Interband cascade lasers with AlGaAsSb bulk ... - OSA Publishing

1 downloads 0 Views 2MB Size Report
Robert Weih,1,* Adam Bauer,1 Martin Kamp,1 and Sven Höfling1. 1Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center.
Interband cascade lasers with AlGaAsSb bulk cladding layers Robert Weih,1,* Adam Bauer,1 Martin Kamp,1 and Sven Höfling1 1

Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany * [email protected]

Abstract: Interband cascade lasers are promising candidates to cover a wide spectral range in the mid infrared spectral region with high performance devices. In this paper, we report on lasers where the cladding layers consist of quaternary bulk material (AlGaAsSb) instead of InAs/AlSb superlattices. The bulk claddings provide efficient mode confinement due to their low refractive index, comparable heat conductivity and a reduced current spreading. Broad area devices fabricated from laser layers with 5 cascades showed threshold current densities of 220 A/cm2 and narrow ridges operated up to 45 °C in continuous wave mode. ©2013 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (140.5965) Semiconductor lasers, quantum cascade; (140.3070) Infrared and far-infrared lasers; (250.5960) Semiconductor lasers materials; (160.6000) Semiconductor materials.

References and links 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32(1), 45–46 (1996). C.-H. Lin, S. J. Murry, D. Zhang, P. C. Chang, Y. Zhou, S. S. Pei, J. I. Malin, C. L. Felix, J. R. Meyer, C. A. Hoffman, and J. F. Pinto, “MBE grown mid-infrared type-II quantum-well lasers,” J. Cryst. Growth 175-176, 955–959 (1997). C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free waveguides for unipolar semiconductor lasers,” Appl. Phys. Lett. 75(25), 3911 (1999). K. Ohtani and H. Ohno, “An InAs-based intersubband quantum cascade laser,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1279–L1280 (2002). Z. Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, R. T. Hinkey, M. E. Curtis, and M. B. Johnson, “InAs-based interband cascade lasers near 6 µm,” Electron. Lett. 45(1), 48–49 (2009). H. K. Choi and S. J. Eglash, “Room-temperature cw operation at 2.2 µm of GalnAsSb/AIGaAsSb diode lasers grown by molecular beam epitaxy,” Appl. Phys. Lett. 59(10), 1165 (1991). N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ3.4μm and λ3.55μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012). K. Vizbaras, A. Vizbaras, A. Andrejew, C. Grasse, S. Sprengel, and M.-C. Amann, “Room-temperature type-I GaSb-based lasers in the 3.0 - 3.7 μm wavelength range,” Proc. SPIE 8277, 82771B, 82771B-7 (2012). I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II “W” quantum-well lasers,” J. Appl. Phys. 96(8), 4653 (2004). C. H. Pan and C. P. Lee, “Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications,” J. Appl. Phys. 113(4), 043112 (2013). S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4μm optoelectronic device applications,” J. Appl. Phys. 61(10), 4869 (1987). I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nature Communications 2, 585 (2011). W. W. Bewley, C. D. Merritt, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftman, J. Abell, and J. R. Meyer, “MidIR Interband Cascade Lasers Operating with