading the Driver
13
Technische Universität München – Institute of Ergonomics
Workload: Complexity For an increasing n-back task, increasing workload is measurable using eye metrics like
*** ***
8
***
*** ***
Pupil diameter of right eye [mm]
blinks, fixations, saccades, glances, gaze, pupil
5,84
6
5,12
4,43 4
2
no n-back
1-back
3-back
Workload condition Error indicator: ±SD. ANOVA with p < 0.001 (***)
Significant for metrics pupil diameter and blink duration
21st July 2014
Reading the Driver
14
Technische Universität München – Institute of Ergonomics
Workload: Performance U-shaped relation between mental workload and performance/ prospective mental workload *
Amount of saccades
*
25 20 15 10
12,7 9,6
5
7,2
0 no workload
medium high workload workload Workload condition
Error indicator: ±SD. ANOVA with p < 0.05 (*).
Shorter steering response latency (Significant quadratic trend; F(1,19,95%)=7.99; p < .05; η2𝑝 = .30) and total duration of scenario for medium workload scenario. 21st July 2014
Significantly shorter/less glances to dynamic AOIs, smaller pupil diameter, less saccades, … for medium workload scenario
Reading the Driver
15
Technische Universität München – Institute of Ergonomics
conscious
Gaze extent ahead
left
(TOBII, 2013)
(TOBII, 2013)
< 17.19°
> 17.19°
No WL
Medium WL
High WL
No WL
Medium WL
High WL
SD for right eye [°]
7.80
7.44
7.61
8.11
8.84
9.02
SD for left eye [°]
7.72
7.62
7.71
8.17
9.12
9.21
(TOBII, 2013)
21st July 2014
subconscious
Reading the Driver
16
Technische Universität München – Institute of Ergonomics
Conclusion Eye Metrics
Realtime Processing
Realtime Adaptation
Proof of concept for
Situative & individual
Task optimization
cooperative lane-
differences of visual
(medium workload
change scenario
metrics
level) is necessary
•
•
•
Metrics for inferring workload set up,
•
Real time inference in
simulation
optimal assignment of control between a human and the system
Evidence for u-shaped relation between performance and
•
Real time analysis
mental workload 21st July 2014
Reading the Driver
17
Technische Universität München – Institute of Ergonomics
21st July 2014
Reading the Driver
18