generation sequencing to analyse the diet of a highly endangered land snail (Powelliphanta augusta) feeding on endemic earthworms. PloS One 8, e75962. doi ...
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:
you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis.
Interactions between Soil Biogeochemistry and Native Earthworms in New Zealand
A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy
at Lincoln University by Youngnam Kim
Lincoln University 2016
Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.
Abstract Interactions between Soil Biogeochemistry and Native Earthworms in New Zealand
by Youngnam Kim
Despite apparently similar burrowing and feeding behaviours to introduced Lumbricidae earthworms, native Megascolecidae, with more than 179 recognised species, have become isolated in natural vegetation remnants on the margins of agricultural land. Long-term geographic isolation has provided high endemic earthworm diversity in New Zealand, but they appear to have a poor ability to adapt to anthropogenic disturbance. Although earthworms are well known as ‘soil engineers’, there is lack of knowledge of the role of endemic earthworms in New Zealand’s soil ecosystems. The aims of the present PhD study were to identify endemic earthworm preferences for and influences on soil biogeochemistry, and to investigate interactions between the drilosphere of native earthworms and the rhizosphere of native plants. Species of earthworm, collected from native vegetation, natural remnants and restoration sites in Canterbury and on the West Coast of South Island, were identified using DNA barcoding with 16S and COI primers. Thirteen endemic and nine exotic species were identified and, of these, eight abundant earthworms were selected for this study: 5 endemic taxa identified as Deinodrilus sp.1 (epigeic), Maoridrilus transalpinus and Maoridrilus sp.2 (anecic), Megascolecidae sp.1 and Octochaetus multiporus (endogeic), and 3 exotic species: Eisenia fetida (epigeic), Octolasion cyaneum and O. lacteum (endogeic). Both endemic and exotic earthworms preferred agricultural soils to a native forest soil. Ryegrass litter was preferred to litter of native plants, although Coprosma robusta was also favoured by endemic earthworms. There was more preference for less acid soil than for high organic matter soil. Earthworm species could also be separated on the basis of their effects on soil biogeochemistry, in terms of organic matter consumption, nutrient mineralisation, soil microbial biomass and greenhouse gas emissions from the soil. Earthworm inoculation of soils increased more mobile forms of the key
i
nutrients N and P, and emissions of N2O and CO2 from an agricultural soil. Lesser differences were found between native and exotic earthworms than between functional (burrowing) groups. Native earthworms increased growth of plants, including L. perenne, and had a marked interaction with root morphology of two native species of tea tree (Leptospermum scoparium and Kunzea robusta). They also stimulated microbial activity in rhizosphere soil. An anecic species, M. transalpinus, enhanced rates of root nodulation of a native leguminous shrub (Sophora microphylla), enhancing critical concentrations of nitrate, but also reducing nitrous oxide emissions. Maoridrilus spp. enhanced plant productivity in biosolids-amended soils, but raised some potential environmental concerns through increased N2O emissions in